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Abstract. In this paper we introduce a new model called Fractionally Integrated Separable
Spatial Autoregressive processes with Seasonality and denoted Seasonal FISSAR. We focus
on the class of separable spatial models whose correlation structure can be expressed as
a product of correlations. This new modelling allows taking into account the seasonality
patterns observed in spatial data. We investigate the properties of this new model providing
stationary conditions, some explicit form of the autocovariance function and the spectral
density. We also establish the asymptotic behaviour of the spectral density function near
the seasonal frequencies.

Résumé. On introduit une nouvelle classe de processus appelée Processus autoregressif spa-
tiaux, fractionnaires, intégrés et séparables avec saisonnalité. On considère la classe des modè
les spatiaux dont la structure de corrélation peut être exprimée comme produit de fonctions
de corrélations. Cette nouvelle modé lisation permet de prendre en compte le phénomène de
saisonnalité observé dans des données spatiales, bi-dimensionnelles. Nous étudions les pro-
priétés statistiques du modèle proposé telles que les conditions de stationnarité, la fonction
d’autocovariance (deux formes) et de la fonction de densité spectrale. Nous établissons aussi
l’approximation asymptotique de la fonction de densité spectrale au niveau des fréquences
saisonnières.
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1. Introduction

In recent years many studies have modelled the spatial process. In 1973, Cliff and Ord (1973)
give an general presentation on spatial econometrics models and introduce the STAR (Space-
Time AutoRegressive) and the Generalized Space-Time AuRegressive (GSTAR) models. The
literature on spatial models is relatively abundant, we can also cite the Simultaneous Au-
toRegression model, SAR (Whittle, 1954), the Conditional AutoRegression model, CAR
(Bartlett, 1971; Besag, 1974), the moving average model (Haining, 1978) or the unilateral
models (Basu and Reinsel, 1993) among others. Spatial models are currently investigated in
many research fields like meteorology (Lim et al., 2002), oceanography (Illig, 2006), agron-
omy (Whittle, 1954; Lambert et al., 2003), geology (Cressie, 1973), epidemiology (Marshall,
1991), image processing (Jain, 1981), econometrics (Anselin, 1988) and many others in which
the data of interest are collected across space. This large domain of applications is due to the
richness of the modelling which associates a representation with a geographical component.

Spatial time series modellings concern times series collected with geographical position, in
order to use the spatial information in the modelling. Some particularities are included in
the modelling: (i) two close data tend to have similar values; (ii) it can exist repetition of
values by periodicity (for example, a temperature observed on a site can be observed in the
same site after a given period). It is important to explain this repetition and to model it we
associate with each direction i and j seasonal parameters s1 et s2 respectively.

The studies of spatial data have shown presence of long-range correlation structures (Lim
et al., 2002). To deal with this specific feature Boissy et al. (2005) had extended the long
memory concept from times series to the spatial context and introduced the class of frac-
tional spatial autoregressive model. At the same time Shitan (2008) studies the model called
Fractionally Integrated Separable Spatial Autoregressive (FISSAR) model to approximate
the dynamics of spatial data when the autocorrelation function decays with a long memory
effect.

In another hand some authors have also observed seasonality in some spatial observations:
Benth et al. (2007) proposed a spatial-temporal model for daily average temperature data.
This model includes trend, seasonality and mean reversion. Portmann et al. (2009) studied
the spatial and seasonal patterns for climate change, temperatures and precipitations. Nobre
et al. (2011) introduce an spatially varying Autoregressive Processes for satellite data on
sea surface temperature for the North Pacific to illustrate how the model can be used to
separate trends, cycles, and short-term variability for high-frequency environmental data; a
multivariate GSTAR has been developed by Pejman et al. (2009) for the study of the water
quality.

Thus, it appears natural to incorporate long memory seasonal patterns into the FISSAR
model of Shitan (2008) as soon as we work with data collected during several periods or
cycles, allowing different seasonal patterns on the spatial locations. In that context common
seasonal factors will receive different weights for these different spatial locations (Lopes et al.,
2008). Inference problems in spatial location or two-dimensional process have been studied
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by several authors (for example, Zhu et al. (2007) use the maximum likelihood method from
spatial random effects). In this work a way to identify and estimate the parameters model
in not discussed and this will be the purpose of a companion paper.

In this paper, we focus our attention on the class of separable spatial models whose cor-
relation structure can be expressed as a product of correlations taking into account the
seasonality patterns observed in spatial data. Therefore, we consider the Seasonal Fraction-
ally Integrated Separable Spatial Autoregressive model, denoted in the following by Seasonal
FISSAR extending at the same time the works Shitan (2008) and Boissy et al. (2005). We
investigate the properties of this new modelling, providing the stationary conditions, ana-
lytic expressions for the autocovariance function and the spectral density function. We also
establish the asymptotic mean of the spectral density function. This new modelling will be
able to take into account periodic and cyclical behaviours presented in a lot of applications,
including the modelling of temperatures, agricultural data, epidemiology when the data are
collected during different seasons at different locations, and also financial data to take into
account the specific systemic risk observed on the global market (Benirschka and Binkley,
1994; Graaff et al., 2001; Jaworski, 2014).

The paper is organized as follows. The next Section 2 introduces the new class of Seasonal
Fractionally Integrated Separable Spatial AutoRegressive model. In Section 3 we investigate
some properties of the model, existence, invertibility, causality and stationary conditions.
We compute the autocovariance function and provide an analytic expression for the spectral
density and its asymptotic behaviour near the seasonal frequencies. In section 4 we provide
some illustrations of this new modelling. Some proofs are given in the last section.

2. A new model: The Seasonal FISSAR

We introduce the Seasonal Fractionally Integrated Separable Autoregressive model and
establish conditions for its existence and invertibility.

Let {Xij}i,j∈Z+
be a sequence of spatial observations in two dimensional regular lattices,

they are governed by a Seasonal FISSAR model if:

(1− φ10B1 − φ01B2 + φ10φ01B1B2) (1− ψ10B
s1
1 − ψ01B

s2
2 + ψ10ψ01B

s1
1 B

s2
2 )

× (1−B1)
d1 (1−Bs11 )

D1 (1−B2)
d2 (1−Bs22 )

D2 Xij = εij (1)

where the integers s1 and s2 are respectively the seasonal periods in the ith and jth

directions, φ10, φ01,ψ10, ψ01 are real numbers and {εij}i,j∈Z+
is a spatial white noise

process, mean zero and variance σ2
ε . The backward shift operators B1 and B2 are such that

B1Xij = Xi−1,j and B2Xij = Xi,j−1. The long memory parameters are denoted d1 and D1

for the direction i and for the direction j they are denoted d2 and D2.

