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Abstract. A new semiparametric estimation method for multi-parameters Archimedean
copulas based on the L-moments theory is proposed. Consistency and asymptotic normality
of the defined estimator are established. Extensive simulation study to compare estimators
based on the L-moments, the maximum likelihood and the measures of concordance is carried
out. We concluded that this method is quick and does not use the density function and
therefore no boundary problems arise.

Résumé. Une nouvelle méthode d’estimation semi-paramétrique pour les copules Archimi-
denne a plusieurs paramètres basée sur la théorie des L-moments est proposée. La consistance
et la normalité asymptotique de l’estimateur sont établies. Une étude de simulation, pour
comparer les estimateurs basés sur les L-moments, le maximum de vraisemblance et les
mesures de concordance, est effectuée. On conclu que cette méthode est rapide et ne utilise
pas la fonction de densité et par conséquent les problèmes de frontière ne se posent pas.

Key words: L-moments; Copulas; Dependence; Concordance measures; Semiparametric
estimation.
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1. Introduction

Let X = (X1, ..., Xd) be a d-dimensional random vector (d ≥ 2) defined on some prob-
ability space (Ω,F ,P) , with distribution function F (x) = P (X1 ≤ x1, ..., Xd ≤ xd) for
x =(x1, ..., xd) ∈ Rd and marginal distribution functions Fj (x) = P (Xj ≤ x) for x ∈ R,
j = 1, ..., d.
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If not stated otherwise, we always assume that the Fj are continuous functions. According
to Sklar’s Theorem (Sklar [12]), there exists a unique copula C : [0, 1]d → [0, 1] such that

F (x) = C (F1 (x1) , .., Fd (xd)) ., for all x ∈ Rd.

On the other terms, the copula C is the joint df of the random vector U =(U1, ..., Ud) , with

Uj = Fj

(
X(j)

)
, j = 1, ..., d, and is defined for all u = (u1, ..., ud) ∈ [0, 1]

d
, by

C (u) = F
(
F−1
1 (u1) , ..., F

−1
d (ud)

)
,

where F−1
j is the generalized inverse function (or the quantile function) of the df Fj . For

more details on copula theory, see for instance Nelsen [10]. In this paper we are dealing with
an important class of copulas called the Archimedean family defined by

C(u) = φ−1

 d∑
j=1

φ(uj)

 ,

where φ : [0, 1] → R is a twice differentiable function called the generator, satisfying: φ (1) =
0, φ′ (x) < 0 and φ′′ (x) ≥ 0 for any x ∈ (0, 1) . The notation φ−1 stands for the inverse
function of φ. Archimedean copulas are easier to construct and they have nice properties
and a variety of known copula families belong to this class including the models of Gumbel,
Clayton, Frank, ... (see, Table 4.1 in Nelsen [10, page 116]).

In this paper, we are dealing with the statistical inference on multiparameter Archimedean
copula models when the generator φ is unknown but assumed to belong to a class Φ :=
{φθ, θ ∈ O} , in other terms when the copula C belongs to a class C := {Cθ, θ ∈ O} ,
where O is an open subset of Rr for some integer r ≥ 1. The estimation of parameters of
copula models is one of main topics in multivariate statistical analysis and several parameter
estimation have been developed in the literature. Namely, the methods of concordance, also
called (τ, ρ)−inversion methods (Oakes [11], Genest [3]), fully maximum likelihood (ML),
pseudo maximum likelihood (PML) (Genest et al. [4]), inference function of margins (IFM)
(Joe [7, 8]), and minimum distance (MD) (Tsukahara [13]). It is shown that PML’s procedure
performs well compared to the cited methods as proved by several authors. Indeed, Kim et
al. [9] has concluded that the PML method is conceptually almost the same as the IFM one.
The main advantage of PML’s method is that, one would not lose any important statistical
insights that would be gained by applying the IFM. Moreover, the PML method does not
require modeling the marginal distributions explicitly.

In conclusion, the PML estimator is better than those of the ML and IFM in most practical
situations. In time-consuming point of view the ML, PML, IFM and MD procedures require
intensive computations for high dimensional copula models. It is worth mentioning that,
when using these methods, we use the maximum likelihood function, and then the copula
density is automatically involved. Therefore a serious boundry problems arise. There are
many numerical methods to solve this issue, but they are still inefficient when for high
dimensional copula models (see, Yan [16]).

