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Abstract. We apply the inversion method of estimation, with several combinations of two
among the four most popular association measures, to estimate the parameters of copu-
las in the case of bivariate distributions. We carry out a simulation study with two ex-
amples, namely Farlie-Gumbel-Morgenstern and Marshall-Olkin two-parameter copulas to
make comparisons between the obtained estimators, with respect to bias and root of the
mean squared error.

Résumé. Nous appliquons la méthode d’inversion, avec plusieurs combinaisons de deux
parmi les quatre mesures d’association les plus populaires, pour estimer les paramètres de
copules dans le cas de distributions bivariées. Nous réalisons une étude de simulation sur
deux exemples, à savoir les copules à deux paramètres de Farlie-Gumbel-Morgenstern et de
Marshall-Olkin, pour faire des comparaisons entre les estimateurs, en matière du biais et de
la racine de l’erreur quadratique moyenne.
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1. Introduction

Dependence relations between random variables (rv’s) are one of the most important issues
that got a great deal of interest in probability and statistics. Such dependence is appro-
priately modelled by a very useful tool for handling multivariate distributions with given
univariate marginals, known as copula. As mentioned by Fisher (1997), the copulas are of
interest to statisticians for two main reasons: first, they represent a way of studying scale-
free measures of dependence and second, they may be considered as a starting point for
constructing families of multivariate distributions. The concept of copulas has become very
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useful in real life applications as diverse as risk management, reliability, survival analysis, fi-
nance, actuarial and medical sciences. An exhaustive list of copula applications can be found
in, for instance, Balakrishnan and Lai (2009), pages 55-58, with full details. The notion of
copula is used by Brahimi et al. (2010) to analyze the distortion risk measures of the sum
of two or more insurance losses, where the dependence structure is a very significant factor.
A copula is a mean of linking a multivariate distribution function (df) with its margins.
Indeed, if X(1), ..., X(d) are d ≥ 2 rv’s with joint df F and margins Fi, i = 1, ..., d, then
according to Sklar’s Theorem Sklar (1959), there exists a copula C : [0, 1]

d → [0, 1] such
that

F (x1, ..., xd) = C (F1 (x1) , ..., Fd (xd)) .

In other words, the copula C is the joint df of the (0, 1)-uniform rv’s Ui := Fi
(
X(i)

)
,

i = 1, ..., d. It is defined on [0, 1]
d

by

C (u1, ..., ud) = F (F←1 (u1) , ..., F←d (ud)) ,

where F←i (s) := inf{x ∈ R\Fi(x) ≥ s}, 0 ≤ s ≤ 1, denotes the generalized inverse or
quantile function of df Fi. Note that if all the margins Fi are continuous, then C is unique.
In the sequel and for the sake of simplicity, we will restrict ourselves to the two-dimensional
case, i.e. we take d = 2. For a full description of copulas and comprehensive details on their
properties, we refer the reader to the textbooks of Cherubini et al. (2004), Joe (1997) and
Nelsen (2006).

In the process of modelling the dependence between two (ore more) rv’s, we should look
for a copula with appropriate parametric form. For each specific problem, two of the fun-
damental characteristics required in our search are flexibility and analytical simplicity. This
leads to the availability of various families of copulas, among which we may cite, in addi-
tion of the trivial ones (product, maximum and minimum), the elliptical copulas (Gauss,
Student,...), Archimedien copulas (Gumbel-Hougaard, Clayton, Frank,...) and extreme value
copulas. Any copula C is delimited by what is called Hoeffding and Fréchet bounds generally
denoted by W and M, which are trivial copulas known as minimum and maximum copulas
respectively. That is, for 0 ≤ u, v ≤ 1, we have

W (u, v) ≤ C(u, v) ≤M(u, v),

where W (u, v) := max (u+ v − 1, 0) and M(u, v) := min(u, v).