We specify now the different components of this model in order to understand how we
can investigate it, and provide a useful methodology for estimation. First, we provide a
part which characterizes the spatial short memory behaviour, second we introduce a new
modelling for spatial long memory behaviour with seasonals, extending the work of Shitan
(2008).
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The spatial short memory behaviour of the variables {Xij}i,j∈Z+
is explained through the

process {Wij}i,j∈Z+
:

(1− φ10B1) (1− φ01B2) (1− ψ10B
s1
1 ) (1− ψ01B

s2
2 )Xij = Wij . (2)

This representation extends the work of (Shitan, 2008) introducing seasonality in the short
memory behaviour with the filter (1− ψ10B

s1
1 ) (1− ψ01B

s2
2 ). The process {Wij}i,j∈Z+

has

a spatial seasonal long memory behaviour given by:

(1−B1)
d1 (1−Bs11 )

D1 (1−B2)
d2 (1−Bs22 )

D2 Wij = εij . (3)

Thus, the Seasonal FISSAR model (1) can be rewritten formally by:

Φ (B1, B2) Ψ (Bs11 , B
s2
2 )Xij = Wij , (4)

where
Φ (B1, B2) = (1− φ10B1) (1− φ01B2) (5)

and
Ψ (Bs11 , B

s2
2 ) = (1− ψ10B

s1
1 ) (1− ψ01B

s2
2 ) . (6)

This new modelling is characterized by four operators: two characterizing the short memory
behaviour, (1−Bs11 )

D1 and (1−Bs22 )
D2 and two characterizing the long memory behaviour,

(1− ψ10B
s1
1 ) and (1− ψ01B

s2
2 ). They take into account the existence of seasonality in two

directions.

We specify now the concept of long memory for stationary processes in two directions. Recall
that a stationary process {Xt}t∈Z with spectral density fX(.), for which it exist a real number

b ∈ (0, 1), a constant Cf > 0 and a frequency G ∈ [0, π[ such that fx(ω) ∼ Cf |ω −G|−b,
when ω −→ G, then {Xt}t∈Z has a long memory behaviour (Bisognin and Lopes, 2009).
This definition can be extended in dimension two in the following way:

Definition 1. Let {Xij}i,j∈Z+
be a stationary process with spectral density fX(., .). Sup-

pose there exist real numbers a, b ∈ (0, 1), a constant Cf > 0 and frequencies λ1,

λ2 ∈ [0, π[ such that fx(ω1, ω2) ∼ Cf |ω1 − λ1|−a |ω2 − λ2|−b, when (ω1, ω2) −→ (λ1, λ2),
then {Xij}i,j∈Z+

has a long memory behaviour.

We investigate now the following properties: (i) existence, (ii) invertibility, (iii) causality and
(iv) stationarity for the model (1). We first provide the causal moving average representation
of the seasonal FISSAR process (1).

Proposition 1. Let be the process {Xij}i,j∈Z+
defined in equation (2). It has the following

representation:

Xij =

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

φk10φ
l
01ψ

m
10ψ

n
01Wi−k−ms1,j−l−ns2 , (7)

where

Wij =

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

φk(d1)φl(d2)φm(D1)φn(D2)εi−k−ms1,j−l−ns2 , (8)
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with

φk(d1) =


Γ(k + d1)

Γ(k + 1)Γ(d1)
if k ∈ Z+

0 if k /∈ Z+

; φl(d2) =


Γ(l + d2)

Γ(t+ 1)Γ(d2)
if l ∈ Z+

0 if l /∈ Z+

(9)

and

φm(D1) =


Γ(m+D1)

Γ(m+ 1)Γ(D1)
if m ∈ Z+

0 if m /∈ Z+

; φn(D2) =


Γ(n+D2)

Γ(n+ 1)Γ(D2)
if n ∈ Z+

0 if n /∈ Z+

(10)

Γ(.), is the Gamma function defined by Γ(t) =

∫ ∞
0

xt−1−xdx and {εij}i,j∈Z+
is a two-

dimensional white noise process. Equations (7)-(8) have an unique solution if the polynomials
Φ (z1, z2) and Ψ (z1, z2) are such that all their roots lie outside the unit polydisk, i.e

i) | φ10 |< 1, | φ01 |< 1, | ψ10 |< 1 and | ψ01 |< 1
ii)
(
1 + φ210 − φ201 − φ210φ201

)
− 4φ10 (1− φ10φ01) > 0

iii)
(
1 + ψ2

10 − ψ2
01 − ψ2

10ψ
2
01

)
− 4ψ10 (1− ψ10ψ01) > 0

Proof. : The sketch of the proof is provided in Appendix. It derives from Basu and Reinsel
(1993).

3. Some properties of the seasonal FISSAR model

We provide now the spectral density function of the process {Wij} and {Xij} and we estab-
lish the asymptotic mean of this function. We use this result to give the stationary conditions
for the processes.

Proposition 2. Let {Wij} be the process defined by (3) and fW (λ1, λ2) its spectral density.
When |di +Di| < 0.5 and |di| < 0.5 (i = 1, 2), its spectral density is equal to:

fW (λ1, λ2) =
σ2

4π2

[
2 sin

(
λ1
2

)]−2d1 [
2 sin

(
s1λ1

2

)]−2D1
[
2 sin

(
λ2
2

)]−2d2 [
2 sin

(
s2λ2

2

)]−2D2

(11)

with λ1 and λ2 ∈]0, π].

Proof. : The proof of this Proposition is provided in the Appendix.

Proposition 3. Let {Xij}i,j∈Z+
be the Seasonal FISSAR process defined in (4), the spectral

density function fX(λ1, λ2) of this process is equal to

fX(λ1, λ2) =
∣∣Φ (−iλ1 ,−iλ2

)∣∣−2 ∣∣Ψ (−isλ1 ,−isλ2
)∣∣−2 fW (λ1, λ2) (12)

where fW (λ1, λ2) is the spectral density function of the process {Wij}i,j∈Z+
given in (11)

and Φ(., .) and Ψ(., .) are respectively defined in (5) and (6) with λ1 and λ2 ∈]0, π].