The aim of this paper is to propose an alternative estimation method based on the L-
moment theory (see, Hosking [5]) avoiding technical problems caused by copula density and
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providing estimators with reasonable time-consuming, bias and root mean squared error
(RMSE). The L-moments based estimation have been used as an alternative to the classical

central moments µk = E
[
(Y − µ)

k
]
determined by the df FY of the underlying rv Y. An

L-moment λk is defined as a specific linear combination of the expectations of the order
statistics Y1:k ≤ ... ≤ Yk:k. More precisely, the kth L-moment is defined by

λk =
1

k

k−1∑
ℓ=0

(−1)
ℓ
(k − 1)!

ℓ! (k − 1− ℓ)!
E [Yk−ℓ:k] , k = 1, 2, ...

By analogy with the classical moments, the first four L-moments λ1, λ2, λ3 and λ4 measure,
respectively, location, scale, skewness and kurtosis features. The functional representation
of λk is terms of the df FY is given by (see, Hosking [6]):

λk = E [YPk−1 (FY (Y ))] =

∫
R
yPk−1 (FY (y)) dFY (y) , (1)

where Pk (u) :=
k∑

ℓ=0

pk,ℓu
ℓ, with pk,ℓ = (−1)

k+ℓ
(k + ℓ)!/

[(
ℓ2
)
! (k − ℓ)!

]
is the shifted Legen-

dre polynomial. In particular, we have, P0 (u) = 1, P1 (u) = 2u− 1, P2 (u) = 6u2 − 6u+ 1.
Let KC(s) := P (C (U) ≤ s) s ∈ [0, 1] of rv C (U), then by the representation 1 , the corre-
sponding kth L-moment of the rv C (U) is

λk (C) := E [C (U)Pk−1 (KC (C (U)))]

=

∫
[0,1]d

C (u)Pk−1 (KC (C (u))) dC (u) , k = 1, 2, ....

This also may be rewritten into

λk (C) =

∫ 1

0

sPk−1 (KC(s)) dKC(s), k = 1, 2, .... (2)

Suppose now, for unknown θ, that φ = φθ. Therefore C = Cθ, KC = Kθ and λk (C) =
λk (θ) , it follows that

λk (θ) =

∫ 1

0

sPk−1 (Kθ(s)) dKθ(s), k = 1, 2, ...

One nice property of Archimedean copulas, among others, is that the df of rv C (U) may
be represented in terms of derivative of the generator. Indeed from Theorem 4.3.4 in Nelsen
[10, page 127], we have for any s ∈ [0, 1] , Kθ(s) = s − φθ (s) /φ

′
θ (s) . It follows that the

corresponding density is K′
θ(s) = φ′′

θ (s)φθ (s) / (φ
′
θ (s))

2
. Therefore the kth copula-moment

may be rewritten into

λk (θ) =

∫ 1

0

sPk−1

(
s− φθ (s)

φ′
θ (s)

)
φ′′
θ (s)φθ (s)

(φ′
θ (s))

2 ds, k = 1, 2, ... (3)

In particular, the first two copula L-moments are
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λ1 (θ) =

∫ 1

0

s
φ′′
θ (s)φθ (s)

(φ′
θ (s))

2 ds,

λ2 (θ) =

∫ 1

0

s

(
2s− 2φθ (s)

φ′
θ (s)

− 1

)
φ′′
θ (s)φθ (s)

(φ′
θ (s))

2 ds.

From equations (3) , we may consider λ : θ → λ (θ) as a mapping from O ⊂Rr to Rr, that
will be used as a mean to estimate the parameter θ. More precisely, for a given sample
(X1, ...,Xn) of the random vector X, let us denote θ̂CLM as the estimator of θ defined by
(λk)1≤k≤r . That is

θ̂CLM := λ−1
(
λ̂k

)
, k = 1, ...r, (4)

where λ̂k is the empirical version of λk (C) and λ−1 is the inverse of the mapping λ, provided
it exists. The rest of the paper is organized as follows. In Section 2, we present the main
steps of the copula L-moment estimation procedure and establish the consistency and asymp-
totic normality of the proposed estimator. In Section 3, an application to multiparameter
Archimedean copula models is given. In Section 4, an extensive simulation study is carried
out to evaluate and compare the CLM based estimation with the PML and (τ, ρ)−inversion
methods. Comments and conclusion are given Section 5. The proofs are relegated to the
Appendix.