The central issue in statistical modelling is the estimation of the parameters upon which
the probability distribution depends. In the case of copulas, there is a variety of estimation
procedures available in the literature. Depending on the situation, one may consider para-
metric, semi-parametric or non-parametric copula inference methods based on independent
and identically distributed observations of random vectors with dependent components. The
forms of the joint distribution and its marginals play a crucial role in choosing the right es-
timation approach. For this matter, the authors of Choros et al. (2004) provide a detailed
survey that may be summarized into:
- Parametric model: exact maximum likelihood methods, inference from likelihoods for mar-
gins and inversion method of association measures.
- Semi-parametric model: maximum pseudo-likelihood and canonical maximum likelihood.
- Non-parametric model: empirical copula processes.
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We must emphasize that, in this paper, we don’t directly deal with the estimation of the
copulas themselves, but we are rather concerned with estimating their parameters. In multi-
variate statistical analysis, the inference on copula parameters represents a major topic that
has got a great deal of interest from several authors. For an overview of the different estima-
tion methods, see the introductions of Brahimi and Necir (2012) and Brahimi et al. (2015)
(and the references therein) where the authors recently applied the notions of moments and
bivariate L-moments (BLM’s) of copulas to provide new parameter estimators which they
compared to the already existing ones. However, a close look at their comparison results
shows that the conclusions are not always against the inversion method. Indeed, there are
instances where this latter produces estimators of better performance, mainly from the root
of the mean squared error (rmse) perspective (this will be confirmed later on in Section
3). This suggests that one should be more or at least equally attracted by this method of
copula parameters estimation. In addition to this, we think that the inversion approach still
has the advantage because it is based on the concordance coefficients which are familiar
quantities, expressed as simple functions of the copula and whose empirical counterparts are
implemented in most statistical software such as R, for simulations and application needs.
All this motivated us to focus on the inversion method and to look for the combination
of association measures that yield the most accurate parameter estimates. Another reason
of our interest in this method is the question raised in the introduction of Brahimi and
Necir (2012) with respect to the choice of the appropriate association measures with which
the estimation is to be made. Thus, this work may be seen as an attempt to answer that
question. Finally, note that, in our study, we consider the bivariate case with two particu-
lar classes of copulas, namely Farlie-Gumbel-Morgenstern (FGM) and Marshall-Olkin (MO)
two-parameter copulas, that we briefly describe below.

1.1. Marshall-Olkin copula

This copula, also known as generalized Cuadras-Augé copula, is mainly used in reliability,
finance, insurance. . . It originates from a concrete model assumption which can easily be
used to simulate pseudo rv’s. It may be recalled that rv’s X and Y with a MO copula
are obtained from independent and exponentially distributed rv’s Z1, Z2 and Z12, with
respective parameters λ1, λ2 and λ12, by X := min (Z1, Z12) and Y := min (Z2, Z12) . The
respective df’s of X and Y

F (x) = 1− exp {− (λ1 + λ12)x} and G(y) = 1− exp {− (λ2 + λ12) y} ,

are readily obtained. Therefore, MO copula with two parameters a and b is given by

CMO
a,b (u, v) = min

{
vu1−a, uv1−b

}
=

{
vu1−a, ua ≥ vb,

uv1−b, ua ≤ vb,

where a := λ12/(λ1 + λ12) and b := λ12/(λ2 + λ12) meaning that 0 ≤ a, b ≤ 1. This copula
has the particularity to possess an absolutely continuous component and a singular one.
Note that when a = b, we have λ1 = λ2 and so X and Y are exchangeable. For more details
on MO copulas, we refer to Embrechts et al. (2010) and Marshall and Olkin (1967).

Journal home page: www.jafristat.net



I. Benelmir and D. Meraghni, Afrika Statistika, Vol. 11(1), 2016, pages 933–942. Association
measures and estimation of copula parameters. 936

1.2. Farlie-Gumbel-Morgenstern copula

This is one of the most popular parametric families of copulas, which is particularly applied
in insurance, hydrology, the health field,. . . The FGM family with one parameter a is defined
by

CFGMa (u, v) = uv [1 + a(1− u)(1− v)] , − 1 ≤ a ≤ 1.

The corresponding correlation coefficient is equal to a/3, which clearly lies in the interval
[−1/3, 1/3]. In other words, the maximum degree of dependence that an FGM copula can
describe does not exceed one third (in absolute value). This represents a limitation to this
family as it does not allow the modeling of high dependences.