Proof. : This result derived from the definition of the spectral density function.
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Corollary 1. The spectral density of the process {Xij}i,j∈Z+
defined in (2) can be rewritten

as

fX(λ1, λ2) =
(
1− 2φ10 cos(λ1) + φ210

)−1 (
1− 2ψ10 cos(s1λ1) + ψ2

10

)−1
(13)(

1− 2φ01 cos(λ2) + φ201
)−1 (

1− 2ψ01 cos(s2λ2) + ψ2
01

)−1
fW (λ1, λ2)

where fW (λ1, λ2) is given in (11).

We analyse now the behaviour of the spectral density for the processes {Wij}i,j∈Z+
and

{Xij}i,j∈Z+
near the seasonal frequencies.

Proposition 4. The asymptotic expression of the spectral density of the process {Wij}i,j∈Z+

near the seasonal frequencies is such that

(i) For λ0 = 0,

fW (λ1, λ2) ∼ C1 |λ1 − λ0|−2(d1+D1) |λ2 − λ0|−2(d2+D2) , when (λ1, λ2) −→ (0, 0), (14)

with

C1 =
σ2
ε

4π2
s−2D1
1 s−2D2

2 (15)

(ii) For λi = 2πi
s1

, λj = 2πj
s2

, i = 1, . . . , [s1/2] and j = 1, . . . , [s2/2], where [x] means the
integer part of x,

fW (λ1, λ2) ∼ C2 |λ1 − λi|−2D1 |λ2 − λj |−2D2 , when (λ1, λ2) −→ (λi, λj) (16)

with

C2 =
σ2
ε

4π2
s−2D1
1 s−2D2

2

[
2 sin

(
λi
2

)]−2d1 [
2 sin

(
λj
2

)]−2d2
(17)

Proof. : The proof of this Proposition is provided in the Appendix.

Proposition 5. The asymptotic expression of the spectral density of the process {Xij}i,j∈Z+

near the seasonal frequencies is such that

(i) For λ0 = 0,

fX(λ1, λ2) ∼ C3 |λ1 − λ0|−2(d1+D1) |λ2 − λ0|−2(d2+D2) , when (λ1, λ2) −→ (0, 0) (18)

with

C3 =
σ2
ε

4π2
s−2D1
1 s−2D2

2

∣∣Φ (−iλ0 ,−iλ0
)∣∣−2 ∣∣Ψ (−iλ0 ,−iλ0

)∣∣−2 (19)

=
σ2
ε

4π2
s−2D1
1 s−2D2

2 (1− φ10)
−2

(1− ψ10)
−2

(1− φ01)
−2

(1− ψ10)
−2
.

(ii) For λi = 2πi
s1

, λj = 2πj
s2

, i = 1, . . . , [s1/2] and j = 1, . . . , [s2/2], where [x] means the
integer part of x,

fX(λ1, λ2) ∼ C4 |λ1 − λi|−2D1 |λ2 − λj |−2D2 , when (λ1, λ2) −→ (λi, λj) (20)
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with

C4 =
σ2
ε

4π2
s−2D1
1 s−2D2

2

[
2 sin

(
λi
2

)]−2d1 [
2 sin

(
λj
2

)]−2d2
(21)∣∣Φ (−iλi ,−iλj

)∣∣−2 ∣∣Ψ (−is1λ0 ,−is2λ0
)∣∣−2 ,

the polynomials Φ(., .) and Ψ(., .) are introduced in (5) and (6).

Proof. : The proof is given in the Appendix.

We investigate now the stationary conditions for the model (1) as well as its long memory
behaviour. We give also two expressions for the autocovariance function of the Seasonal
FISSAR process.

Proposition 6. The two-dimensional process {Wij}i,j∈Z+
defined in (3)

(i) is stationary when di +Di < 0.5, Di < 0.5, i = 1, 2.
(ii) has a long memory behaviour when 0 < di +Di < 0.5, 0 < Di < 0.5, i = 1, 2.

Proof. : The proof is given in the Appendix.

Proposition 7. Let {Xij}i,j∈Z+
be a Seasonal FISSAR process defined in (1). The process

{Xij}i,j∈Z+

(i) is stationary when di +Di < 0.5, Di < 0.5, i = 1, 2 and Φ (z1, z2) Ψ (zs1, z
s
2) 6= 0

for |z1| < 1 and |z2| < 1.
(ii) has long memory property when 0 < di +Di < 0.5, 0 < Di < 0.5, i = 1, 2

and Φ (z1, z2) Ψ (zs11 , z
s2
2 ) 6= 0, for |z1| ≤ 1 and |z2| ≤ 1.

Proof. : The proof is given in the Appendix.

To investigate the autocovariance function of the process defined in (2), we show that its
autocovariance function can be written as a product of the autocovariance function for two
processes {Zij}i,j∈Z+ and {Yij}i,j∈Z+ defined in the following way.
Let respectively

{
ε∗ij
}

,
{
ε′ij
}

be two orthogonal two-dimensional white noise processes with

mean zero and respectively variance σ2
ε∗ and σ2

ε′ , we define the processes {Zij}i,j∈Z+
and

{Yij}i,j∈Z+
:

(1−Bs11 )
D1 (1−Bs22 )

D2 Zij = ε∗ij (22)

(1−B1)
d1 (1−B2)

d2 Yij = ε′ij (23)

Shitan (2008) prove that the autocovariance function of the process {Yij}i,j∈Z+
is such that:

γY (h1, h2) = σ2
ε′

(−1)
h1+h2 Γ(1− 2d1)Γ(1− 2d2)

Γ(h1 − d1 + 1)Γ(1− h1 − d1)Γ(h2 − d2 + 1)Γ(1− h2 − d2)
(24)
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We can derive the expression of the process {Zij}i,j∈Z+
from (24) and obtain

γZ(s1h1 + ξ1, s2h2 + ξ2) = σ2
ε∗

(−1)
h1+h2 Γ(1− 2D1)Γ(1− 2D2)

Γ(h1 −D1 + 1)Γ(1− h1 −D1)Γ(h2 −D2 + 1)Γ(1− h2 −D2)

if (ξ1, ξ2) = (0, 0) (25)

γZ(s1h1 + ξ1, s2h2 + ξ2) = γZ(s1h1 + ξ1, s2h2 + ξ2) = 0 if (ξ1, ξ2) ∈ A1 ×A2 (26)

where A1 = {1, . . . , s1 − 1} and A2 = {1, . . . , s2 − 1}.
We can now give the autocovariance function of {Xij}i,j∈Z+

introduced in (2):