2. Semi-parametric CLM-based estimation

In this section we present a semiparametric estimation procedure for the copula models based
on the CLM’s (3) . First suppose that the underlying copula C belongs to a parametric family
Cθ, with θ = (θ1, · · · , θr), and satisfies the concordance ordering condition of copulas (see,
Nelsen [10, page 135]), that is:

for every θ(1), θ(2) ∈ O : θ(1) ̸= θ(2) =⇒ Cθ(1) (> or <)Cθ(2) . (5)

It is clear that this condition implies the well-known identifiability condition of copulas:
for every θ1, θ2 ∈ O : θ1 ̸= θ2 =⇒ Cθ1 ̸= Cθ2 . The identifiability condition is a natural
and even a necessary condition, since if the parameter is not identifiable then consistent
estimator cannot exist (see, e.g., van der Vaart [15, page 62]). Consider now a random sample
(X1, ...,Xn) from a d-dimensional random vector X =(X1, ..., Xd) with joint distribution
function F and copula C which are completely unknown. The marginal distribution functions
Fj are estimated by their empirical counterparts Fjn (xj) = n−1

∑n
i=1 1 {Xji ≤ xj} , j =

1, ..., d. By letting Ûji := Fjn (Xji) and

Ûi :=
(
Û1i, ..., Ûdi

)
, i = 1, ..., n,

the copula C is estimated by the empirical copula (Deheuvels [2]) which is defined as

Cn (u) = n−1
n∑

i=1

d∏
j=1

1
{
Ûji ≤ uj

}
, for u = (u1, ..., ud) ∈ [0, 1]

d
.
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The empirical df of the rv C (U) pertaining to the sample Cn

(
Û1

)
, ..., Cn

(
Ûn

)
is defined

by

Kn (t) := n−1
n∑

i=1

1
(
Cn

(
Ûi

)
≤ t

)
, t ∈ [0, 1] .

The empirical estimator of the kth copula L-moment λk may be done by substituting Kn is
formula (2) , that is

λ̂k = λk (Cn) =

∫ 1

0

sPk−1 (Kn(s)) dKn(s),

= n−1
n∑

i=1

Cn

(
Ûi

)
Pk−1

(
Kn

(
Cn

(
Ûi

)))
, k = 1, 2, ...

We call the solution θ̂CLM :=
(
θ̂1, ..., θ̂r

)
of the following system

λk (θ1, ..., θr) = λ̂k, k = 1, ..., r, (6)

the CLM estimator for θ. Consistency and asymptotic normality of θ̂CLM are stated in
Theorem 1 below whose proof is relegated to the appendix. For convenience we set

gk (u; θ) := Cθ (u)Pk−1 (Kθ (Cθ))− λk (θ) (7)

and
g (u; θ)= (g1 (u; θ) , ..., gr (u; θ)) .

Let θ0 be the true value of θ and assume that the following assumptions [A1]− [A3] hold.

– [A1] θ0 ∈ O ⊂ Rr is the unique zero of the mapping θ →
∫
[0,1]d

g (u; θ) dCθ0 (u) which is

defined from O to Rr.

– [A2] g (·; θ) is differentiable with respect to θ such that the Jacobian matrix denoted by
•
g (u; θ) := [∂gk (u; θ) /∂θℓ]r×r ,

•
g (u; θ) is continuous both in u and θ, and the Euclidian

norm
∣∣∣•g (u; θ)

∣∣∣ is dominated by a dCθ-integrable function.

– [A3] The r × r matrix A0 :=
∫
[0,1]d

•
g (u; θ0) dCθ0 (u) is nonsingular.

Theorem 1. Assume that the concordance ordering condition (5) and assumptions [A1]−
[A3] hold. Then, there exists a solution θ̂CLM to the system (6) which converges in probability
to θ0. Moreover

√
n
(
θ̂CLM − θ0

)
D→ N

(
0,A−1

0 D0

(
A−1

0

)T)
, as n → ∞,

where
D0 := var {g (ξ; θ0) + S (ξ; θ0)}

and
S (ξ; θ0) = (S1 (ξ; θ0) , ..., Sr (ξ; θ0)) ,
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with

Sk (ξ; θ0) :=

d∑
j=1

∫
[0,1]d

∂(Cθ(u)Pk−1(Kθ(Cθ)))
∂uj

(1 {ξj ≤ uj} − uj) dCθ0 (u) ,

for k = 1, ..., r, where ξ := (ξ1, ..., ξd) is a (0, 1)
d
-uniform random vector with joint df Cθ0 .

