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Celiac disease (CD) results from damage to the small intestinal mucosa due to an inappropriate immune 
response to a cereal protein (wheat, rye, barley). The only treatment for CD is life-long avoidance of 
gluten proteins. Gluten-free products are not widely available and usually more expensive. That is why; 
there is an urgent need to develop an alternative therapy. Enzymatic degradation of gluten among other 
approaches, abolishing its immunogenic and toxigenic activities, is an attractive alternative strategy for 
oral therapy in CD. Several proteases following different approaches were studied. This review focuses 
on enzymes (microbial or vegetal) designed to digest gluten. Also, recent biotechnological procedures 
that use microorganisms (cell factories for enzymes) as starter culture to eliminate gluten are reviewed 
in this manuscript. 
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INTRODUCTION 
 
Celiac disease (CD) is a chronic inflammatory disorder 
characterized by damage of the small intestinal mucosa 
caused by gluten proteins from wheat (the water-
insoluble storage proteins) and similar proteins of barley 
and rye in genetically susceptible subjects (Mäki and 
Collin, 1997; Fasano and Catassi, 2001; Di Sabatino and 
Corazza, 2009). The disease is characterized by severe, 
immune-mediated damage to the jejuna mucosa (subtotal 
villous atrophy), typically involves chronic diarrhea, 
abdominal distension, weight loss and malnutrition (Mäki 
and Collin, 1997; Holmes and Catassi, 1999; Green and 
Cellier, 2007).  

Gluten is a mixture of related proteins which are soluble 
in alcohol-water mixture (prolamins) and the glutenin 
which are insoluble polymers stabilized by interchain 
disulphide bonds (Wieser, 2007). During dough mixing, 
wheat flour is hydrated and as a result of the mechanical 
energy input discrete masses of  the  gluten  proteins  are 
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Abbreviations: CD, Celiac disease; tTG, tissue 
transglutaminase; PEP, prolyl endopeptidases; GCP, 
germinating cereal proteases; F, flavobacterium; Lb, 
lactobacillus. 

disrupted (Goesaert et al., 2005). The gluten proteins are 
transformed into a continuous cohesive visco-elastic 
gluten protein network. These proteins are unique and 
cannot even be found in cereals closely related to wheat 
such as barley and rye. During dough fermentation, the 
gluten network plays a major role in retaining the carbon 
dioxide. Gas retention properties in turn determine loaf 
volume and crumb structure of the resulting bread 
(Goesaert et al., 2005).  

Currently, CD may affect approximately 1% of the 
population, according to serologic population based 
studies (Fasano et al., 2003; Green, 2007). Such a rate 
establishes CD as one of the most common food into-
lerances (Fasano and Catassi, 2001) and its prevalence 
is apparently increasing (Green and Cellier, 2007). In 
fact, CD has been recognized in populations with high 
wheat consumption: wheat is one of the most consumed 
cereals (Tatham and Shewry, 2008). CD has a worldwide 
distribution, detected not only in Europe and countries 
populated by Europeans, but also in North Africa (Rätsch 
and Catassi, 2001). A high prevalence occurs in North 
African and Middle Eastern populations. It is not reported 
in black African people (Woodward, 2007). In Western 
Sahara, CD is a common disorder, where the prevalence 
was reported as 5.6% in the Saharawi childrens (Rätsch 
and   Catassi,   2001).   In   Europe,  Australia  and  North  
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America, the prevalence was estimated between 0.5 and 
1% (Cataldo and Montalto, 2007). In Asia, recent report 
from Hangzhou in China also suggested that the 
prevalence of adult CD may be more common in China 
(Freeman et al., 2010) than previously appreciated (Jiang 
et al., 2009). Of note, celiac disease has also been 
reported in immigrants to Canada from China, Japan and 
South Asia, particularly from the Punjab region of India 
(Freeman, 2010) 

In Tunisia, CD is frequent. Probably, the Tunisian diet, 
which consists mainly of bread, couscous and pasta, 
contains 25 to 30 g gluten daily. Gluten is introduced 
early in Tunisian infant’s diet, occasionally as early as the 
first month of life (Mankaï et al., 2006). Moreover gluten 
intake has increased because of its use in processed 
foods, especially fast foods. In addition, cereal grains are 
the “staple foods” of Tunisian diet population. The 
prevalence of celiac disease in the general population (in 
Tunisia) has not been previously investigated. In 2006, 
the prevalence of CD was 1/700 in a population of appa-
rently healthy blood donors (Bdioui et al., 2006; kallel et 
al., 2009). The prevalence of celiac disease in Tunisian 
schoolchildren was estimated to be about 1/157; close to 
the European prevalence (Ben Hariz et al., 2007).  

The only treatment for celiac disease is a gluten-free 
diet. This involves elimination of the grains containing 
gluten, wheat, rye and barley, as well as food products 
and additives derived from them including bread, biscuits, 
cakes, pizzas, pasta, sauces and gravy (Green and Jabri, 
2003). In fact, gluten is used on many foods to confer 
properties such as emulsification, cohesiveness, 
viscoelasticity and foaming (Esteller et al., 2005; Dayab 
et al., 2006). CD treatment also requires avoiding other 
glutenous products like soaps and cosmetics (which can 
be ingested while bathing or kissing) and preventing 
cross contamination of safe foods through processing 
and preparation (Thompson, 2008). So, total avoidance is 
extremely difficult. Thus, new strategies are being 
actively pursued to find new treatments or to eliminate 
noxious prolamins from cereal grains. During the last 
eight years, many approaches based on gluten hydrolysis 
in order to detoxify harmful gluten peptides were 
investigated.  