Proposition 8. Let `1, `2 ∈ Z+ , (ξ1, ξ2) ∈ A1 × A2 where A1 = {1, . . . , s1 − 1} and
A2 = {1, . . . , s2 − 1}. The autocovariance function of the process {Xij}i,j∈Z+ is given by:

γX(h1, h2) =

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

+∞∑
p=0

+∞∑
q=0

+∞∑
r=0

+∞∑
t=0

φk+p10 φl+q01 ψm+r
10 ψn+t01

× γW (h1 + k + s1(m− r)− p, h2 + l + s2(n− t)− q) (27)

where

γW (h1, h2) = σ2
ε

+∞∑
ν1=0

+∞∑
ν2=0

γZ(s1ν1, s2ν2)

×γY (h1 − s1ν1, h2 − s2ν2) if (h1, h2) = (s1`1, s2`2) (28)

γW (h1, h2) = 0, if (h1, h2) = (s1`1 + ξ1, s2`2 + ξ2) (29)

with γZ(., .) and γY (., .) given respectively in (25)-(26) and (24).

Proof. : The proof is given in the Appendix.

Corollary 2. The variance of the Seasonal FISSAR process has the following expression

γX(0, 0) =

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

+∞∑
p=0

+∞∑
q=0

+∞∑
r=0

+∞∑
t=0

φk+p10 φl+q01 ψm+r
10 ψn+t01

× γW (k + s1(m− r)− p, l + s2(n− t)− q) (30)

where γW (., .) is given by (28)-(29) where h1 = h2 = 0.

For practical purpose, we propose a general formula of the autocovariance function of the
stationary process {Xij}i,j∈Z+ which does not depend on the two-dimensional seasonal frac-
tionally integrated white noise ({Wij}i,j∈Z+). For that, we introduce two new processes
{Uij}i,j∈Z+

and {Vij}i,j∈Z+
.

Let respectively {ε̃ij},
{˜̃εij} be two 2-dimensional white noise processes with mean zero

and respectively variances σ2
ε̃ij

and σ2˜̃εij . We introduce respectively the processes {Uij}i,j∈Z+

and {Vij}i,j∈Z+
:

Ψ (Bs11 , B
s2
2 ) (1−Bs11 )

D1 (1−Bs22 )
D2 Uij = ε̃ij (31)

Φ (B1, B2) (1−B1)
d1 (1−B2)

d2 Vij = ˜̃εij (32)
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where Ψ (Bs1, B
s
2) and Φ (B1, B2) are respectively defined in (5) and (6).

Note that the process {Uij}i,j∈Z+ generalizes the process {Zij}i,j∈Z+ introduced in (22)
through the operator Ψ (Bs1, B

s
2) and the process {Vij}i,j∈Z+

generalizes the process
{Yij}i,j∈Z+

introduced in (23) through the operator Φ (B1, B2).

Proposition 9. The autocovariance function of the stationary process {Uij}i,j∈Z+
in spatial

lags (h1, h2) is equal to:

γU (h1, h2) = σ2
ε̃

+∞∑
ν1=0

+∞∑
ν2=0

γŨ (s1ν1, s2ν2)

×γZ(h1 − s1ν1, h2 − s2ν2), if (h1, h2) = (s1`1, s2`2) (33)

γU (h1, h2) = 0, if (h1, h2) = (s1`1 + ξ1, s2`2 + ξ2) (34)

where Ũ is equal to:
Ψ (Bs11 , B

s2
2 ) Ũij = ε̃∗ij ,

γŨ (s1ν1, s2ν2) = σ2
ε̃∗

+∞∑
m=0

+∞∑
n=0

ϕ1
ν1+mϕ

1
mϕ

2
ν2+nϕ

2
n,

and γZ(., .) is introduced in (25)-(26). The coefficients ϕ1
k and ϕ2

l are linked by the relation-
ship

Ψ−1 (zs1, z
s
2) =

+∞∑
k=0

+∞∑
l=0

ϕ1
kϕ

2
l z
s1k
1 zs2l2

.

Proof. : The proof is given in the Appendix.

Proposition 10. The autocovariance function of the stationary processes {Vij}i,j∈Z+ in
spatial lags (h1, h2) is equal to:

γV (h1, h2) = σ2˜̃ε
+∞∑
k=0

+∞∑
l=0

γṼ (k, l)γY (h1 − k, h2 − l) (35)

where Ṽ is given by:
Φ (B1, B2) Ṽij = ε̃′ij ,

γṼ (k, l) = σ2
ε̃′

+∞∑
m=0

+∞∑
n=0

ϕ1
k+mϕ

1
mϕ

2
l+nϕ

2
n,

γY (., .) being defined by (24) and the coefficients ϕ1
k and ϕ2

l are linked by the relationship

Φ−1 (z1, z2) =

+∞∑
k=0

+∞∑
l=0

ϕ1
kϕ

2
l z
k
1z
l
2

Proof. : The proof of this Proposition is given in the Appendix.
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Now we provide the autocovariance function of the Seasonal FISSAR process defined in (4).

Proposition 11. Let `1, `2 ∈ Z+ , ξ ∈ A where A = {1, . . . , s− 1}.
The Seasonal FISSAR stationary process {Xij}i,j∈Z+

has autocovariance function at spatial
lags (h1, h2) given by

γX(h1, h2) = σ2
ε

+∞∑
ν1=0

+∞∑
ν2=0

γU (s1ν1, s2ν2)

×γV (h1 − s1ν1, h2 − s2ν2), if (h1, h2) = (s1`1, s2`2) (36)

γX(h1, h2) = 0, if (h1, h2) = (s1`1 + ξ1, s2`2 + ξ2). (37)

where the autocovariance functions γU (., .) and γV (., .) are defined respectively in (33)-(34)
and (35).

Proof. : The sketch of the proof is provided in the Appendix.

Corollary 3. The variance for this second representation of the Seasonal FISSAR process
is given by,

γX(0, 0) = σ2
ε

+∞∑
ν1=0

+∞∑
ν2=0

γU (s1ν1, s2ν2)γV (s1ν1, s2ν2) (38)

where the autocovariance functions γU (., .) and γV (., .) are defined respectively in (33)-(34)
and (35) with h1 = h2 = 0.