Remark 1. Following Genest et al. [4] and Tsukahara [13] in the case of PML’s estima-
tor and Z-estimator respectively, one may consistently estimate the asymptotic variance

A−1
0 D0

(
A−1

0

)T
by the sample variance of the sequence of rv’s{

Â−1
i D̂i

(
Â−1

i

)T

, i = 1, ..., n

}
,

where

Âi :=

∫
[0,1]d

•
g
(
u; θ̂CLM

)
dCθ̂CLM (u)

and
D̂i := g

(
Ûi; θ̂

CLM
)
+V

(
Ûi; θ̂

CLM
)
.

3. Illustrative example

As an illustrative example, we consider the Gumbel family, which is an Archimedean cop-

ula, defined by Cβ(u) = exp

(
−
(∑d

j=1 (− lnuj)
β
)1/β

)
, β ≥ 1, with generator φβ (t) =

(− ln t)
β
, β ≥ 1. In general, it is better to fit high dimensional data with multi-parameters

copula models than those of single one. For example, to construct a copula with two pa-
rameter from one parameter copula, we may use the transformed copula (Nelsen [10, page
96]) defined by CΓ (u) = Γ−1 (C (Γ (u1) , ...,Γ (ud))) , where Γ : [0, 1] → [0, 1] is a continu-
ous, concave and strictly increasing function with Γ (0) = 0 and Γ (1) = 1. More precisely,
suppose that Γ = Γα, with Γα (t) = exp (1− t−α) , α > 0 and the copula Cβ , then the
transformed copula Cα,β (u) = Γ−1

α (Cβ (Γα (u1) , ...,Γα (ud))) is defined by

Cα,β (u) :=


 d∑

j=1

(
u−α
j − 1

)β1/β

+ 1


−1/α

, for u = (u1, ..., ud) ∈ [0, 1]
d
, (8)

which is also a two-parameter Archimedean copula with generator φα,β (t) := (t−α − 1)
β
.

The copula family Cα,β verifies the concordance ordering condition (5) (see, Nelsen [10,
page 145]). Calculating the two first kth CLM we get


λ1 (α, β) :=

2α+ αβ − 1

4β + 2βα

λ2 (α, β) :=
2α3β2 + 13α2β2 − 2α2β + 27αβ2 − αβ − 4α+ 18β2 + 3β − 8

6β2 (2α3 + 13α2 + 27α+ 18)
.

(9)
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For given sample (X1, ...,Xn) form the random vector X = (X1, ..., Xd) , we define the CLM

estimator
(
α̂, β̂

)
of (α, β) as the unique solution of the system{

λ1 (α, β) = λ̂1

λ2 (α, β) = λ̂2

Of course, in this case, we cannot give explicit formulas, in terms of
{
λ̂1, λ̂2

}
, for the

parameters {α, β} . However for given values of
{
λ̂1, λ̂2

}
, we can obtain the corresponding

values of {α, β} by solving the previous system by numerical methods.

4. Simulation study

It is worth mentioning that, in this paper, all numerical computations are performed by
using on a PC with a microprocessor speed of 2.4 GHz. In our simulation study we employ
the copula Cα,β given in formula (8) , to evaluate and compare the performance of CLM’s
estimator with the PML and (τ, ρ)−inversion ones The evaluation of the performance

procedures are based on the bias and the RMSE based on the values of estimator θ̂ from
the ith samples for N generated samples from copula Cα,β . In both parts, we selected
N = 1000. The procedure outlined in Section 2 is repeated for different sample sizes n with
n = 30, 50, 100, 200 to assess the improvement in the bias and RMSE of the estimators
with increasing sample size. In addition, the simulation procedure is repeated for a large set
of parameters of the true copula Cα,β . For each sample, by using formulas (9) , we obtain

the CM-estimator
(
α̂i, β̂i

)
of (α, β) for i = 1, ..., N, and the estimators α̂ and β̂ are given

by α̂ = 1
N

∑N
i=1 α̂i and β̂ = 1

N

∑N
i=1 β̂i. The choice of the true values of the parameter

(α, β) have to be meaningful, in the sense that each couple of parameters assigns a value
of one of the dependence measure, that is weak, moderate and strong dependence. In other
words, if we consider Kendall’s τ as a dependence measure, then we should select values
for copula parameters that correspond to specified values of τ by means of the equation
τ (α, β) = 4

∫
[0,1]2

Cα,β (u1, u2) dCα,β (u1, u2)−1. The selected values of the true parameters

are summarized in table 1.