Iterated FGM copula. For some integer r ≥ 1, Johnson and Kotz (1977) introduced the
(r − 1)-iterated FGM family with r-dimensional parameter θ = (θ1, ..., θr), where |a| ≤ 1
such us

CFGMθ (u, v) = uv +

r∑
j=1

θj (uv)
[j/2]+1

(ūv̄)
[j/2+1/2]

,

where w̄ := 1−w and [t] denotes the greatest integer less than or equal to t. For r = 2 and
θ = (a, b), we get the one-iterated FGM family as follows

CFGMa,b (u, v) = uv[1 + (1− u)(1− v)(a+ buv))],

where the valid combinations of a and b are −1 ≤ a ≤ 1 and −1 − a ≤ b ≤ (3 − a +√
9− 6a− 3a2)/2. For further details on FGM distributions, we refer to Bekrizadeh et al.

(2012), Huang and Kotz (1984) and Lin (1987).

2. Association measures

Four of the most common non-parametric measures of association between the components
of a continuous random vector (X,Y ) are Kendall’s tau τ, Spearman’s rho ρ, Gini’s gamma
γ and Blomqvist’s beta β (also known as the medial correlation coefficient). These measures,
which only depend on the copula C pertaining to the pair (X,Y ), are respectively equal to

τ = 1− 4

∫
∂

∂u
C(u, v)

∂

∂v
C(u, v)dudv, ρ = 12

∫
uvC(u, v)dudv − 3, (1)

γ = 4

[∫
C(u, 1− u)du−

∫
(u− C(u, u)) du

]
and β = 4× C

(
1

2
,

1

2

)
− 1. (2)

It is noteworthy that the aforementioned coefficients lie between −1 and 1. For a further
discussion of their properties, see, for instance, Nelsen (2006). Applying the formulas (1)
and (2) to MO and FGM copulas, with two parameters a and b, yields the values that we
summarize in Table 1, where

λ :=
u3−a0

3− a
+

(1− u0)3−b

3− ab
− u0

2−a

2− a
− (1− u0)2−b

2− b
+

1

2− a
+

1

2− b
− 1

3− a
− 1

3− b
,

with u0 being solution of ua − (1− u)b = 0.
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MO copula FGM copula

Kendall’s τ ab/ (a+ b− ab) (100a+ 25b+ ab) /450
Spearman’s ρ 3ab/ (2a+ 2b− ab) (4a+ b) /12

Gini’s γ 4λ− 2 +
4

3−min(a, b)
(4a+ b) /15

Blomqvist’s β 2min(a,b) − 1 (4a+ b) /16

Table 1. Association measures of FGM and MO copulas with two parameters.

2.1. Kendall’s tau

Kendall’s tau is defined in terms of concordance as follows. A sample of size n ≥ 2 is drawn
from a random vector (X,Y ) , then there are

(
n
2

)
distinct pairs (xi, yi) and (xj , yj) in this

sample. If (xi − xj)(yi − yj) > 0 the pairs are said to be concordant, otherwise they are
discordant. Let nc be the number of concordant pairs and nd that of discordant ones. Then
the sample Kendall’s tau is defined as

τemp :=
2

n(n− 1)
(nc − nd).

Note that nc − nd =
∑n
j=2

∑j−1
i=1 sign {(xi − xj)(yi − yj)} , where sign {z} = 1 if z > 0 and

−1 if z < 0. If (xi − xj)(yi − yj) = 0 the pair is neither concordant nor discordant.

2.2. Spearman’s rho

The empirical Spearman’s rho is defined as the correlation coefficient of the ranks of X and
Y. It is equal to

ρemp := 1−
6

n∑
i=1

(Rxi
−Ryi)2

n(n2 − 1)
,

where Rxi
and Ryi are the ranks of X and Y respectively.

2.3. Gini’s gamma

The sample Gini’s gamma is defined by

γemp :=
1

[n2/2]

{
n∑
i=1

|Rxi
+Ryi − (n+ 1)| −

n∑
i=1

|Rxi
−Ryi |

}
.