4. Illustrations

A realisation of the two-dimensional seasonal fractionally integrated white noise processes
{Wij}i,j∈Z+

with d1 = 0.1, d2 = 0.1, D1 = 0.15, D2 = 0.2, s1 = s2 = 4 is shown in Figure 1.

In this study, we generated 100 × 100 grid and we use only the values in south east corner
in the matrix (they correspond to the interior values of grid size 30× 30).
The spatial white noise process {Wij}i,j∈Z+

can be considered as a special case of the

Seasonal FISSAR model. However, it is rare to see applications in a phenomenon that is
only modelled by white noise.
We simulated the Seasonal FISSAR process in two stages. First we generate the two dimen-
sional white noise {εij}i,j∈Z+

and second using (3) we obtained {Wij}i,j∈Z+
. Then using

the relationship (2), we get {Xij}i,j∈Z+
. We use also the 30× 30 values in south east corner

by simulating 100 × 100 values in a regular grid with d1 = 0.1, d2 = 0.1, D1 = 0.1, D2 =
0.2, φ10 = 0.1, φ01 = 0.15, ψ10 = 0.1, φ0.2 and s1 = s2 = 4.
In practice, the Seasonal FISSAR model has many possible applications of real data sets
from different fields when the observations are collected during different seasons at different
locations: temperature data, agricultural data, systemic risk etc. An possible application
may concern variability of the rice production over Senegal river valley. Indeed yields vary
widely from season to season and depending on the growing areas in the valley. Thus, our
model could be applied to these data for better management of forecasting yields, which
would be a considerable contribution to the management of rice production, an influential
factor on economic issues of the country and the West African sub region.
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i

j

w
n

Fig. 1. 2D seasonal fractionally integrated white noise process, d1 = 0.1, d2 = 0.1, D1 =
0.15, D2 = 0.2, s1 = s2 = 4 and size 30× 30.

In practice then, many observations are reporting by longitude and altitude and this new
modelling is defined in two dimensional regular lattices. In this case we re-coded the position
of the stations by assigning an integer value from number for both longitude and altitude,
reflecting the relative position on the lattice into which the study region has been mapped.

5. Conclusion

The spatial modelling has a lot of applications in different fields. To take into account at the
same time existence of short memory behaviour and long memory behaviour in time and
space permits a greater flexibility for the use of these modellings. It is the objective of this
paper which introduces and investigates the statistical properties of a new class of model
called Fractionally Integrated Separable Spatial Autoregressive processes with Seasonality.
The stationary conditions, an explicit expression form of the autocovariance function and
spectral density function have also been given. On another hand, a practical formula of
the autocovariance function as a product of covariance for the Seasonal FISSAR process is
given. Extension of the results to the spatio-temporal data or d-dimensional (d > 2) fields
is immediate but not provided in this paper. For the spatio-temporal representation, time
can be represented by the direction i and the spatial components by the direction j taken in
Zd, d ≥ 2. We provide some representations of these models. It remains to provide a way to
identify and estimate these models from data sets: this will be the purpose of a companion
paper.
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i

j

X

Fig. 2. Seasonal FISSAR process: d1 = 0.1, d2 = 0.1, D1 = 0.1, D2 = 0.2, φ10 = 0.1, φ01 =
0.15, ψ10 = 0.1, φ0.2, s1 = s2 = 4 and size N ×N = 30× 30.

6. Appendix

In this section we establish the main results and give the necessary technical proofs for the
propositions.

Proof. of the Proposition 1.
According to equation (2), we have

Xij = (1− φ10B1)
−1

(1− ψ10B
s1
1 )
−1

(1− φ01B2)
−1

(1− ψ01B
s2
2 )
−1
Wij

Thus,

Xij =

(
+∞∑
k=0

φk10B
k
1

)(
+∞∑
m=0

ψm10B
ms1
1

)(
+∞∑
l=0

φl01B
l
2

)(
+∞∑
n=0

ψn01B
ns2
2

)
Wij

=

(
+∞∑
k=0

+∞∑
m=0

+∞∑
l=0

+∞∑
n=0

φk10B
k
1ψ

m
10B

ms1
1 φl01B

l
2ψ

n
01B

ns2
2

)
Wij .

If Φ (z1, z2) and Ψ (z1, z2) have their roots outside the unit polydisk then we have the con-
vergent representation (7), see Proposition 1 in Basu and Reisel (1993).

Proof. of the Proposition 2.
We consider (3) and denote fε(λ1, λ2) the spectral density of the process {εij}. Let

Ψ(z1, z2) = (1− z1)
−d1 (1− zs11 )

−D1 (1− z2)
−d2 (1− zs22 )

−D2 ,
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Then

fW (λ1, λ2) = Ψ
(
iλ1 ,iλ2

)
Ψ
(−iλ1 ,−iλ2

)
fε(λ1, λ2)

=
(
1−iλ1

)−d1 (
1−is1λ1

)−D1
(
1−iλ2

)−d2 (
1−is2λ2

)−D2

×
(
1−−iλ1

)−d1 (
1−−is1λ1

)−D1
(
1−−iλ2

)−d2 (
1−−is2λ2

)−D2
fε(λ1, λ2)

=
[(

1−iλ1
) (

1−−iλ1
)]−d1 [(

1−is1λ1
) (

1− e−is1λ1
)]−D1

×
[(

1−iλ2
) (

1−−iλ2
)]−d2 [(

1−is2λ2
) (

1−−is2λ2
)]−D2

fε(λ1, λ2)

Thus

fW (λ1, λ2) =
∣∣1−−iλ1

∣∣−2d1 ∣∣1−−is1λ1
∣∣−2D1

∣∣1−−iλ2
∣∣−2d2 ∣∣1−−is2λ2

∣∣−2D2
fε(λ1, λ2)

as soon as (
1−iλ1

) (
1−−iλ1

)
=
∣∣1−−iλ1

∣∣2 =

[
2 sin

(
λ1
2

)]2
,

we obtain (11) since fε(λ1, λ2) =
σ2

4π2
.

Proof. of the Proposition 4.(i) We consider the spectral density function of the process

{Wij}i,j∈Z+
defined in (11) and we use the following approximations:

lim
λ−→0

sin(sλ)

sλ
= 1 and sin(sλ) ' sλ,

then

fW (λ1, λ2) =
σ2
ε

4π2
|λ1|−2d1 s−2D1

1 |λ1|−2D1 |λ2|−2d2 s−2D2
2 |λ2|−2D2

=
σ2
ε

4π2
|λ1|−2(d1+D1) |λ2|−2(d2+D2) s−2D1

1 s−2D2
2

when (λ1, λ2) −→ (0, 0). As soon as λ0 = 0 we obtain (14).