τ α β

0.01 0.1 1.059

0.5 0.5 1.6

0.8 0.9 3.45

Table 1. The true parameters of transformed Gumbel copula used for the simulation study.

5. Conclusion

From Table 5, we conclude that by considering three dependence cases: weak (τ = 0.01) ,
moderate (τ = 0.5) and strong (τ = 0.8) , the performance, in terms of bias and RMSE, of
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the CM based estimation is well justified. In each case, for small and large samples, the bias
and RMSE are sufficiently small. Moreover, in time-consuming point of view, we observe
that for a sample size n = 30 and for N = 1000 replications, the central processing unit
(CPU) time to process CM’s method took 36.609 seconds, which is relatively small. For one
replication N = 1, the CPU time (in seconds) for different sample sizes are summarized as
follows: (n,CPU) = (30, 0.036) , (100, 0.069) , (200, 0.202) , (500, 6.836) . Table 5 shows that
both the PML and the CM based estimation perform better than the (τ, ρ)-inversion method.
However, in weak dependence case τ = 0.01, the CM method provides better results than the
PML one, mainly when the sample size increases. On the other hand, it is worth mentioning
that our method is quick with respect to the PML one. The main advantage of our method
is that it provides estimators with explicit forms, as far as Archimedean copula models are
concerned. This is not the case of the other methods which require numerical procedures
leading to possible problems in processing time and inaccuracy issues. In conclusion, the CM
based estimation method performs well for the chosen model. Furthermore, its usefulness
in the weak dependence case particularly makes it a good candidate for statistical tests of
independence.
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τ = 0.01 τ = 0.5

α = 0.1 β = 1.059 α = 0.5 β = 1.6

n Bias RMSE Bias RMSE Bias RMSE Bias RMSE

30 0.156 0.450 0.103 0.296 −0.138 0.874 0.962 1.909
50 0.097 0.305 0.052 0.182 −0.014 0.608 0.326 0.664
100 0.048 0.194 0.023 0.106 −0.024 0.386 0.161 0.361
200 0.010 0.130 0.010 0.071 0.015 0.268 0.059 0.226
500 0.005 0.074 0.007 0.038 0.012 0.162 0.012 0.083

τ = 0.8

α = 0.9 β = 3.45

n Bias RMSE Bias RMSE CPU

30 −0.744 1.976 1.437 2.322 36.609 secs
50 −0.531 1.319 1.396 2.196 1.165 mins
100 −0.424 0.734 1.286 1.897 3.368 mins
200 −0.218 0.458 0.626 0.936 15.917 mins
500 −0.087 0.283 0.187 0.428 1.899 hours

Table 2. Bias, RMSE and CPU of the CLM estimator of two-parameters transformed
Gumbel copula.
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τ = 0.01 τ = 0.5

α = 0.1 β = 1.059 α = 0.5 β = 1.6

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

n = 30

CLM −0.066 0.067 0.151 0.299 0.088 0.401 −0.415 0.602
PML 0.142 0.453 −0.495 0.476 −0.139 0.867 0.974 1.906
ρ-τ 1.252 2.785 −0.621 1.762 −0.552 2.212 −0.985 1.132

n = 50

CLM −0.071 0.082 0.109 0.181 −0.017 0.341 0.315 0.543
PML −0.096 0.345 −0.287 0.442 −0.163 0.606 −0.482 0.664
ρ-τ 1.005 1.893 −0.578 1.367 −0.455 1.991 −0.852 1.031

n = 100

CLM 0.042 0.069 0.029 0.109 0.029 0.158 0.155 0.357
PML −0.054 0.191 −0.154 0.381 −0.082 0.367 −0.403 0.469
ρ-τ 0.862 1.124 −0.473 1.271 −0.355 1.104 −0.752 0.991

n = 200

CLM 0.026 0.063 0.012 0.074 0.009 0.106 0.013 0.105
PML −0.040 0.132 −0.211 0.305 −0.052 0.172 −0.324 0.428
ρ-τ 0.771 1.020 −0.403 1.110 −0.310 0.891 −0.656 0.786