2.4. Blomqvist’s beta

The empirical Blomqvist’s beta is defined in terms of the four quadrants as follows

βemp :=
n1 − n2
n1 + n2

,
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where n1 is the number of points located in either the upper right quadrant (Q1) or the
lower left quadrant (Q3) and n2 is the number of points located in either the upper left
quadrant (Q2) or the lower right quadrant (Q4) . If we set I := [0, 1] , the we have

Q1 := {(x, y) ∈ I2; 1
2 < x < 1, 12 < y < 1}, Q2 := {(x, y) ∈ I2; 0 < x < 1

2 ,
1
2 < y < 1},

Q3 := {(x, y) ∈ I2; 0 < x < 1
2 , 0 < y < 1

2}, Q4 := {(x, y) ∈ I2; 1
2 < x < 1, 0 < y < 1

2}.

In other words, Q1 and Q3 are defined by the inequality
(
x− 1

2

) (
y − 1

2

)
> 0, whereas Q2

and Q4 satisfy the inequality
(
x− 1

2

) (
y − 1

2

)
< 0.

3. Simulation comparative study

This study is intended to evaluate and compare, with respect to bias and rmse, the copula
parameter estimators obtained by the inversion procedure using all possible combinations of
two association measures chosen among Kendall’s tau, Spearman’s rho, Gini’s gamma and
Blomqvist’s beta. To this end, we make use of several packages of the statistical software R.
Copula values are generated by means of the package copula and parameter estimates are
calculated using the package BB, which permits to solve systems of nonlinear equations.
Also, the package asbio was needed for the computation of the empirical Blomqvist’s beta.
On the other hand, for comparison purposes as well, we use the package lmomco to do
the computations relative to BLM based estimators. This method of copula parameter es-
timation was very recently introduced in Brahimi et al. (2015), where the authors provide
complete details on the notion of BLM’s of copulas.

The choice of the parameters a and b is made in such a way that we cover the three depen-
dence cases, namely weak, moderate and strong. For each copula, we generate 1000 samples
of size n = 100, and for every combination of two association measures we determine the
estimate values of a and b and then we compute their biases and rmse’s. We do likewise with
the BLM estimator. Our overall results, summarized in Tables 2, 3 and 4 for MO copula and
Tables 5, 6 and 7 for FGM copula, are taken as the empirical means of the results obtained
through all repetitions. The same simulation procedure is repeated for a second sample size
n = 500. Finally, it is noteworthy that when we speak of strong dependence for FGM copula,
we mean the maximum degree of dependence that it can cover. With this regard, we carried
out a very large number of simulations and found that the absolute value of this top level
does not exceed 0.5 for any association coefficient.

On the light of these results, one may draw two overall conclusions. First, regardless of
the combination of association measures and the dependence level, the estimation for MO
copula is by far more accurate compared to that related to FGM copula. Second, the first
parameter of both copulas is generally more precisely estimated than the second one. We
also have some remarks that are specific to each one of the copulas :

- MO copula : for the second parameter, the best estimates at any level of dependence, are
those based on Kendall’s tau and Spearman’s rho. However, as far as the first parameter
is concerned, the conclusion is not as clear cut. Indeed, the inversion of Kendall’s tau and
Spearman’s rho does not always yield the best estimate values. For instance, in the cases of
strong and weak dependences, the estimators of the first parameter built via Kendall’s tau
and Blomqvist’s beta seem to be the most accurate.
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- FGM copula : for both parameters, Kendall’s tau and Spearman’s rho based estimators per-
form quite well in all three dependence cases. Moreover, they are better than those obtained
through the other combinations of association measures which can often be of extremely
poor reliability. For this reason, there must be no hesitation in picking the combination of
Kendall’s tau and Spearman’s rho, when dealing with the estimation of the parameters of
FGM copula by the inversion method.

Finally, the separate line at the bottom of each table in the Appendix indicates that, from the
rmse viewpoint, the first parameter estimator based on the appropriate couple of association
measures outclasses that obtained by means of the BLM’s. This would mean that one should
not neglect nor underrate the inversion method when it comes to estimate copula parameters.