(ii) Let λi = 2πi
s1

and λj = 2πj
s2

for all i = 1, . . . , [s1/2] and j = 1, . . . , [s2/2], where [x] means
the integer part of x, then

fW (λ1 + λi, λ2 + λj) =
σ2

4π2

[
2 sin

(
λ1
2

+
λi
2

)]−2d1 [
2 sin

(
s1λ1

2
+
s1λi

2

)]−2D1

[
2 sin

(
λ2
2

+
λj
2

)]−2d2 [
2 sin

(
s2λ2

2
+
s2λj

2

)]−2D2

If λ −→ 0 then [
2 sin

(
sλ

2
+
sλj
2

)]−2D
' s−2D|λ|−2D
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Therefore,

fW (λ1+λi, λ2+λj) '
σ2
ε

4π2
s−2D1
1 |λ1|−2D1s−2D2

2 |λ2|−2D2

[
2 sin

(
λi
2

)]−2d1 [
2 sin

(
λj
2

)]−2d2
(39)

Replacing λ1 by λ1 − λi and λ2 by λ2 − λj in (39), we obtain (16).

Proof. of the Proposition 5.
(i) For this proof we need to use the corollary (1).
Suppose that the process {Xij}i,j∈Z+

defined in (1) is causal and invertible. Using the

expressions (13),and cos(sλ) ' 1, λ −→ 0, then

fW (λ1, λ2) =
σ2
ε

4π2
|λ1|−2d1 s−2D1

1 |λ1|−2D1 |λ2|−2d2 s−2D2
2 |λ2|−2D2

(1− φ10)
−2

(1− ψ10)
−2

(1− φ01)
−2

(1− ψ10)
−2

=
σ2
ε

4π2
|λ1|−2(d1+D1) |λ2|−2(d2+D2) s−2D1

1 s−2D2
2

(1− φ10)
−2

(1− ψ10)
−2

(1− φ01)
−2

(1− ψ10)
−2

when (λ1, λ2) −→ (0, 0). For λ0 = 0 we obtain (18).

(ii) Let λi = 2πi
s1

and λj = 2πj
s2

for all i = 1, . . . , [s1/2] and j = 1, . . . , [s2/2], where [x] means
the integer part of x.

fX(λ1 + λi, λ2 + λj) =
∣∣∣Φ(−i(λ1+λi),−i(λ2+λj)

)∣∣∣−2 ∣∣∣Ψ(−is1(λ1+λi),−is2(λ2+λj)
)∣∣∣−2

fW (λ1 + λj , λ2 + λj)

=
σ2

4π2

[
2 sin

(
λ1
2

+
λi
2

)]−2d1 [
2 sin

(
s1λ1

2
+
s1λj

2

)]−2D1

[
2 sin

(
λ2
2

+
λj
2

)]−2d2 [
2 sin

(
s2λ2

2
+
s2λj

2

)]−2D2

∣∣Φ (−iλi ,−iλj
)∣∣−2 ∣∣Ψ (−is1λ0 ,−is2λ0

)∣∣−2
If λ −→ 0 then [

2 sin

(
sλ

2
+
sλj
2

)]−2D
' s−2D|λ|−2D

Therefore,

fX(λ1 + λi, λ2 + λj) '
σ2
ε

4π2
s−2D1
1 |λ1|−2D1s−2D2

2 |λ2|−2D2

[
2 sin

(
λi
2

)]−2d1 [
2 sin

(
λj
2

)]−2d2
∣∣Φ (−iλi ,−iλj

)∣∣−2 ∣∣Ψ (−is1λ0 ,−is2λ0
)∣∣−2 (40)

Replacing λ1 by λ1 − λi and λ2 by λ2 − λj in (40), we obtain (20).
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Proof. of the Proposition 6.
(i) Let fW (., .) the spectral density function of the process {Wij}i,j∈Z+

given in (11). Then

fW (λ1, λ2) = fW (−λ1,−λ2) and fW (λ1, λ2) ≥ 0. Therefore the processus is stationary if∫ π

−π

∫ π

−π
fW (λ1, λ2)dλ1dλ2 = 4

∫ π

0

∫ π

0

fW (λ1, λ2)dλ1dλ2 <∞ (41)

From (14) and (16) we have

C1

∫ π

0

|λ1|−2(d1+D1) dλ1

∫ π

0

|λ2|−2(d2+D2) dλ2 <∞

and

C2

∫ π

0

|λ1 − λj |−2D1 dλ1

∫ π

0

|λ2 − λj |−2D2 dλ2 <∞

when di+Di < 0.5 and Di < 0.5, i = 1, 2. Thus (41) is verified, and the process {Wij}i,j∈Z+

is stationary.

(ii) From the asymptotic expression of the spectral density function of the process
{Wij}i,j∈Z+

and using Proposition 2 we derive that the process {Wij}i,j∈Z+
has long memory

property if 0 < di +Di < 0.5 and 0 < Di < 0.5, i = 1, 2.

Proof. of the Proposition 7.
(i) The process {Xij}i,j∈Z+

can be rewritten as

Xij = Φ (B1, B2)
−1

Ψ (Bs11 , B
s2
2 )
−1

(1−B1)
−d1 (1−Bs11 )

−D1 (1−B2)
−d2 (1−Bs22 )

−D2 εij

Let

π(z1, z2) = Φ (z1, z2)
−1

Ψ (zs11 , z
s2
2 )
−1

(1− z1)
−d1 (1− zs11 )

−D1 (1− z2)
−d2 (1− zs22 )

−D2 εij

Then

Xij = π(B1, B2)εij

If di +Di < 0.5 and Di < 0.5, i = 1, 2 the item (i) of Proposition 6 assures that the power
series expansion of (1 − z1)−d1(1 − zs11 )−D1(1 − z2)−d2(1 − zs22 )−D2 converges for |z1| ≤ 1

and |z2| ≤ 1. In another hand, the polynomial (Φ(z1, z2)Ψ(zs1, z
s
2))
−1

converges for |z1| ≤ 1
and |z2| ≤ 1 when the roots of Φ(z1, z2)Ψ(zs11 , z

s2
2 ) = 0 are outside the unit disk. Therefore,

the power series π(z1, z2) converges for all |z1| ≤ 1 and |z2| ≤ 1 and the process {Xij}i,j∈Z+

is stationary.