τ = 0.8

α = 0.9 β = 3.45

Bias RMSE Bias RMSE

n = 30

CLM −0.139 0.399 0.312 1.022
PML −0.870 0.682 0.899 1.049
ρ-τ −0.437 1.798 1.229 2.473

n = 50

CLM 0.085 0.395 0.310 0.772
PML −0.765 0.488 0.782 0.901
ρ-τ −0.402 1.326 1.174 2.140

n = 100

CLM −0.023 0.167 0.117 0.537
PML −0.283 0.387 0.608 0.786
ρ-τ −0.420 0.895 1.024 1.865

n = 200

CLM −0.019 0.139 0.101 0.411
PML 0.216 0.349 0.480 0.525
ρ-τ −0.221 0.321 0.721 0.989

Table 3. Bias and RMSE of the CLM, PML and τ -ρ estimators of two-parameters trans-
formed Gumbel copula.
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Appendix A: Appendix

A.1. Proof of Theorem 1

First notice that CLM’s estimator may be considered as a RAZ-estimator (van der Vaart
[15, page 41]). Then by applying Theorem 1 in Tsukahara [13] we may easily establish the
consistency and asymptotic normality of the considered estimator. Indeed, the existence of
a sequence of consistent roots θ̂CLM to (6) , can be checked by using similar arguments as
the proof of Theorem 1 in Tsukahara [13]. That is, we have to verify only the conditions in
Theorem A.10.2 in Bickel et al. [1]. Firstly, recall the functions (7) and set

Φ (θ) :=
∫
Id g (u; θ) dCθ0 (u) , and Φn (θ) := n−1

n∑
i=1

g
(
Ûi; θ

)
,

where Ûi = (F1n (X1i) , ..., Fdn (Xdi)) , with (Xj1, ..., Xjn) is a given random sample from
the rv Xj . From assumption [A2] the following derivatives exist

•
Φ(θ) =

∫
Id

•
g (u; θ) dCθ0 (u) ,

•
Φn (θ) =

1

n

n∑
i=1

•
g
(
Ûi; θ

)
.

We have to verify

sup

{∣∣∣∣ •Φn (θ)−
•
Φ(θ)

∣∣∣∣ : |θ − θ0| < ϵn

}
P→ 0, as n → ∞, (A1)

for any real sequence ϵn → 0. Indeed, the continuity of function
•
g in θ implies that

sup
{∣∣∣•g (

Ûi; θ
)
− •
g
(
Ûi; θ0

)∣∣∣ : |θ − θ0| < ϵn

}
= oP (1) , i = 1, ..., n.

Also, since ∣∣∣∣ •Φn (θ)−
•
Φn (θ0)

∣∣∣∣ ≤ 1

n

n∑
i=1

∣∣∣•g (
Ûi; θ

)
− •
g
(
Ûi; θ0

)∣∣∣ ,
then

sup

{∣∣∣∣ •Φn (θ)−
•
Φn (θ0)

∣∣∣∣ : |θ − θ0| < ϵn

}
P→ 0, as n → ∞. (A2)

Making use of the law of the large number, we get n−1
∑n

i=1

•
g (Ui; θ0)

P→
•
Φ(θ0) , as n → ∞,

where Ui = {Fj (Xji)}1≤j≤d . Moreover, since
•
g is continuous in u then by Glivenko-

Cantelli theorem, we infer that n−1
∑n

i=1

∣∣∣•g (
Ûi; θ0

)
− •
g (Ui; θ0)

∣∣∣ P→ 0. It follows that∣∣∣∣ •Φn (θ0)−
•
Φ(θ0)

∣∣∣∣ P→ 0, which together with (A2), implies (A1). Conditions (MG0) and

(MG3) in Theorem A.10.2 in Bickel et al. [1] are trivially satisfied by our assumptions
[H1]− [H3] . In view of the general theorem for Z-estimators (see, van der Vaart and Well-

ner [14], Theorem 3.3.1), it remains to prove that
√
n

(
•
Φn −

•
Φ

)
(θ0) converges in law to the

appropriate limit. But this follows from Proposition 3 in Tsukahara [13], which achieves the
proof of Theorem 1. �
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