Acknowledgements. We are grateful to the reviewer for his pertinent comments which
allowed us to improve our work.

4. Appendix

In this section, we summarize the results of the simulations performed in Section 3. The first
three tables consist in those related to MO copula whereas the other three concern FGM
copula.

a = 0.8 b = 0.6 a = 0.8 b = 0.6

bias rmse bias rmse bias rmse bias rmse

τ − ρ −0.036 0.154 0.050 0.182 −0.030 0.125 0.038 0.117
τ − β 0.030 0.006 0.220 0.226 0.026 0.036 0.219 0.222
τ − γ −0.404 0.449 1.876 1.883 −0.404 0.404 1.883 1.884
ρ− β 0.045 0.065 0.243 0.248 0.042 0.052 0.242 0.244
ρ− γ −0.405 0.408 1.874 1.882 −0.404 0.405 1.882 1.884
β − γ 0.200 0.200 2.515 2.516 0.200 0.200 2.516 2.516

BLM −0.766 0.767 −0.101 0.108 −0.759 0.762 −0.086 0.090

Table 2. Estimaton biases and rmse’s for MO copula parameters under strong dependence,
based on 1000 samples of sizes 100 (left panel) and 500 (right panel).
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a = 0.5 b = 0.4 a = 0.5 b = 0.4

bias rmse bias rmse bias rmse bias rmse

τ − ρ 0.001 0.091 0.019 0.180 −0.005 0.065 0.013 0.097
τ − β 0.064 0.098 0.406 0.480 0.068 0.107 0.408 0.457
τ − γ −0.252 0.258 1.540 1.569 −0.251 0.252 1.565 1.570
ρ− β 0.073 0.114 0.363 0.448 0.076 0.111 0.388 0.442
ρ− γ −0.252 0.260 1.538 1.570 −0.251 0.253 1.565 1.570
β − γ 2.124 2.545 1.486 1.808 2.315 2.706 1.358 1.676

BLM −0.474 0.475 0.006 0.024 −0.467 0.468 0.005 0.012

Table 3. Estimation biases and rmse’s for MO copula parameters under moderate depen-
dence, based on 1000 samples of sizes 100 (left panel) and 500 (right panel).

a = 0.1 b = 0.4 a = 0.1 b = 0.4

bias rmse bias rmse bias rmse bias rmse

τ − ρ 0.015 0.064 0.047 0.209 −0.001 0.035 0.009 0.146
τ − β 0.025 0.041 0.475 1.156 0.009 0.019 0.366 0.714
τ − γ −0.014 0.046 0.717 1.182 −0.019 0.032 0.843 1.161
ρ− β 0.047 0.086 0.738 1.498 0.022 0.049 0.540 1.528
ρ− γ −0.011 0.043 0.726 1.200 −0.020 0.033 0.962 1.357
β − γ 1.436 1.448 0.639 0.855 1.468 1.469 0.600 0.600

BLM −0.076 0.080 0.019 0.027 −0.074 0.078 0.012 0.014

Table 4. Estimation biases and rmse’s for MO copula parameters under weak dependence,
based on 1000 samples of sizes 100 (left panel) and 500 (right panel).

a = 0.9 b = 1.5 a = 0.9 b = 1.5

bias rmse bias rmse bias rmse bias rmse

τ − ρ −0.054 0.311 0.178 1.525 −0.034 0.199 0.143 0.963
τ − β −0.576 1.296 2.406 5.918 −0.377 0.918 1.581 4.040
τ − γ −0.147 0.588 0.577 2.569 −0.022 0.286 0.098 1.173
ρ− β 0.605 10.572 −2.489 43.021 −0.169 4.131 0.680 16.812
ρ− γ 0.203 6.493 −0.874 26.498 −0.427 10.359 1.712 41.452
β − γ 0.491 7.131 −2.031 29.341 0.168 3.778 −0.664 15.322

BLM −0.008 0.449 0.007 1.417 −0.003 0.202 0.027 0.615

Table 5. Estimation biases and rmse’s for FGM copula parameters under strong dependence,
based on 1000 samples of sizes 100 (left panel) and 500 (right panel).
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