(ii) Let {Xij}i,j∈Z+
be a Seasonal FISSAR process in (4) whose all roots of

Φ(z1, z2)Ψ(zs11 , z
s2
2 ) = 0 are outside the unit polydisk. From the asymptotic expression of

the spectral density function of {Xij}i,j∈Z+
and the Proposition 3 the Seasonal FISSAR

process has long memory property when 0 < di +Di < 0.5 and 0 < Di < 0.5, i = 1, 2 if all
the roots of Φ(z1, z2)Ψ(zs1, z

s
2) = 0 are outside the unit polydisk.
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Proof. of the Proposition 8.
First, we prove the expression of the autocovariance function for the process {Wij}i,j∈Z+

as
a product of the autocovariance function of {Zij}i,j∈Z+ and {Yij}i,j∈Z+ .
Let {Zij}i,j∈Z+ the process defined in (22). Then

Zij =

+∞∑
k=0

+∞∑
l=0

ϕk(D1)Bs1k1 ϕl(D2)Bs2l2

(
ε∗ij
)

=

+∞∑
k=0

+∞∑
l=0

ϕk(D1)ϕl(D2)ε∗i−s1k,j−s2l (42)

where the quantity ϕk(D1) and ϕl(D2) are

φk(D1) =
Γ(k +D1)

Γ(k + 1)Γ(D1)
; φl(D2) =

Γ(l +D2)

Γ(l + 1)Γ(D2)
. (43)

For an easier representation we note in the following ϕk(D1) = ϕ1
k and ϕl(D2) = ϕ2

l .

Therefore

γZ(h1, h2) = Cov (Zi+h1,j+h2 , Zij)

γZ(h1, h2) =

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
kϕ

2
lϕ

1
mϕ

2
nγε∗(h1 − s1k + s1m,h2 − s2l + s2n) (44)

When h1 − s1k+ s1m = 0 and h2 − s2 + s2n = 0, we have k = h1

s1
+m and l = h2

s2
+ n, thus

(44) can be rewritten as

γZ(h1, h2) = σ2
ε∗

+∞∑
m=0

+∞∑
n=0

ϕ1
h1
s1

+m
ϕ2

h2
s2

+n
ϕ1
mϕ

2
n. (45)

Taking (h1, h2) = (s1`1, s2`2) for `1, `2 ∈ Z+, then

γZ(s1`1, s2`2) = σ2
ε∗

+∞∑
m=0

+∞∑
n=0

ϕ1
`1+mϕ

2
`2+nϕ

1
mϕ

2
n,

if (h1, h2) = (s1`1+ξ1, s2`2+ξ2) for `1, `2 ∈ Z+, (ξ1, ξ2) ∈ A1×A2, whereA1 = {1, . . . , s1−1},
A2 = {1, . . . , s2 − 1} then γZ(h1, h2) = 0.

Thus the autocovariance function of the stationary process {Zij}i,j∈Z+
is given by

γZ(h1, h2) =

σ
2
ε∗

+∞∑
m=0

+∞∑
n=0

ϕ1
`1+mϕ

1
mϕ

2
`2+nϕ

2
n if (h1, h2) = (s1`1, s2`2)

0 if (h1, h2) = (s1`1 + ξ1, s1`2 + ξ2).

(46)

Now the process {Wij}i,j∈Z+
can be rewritten by

Wij =

+∞∑
k=0

+∞∑
l=0

ϕ1
kϕ

2
l Yi−s1k,j−s2l
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Then its autocovarianec function is given by

γW (h1, h2) = Cov (Wi+h1,j+h2
,Wij)

= Cov

(
+∞∑
k=0

+∞∑
l=0

ϕ1
kϕ

2
l Yi+h1−s1k,j+h2−s2l,

+∞∑
m=0

+∞∑
n=0

ϕ1
mϕ

2
nYi−ms1,j−ns2

)

=

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
kϕ

2
lϕ

1
mϕ

2
nCov (Yi+h1−s1k,j+h2−s2l, Yi−ms1,j−ns2)

= σ2
ε′

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
kϕ

2
lϕ

1
mϕ

2
nγY (h1 − s1k + s1m,h2 − s2l + s2n).

Thus

γW (h1, h2) = σ2
ε′

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
kϕ

2
lϕ

1
mϕ

2
nγY (h1 − s1(k −m), h2 − s2(l − n)) . (47)

Taking ν1 = k −m and ν2 = l − n in (47), we get

γW (h1, h2) = σ2
ε′

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
ν1+mϕ

2
ν2+nϕ

1
mϕ

2
nγY (h1 − s1ν1), h2 − s2ν2) . (48)

Using (46) and denoting σ2
ε = σ2

ε′/σ
2
ε∗ the variance of the two-dimensional white noise

process {εij}i,j∈Z+ we obtain (28) and (29).
We give now the proof of the of the expression of the autocovariance function for the Seasonal
FISSAR model defined in (2). Since E(Wij) = 0 we have E(Xij) = 0 and

γX(h1, h2) = E (Xi+h1,j+h2Xij) .

Thus

γX(h1, h2) = E

[
+∞∑
p=0

+∞∑
q=0

+∞∑
r=0

+∞∑
t=0

φp10φ
q
01ψ

r
10ψ

t
01Wi+h1−p−rs1,j+h2−q−ts2

×
+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

φk10φ
l
01ψ

m
10ψ

n
01Wi−k−ms1,j−l−ns2

]
and

γX(h1, h2) =

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

+∞∑
p=0

+∞∑
q=0

+∞∑
r=0

+∞∑
t=0

φk+p10 φl+q01 ψm+r
10 ψn+t01

× E (Wi+h1−p−rs1,j+h2−q−ts2Wi−k−ms1,j−l−ns2) .

Now,

E (Wi+h1−p−rs,j+h2−q−tsWi−k−ms,j−l−ns) = γW (h1 + k +ms1 − p− rs1, h2 + l + ns2 − q − ts2)

= γW (h1 + k + s1(m− r)− p, h2 + l + s2(n− t)− q) ,

then we obtain (27).
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Proof. of the Proposition 9.
Let Ũ a causal and stationary process,

Ũij =

+∞∑
k=0

+∞∑
l=0

ϕ1
kϕ

2
l ε̃
∗
i−s1k,j−s2l

where the coefficients ϕ1
k and ϕ2

l are such that,

Ψ−1 (zs11 , z
s1
2 ) =

+∞∑
k=0

+∞∑
l=0

ϕ1
kϕ

2
l z
s1k
1 zs2l2 .

Therefore

γŨ (h1, h2) = Cov
(
Ũi+h1,j+h2 , Ũij

)
γŨ (h1, h2) =

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
kϕ

2
lϕ

1
mϕ

2
nγε̃∗(h1 − s1k + s1m,h2 − s2l + s2n). (49)

When h1− s1k+ s2m = 0 and h2− s2l+ s2n = 0 in (49) we have k = h1

s1
+m and l = h2

s2
+n

then (49) can be rewritten as

γŨ (h1, h2) = σ2
ε̃∗

+∞∑
m=0

+∞∑
n=0

ϕ1
h1
s1

+m
ϕ2

h2
s2

+n
ϕ1
mϕ

2
n. (50)

Taking (h1, h2) = (s1`1, s2`2) in (50) for `1, `2 ∈ Z+ then

γŨ (s1`1, s2`2) = σ2
ε̃∗

+∞∑
m=0

+∞∑
n=0

ϕ1
`1+mϕ

2
`2+nϕ

1
mϕ

2
n.

If (h1, h2) = (s1`1 +ξ1, s2`2 +ξ2) for `1, `2 ∈ Z+, (ξ1, ξ2) ∈ A1×A2, where A1 = {1, . . . , s1−
1}, A2 = {1, . . . , s2 − 1} then γZ(h1, h2) = 0. Therefore the autocovariance function of the

process {Ũij}i,j∈Z+
is equal to

γŨ (h1, h2) =

σ
2
ε̃∗

+∞∑
m=0

+∞∑
n=0

ϕ1
`1+mϕ

1
mϕ

2
`2+nϕ

2
n if (h1, h2) = (s1`1, s2`2)

0 if (h1, h2) = (s1`1 + ξ1, s2`2 + ξ2).

(51)

Now the process {Uij}i,j∈Z+
can be rewritten by

Uij =

+∞∑
k=0

+∞∑
l=0

ϕ1
kϕ

2
lZi−s1k,j−s2l,
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where the process {Zij}i,j∈Z+
is given by (22). Then its autocovariance function is equal to

γU (h1, h2) = Cov
(
Ũi+h1,j+h2

, Ũij

)
= Cov

(
+∞∑
k=0

+∞∑
l=0

ϕ1
kϕ

2
l Yi+h1−s1k,j+h2−s2l,

+∞∑
m=0

+∞∑
n=0

ϕ1
mϕ

2
nZi−ms1,j−ns2

)

=

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
kϕ

2
lϕ

1
mϕ

2
nCov (Zi+h1−s1k,j+h2−s2l, Zi−ms1,j−ns2)

= σ2
ε∗

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
kϕ

2
lϕ

1
mϕ

2
nγZ(h1 − s1k + s1m,h2 − s2l + s2n)

= σ2
ε∗

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
kϕ

2
lϕ

1
mϕ

2
nγZ (h1 − s1(k −m), h2 − s2(l − n))

Taking ν1 = k −m and ν2 = l − n, we get

γU (h1, h2) = σ2
ε∗

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
ν1+mϕ

2
ν2+nϕ

1
mϕ

2
nγZ (h1 − s1ν1), h2 − s2ν2) . (52)

Using (51) and denoting σ2
ε̃ = σ2

ε∗/σ
2
ε̃∗

the variance of the two-dimensional white noise
process {ε∗ij}i,j∈Z+ we obtain the results (33) and (34).

Proof. of the Proposition 10.
Let Ṽ a causal and stationary process,

Ṽij =

+∞∑
k=0

+∞∑
l=0

ϕ1
kϕ

2
l ε̃
′
i−k,j−l

where the coefficients ϕ1
k and ϕ2

l are given in

Φ−1 (z1, z2) =

+∞∑
k=0

+∞∑
l=0

ϕ1
kϕ

2
l z
k
1z
l
2,

then

γṼ (h1, h2) = Cov
(
Ṽi+h1,j+h2

, Ṽij

)
γṼ (h1, h2) =

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
kϕ

2
lϕ

1
mϕ

2
nγε̃′(h1 − k +m,h2 − l − n). (53)

When h1 − k +m = 0 and h2 − l + n = 0, we have k = h1 +m and l = h2 + n.
Now (53) can be rewritten as

γṼ (h1, h2) = σ2
ε̃′

+∞∑
m=0

+∞∑
n=0

ϕ1
h1+mϕ

1
mϕ

2
h2+nϕ

2
n, (54)
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and the process {V }ij∈Z+
is equal to

Vij =

+∞∑
k=0

+∞∑
l=0

ϕ1
kϕ

2
l Yi−k,j−l

where {Yij}i,j∈Z+
is given by (23). Then its autocovariance function is given by

γV (h1, h2) = Cov
(
Ṽi+h1,j+h2

, Ṽij

)
= Cov

(
+∞∑
k=0

+∞∑
l=0

ϕ1
kϕ

2
l Yi+h1−k,j+h2−l,

+∞∑
m=0

+∞∑
n=0

ϕ1
mϕ

2
nYi−m,j−n

)

=

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
kϕ

2
lϕ

1
mϕ

2
nCov (Yi+h1−k,j+h2−l, Yi−m,j−n)

and

γV (h1, h2) = σ2
ε∗

+∞∑
k=0

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ϕ1
kϕ

2
lϕ

1
mϕ

2
nγY (h1 − k +m,h2 − l + n). (55)

Applying (54) into (55) , with σ2˜̃ε = σ2
ε′/σ

2
ε̃′

the variance of the two-dimensional white noise

process {˜̃εij}i,j∈Z+
, we obtain (35).

Proof. of the Proposition 11.
We obtain the autocovariance function of the Seasonal FISSAR stationary process by repeat-
ing the same method as in the proof of the Propostion (9) where the processes {Uij}i,j∈Z+

and {Vij}i,j∈Z+ are respectively defined by (31) and (32) and taking the variance of the
two-dimensional white noise process {εij}i,j∈Z+ equal to σ2

ε = σ2
ε̃/σ

2˜̃ε .
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