Recently, potential therapeutic maneuvers were well 
reviewed (Tennyson et al., 2009; Lerner, 2010). In this 
review, we summarize the current enzymatic strategies 
(microbial or vegetal) used to hydrolyze gluten. 
 
 
PATHOGENESIS OF CELIAC DISEASE 
 

Gliadins and glutenins both contain disease-activating 
proteins (Dewar et al., 2006). After ingestion of gluten, it 
is degraded to multiple segments. Several gluten 
epitopes are immuno stimulatory; some are more active 
than others. An immuno dominant peptide of 33 amino 
acids (residues 57 to 89) identified from an α-gliadin 
fraction  has   functional  properties  attributable  to  many 

 
 
 
 
proline and glutamine residues (Shan et al., 2002). 
Proline gives the peptide increased resistance to 
gastrointestinal proteolysis and causes a left-handed 
helical conformation, which strengthens binding with 
human leukocyte antigens HLA-DQ2 and HLA-DQ8 
molecules on antigen-presenting cells (Woodward, 2007). 
Furthermore, researchers report that multiple non-HLA 
genes contribute to the genetic risk for CD (Zhernakova 
et al., 2011; Freeman et al., 2011). Additionally, 
glutamine residues are a preferred substrate for tissue 
transglutaminase-mediated deamidation, which confers 
an enhanced immunogenicity (Di Sabatino and Corazza, 
2009). This leads to T-cell proliferation and production of 

cytokines, particularly - interferon that appears to 
perpetuate damage and uptake of antigenic gluten 
(Schumann et al., 2008; Bethune et al., 2009). 

Interestingly, those immunogenic peptides are proline 
(15%) and glutamine (35%) rich polypeptides that are at 
the base of two major steps in the celiac inflammatory 
cascade: 1. they confer resistance to enzymatic 
breakdown, since the human intestine lack prolyl endo-
peptidase who can readily cleave proline-rich immune-
stimulatory gluten peptides and 2) the glutamine rich 
gluten peptides are an ideal substrate for deamination by 
the tissue transglutaminase (tTG), an ubiquitous 
connective tissue enzyme (Dieterich et al., 1997). The 
deamination is crucial for the stability and avidity of the 
presented peptide in the HLA-DQ (human leukocyte 
antigen) groove and recognition of T-cell epitopes 
(Lerner, 2010). tTG is the auto antigen against which the 
abnormal immune response is directed to (Reif and 
Lerner, 2004) and two main auto antibodies: anti 
endomysium and anti tTG are the most useful serological 
markers to screen for the disease (Shamir et al., 2002).  
 
 

DETOXIFICATION OF GLUTEN PEPTIDES BY 
PROTEOLYSIS 
 

Generally, two alternative hydrolysis philosophies exist: 
to hydrolyse toxic gluten peptides after ingestion, in the 
gastrointestinal tract (the medical approach) or to 
hydrolyse them prior to the gluten ingestion, and during 
food processing (the food technological approach) 
(Loponen, 2006) (Figure1). In fact, the detoxification of 
gluten by proteolysis is not a novel idea and neither is the 
use of more than one protease in an effective 
detoxification procedure. For instance, Messer et al. 
(1964) showed that crude papain (which contains several 
diverse proteolytic activities) could detoxify gluten, 
whereas one purified papain proteinase failed to detoxify 
it. 
 

 

MICROBIAL ENZYMATIC SOURCE 
 

Gluten degradation can be performed by prolyl 
endopeptidases (PEPs). These are proteases, found 
primarily     in     plants     and     microorganisms.    Prolyl  
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Figure 1. Two alternatives hydrolysis for gluten detoxification (ALV003 is a mixture of two glutenases; a cysteine 

endoprotease from germinating barley seeds (EP-B2) and a prolyl endopeptidase from Sphingomonas capsulata (SC-PEP); 
Asp: Aspergillus). 

 

 
 

endopeptidases (PEPs) of microbial origin are 
endoproteolytic enzymes which, in contrast to human 
gastrointestinal protease, can readily cleave Pro-rich 
immunostimulatory gluten peptides (Hausch et al., 2002). 
This can be achieved by bacterial, or fungal enzymes that 
lend themselves to large-scale manufacturing (Piper et 
al., 2004; Stepniak et al., 2006). 

A prolyl-endopeptidase produced by Flavobacterium 
meningosepticum, showed hydrolysing effect on a 33-
mer peptide (the 33-mer was rich in proline: 13 residues 
and glutamine: 10), which is one of the most potent 
peptides involved in triggering the disease (Shan et al., 
2002; Piper et al., 2004). The use of this endopeptidase 
has been proposed for an oral therapy for CD patients 
(Shan et al., 2002). In vivo studies with rats supported 
these findings, as the perfusion of PEP together with 
gluten peptides into the rat intestine accelerated the 
digestion of the gluten peptide in vivo by 50 to 100% 
(Piper et al., 2004). In a follow-up study, Pyle et al. (2005) 
showed that pre-treatment of gluten with PEP from F. 
meningosepticum avoided the development of fat or 
carbohydrate malabsorption in the majority of CD patients 
who ingested a low dose of a gluten supplement daily (5 
g) during a challenge lasting 14 days. Similar properties 
(gluten detoxification) were obtained with PEP from 
Myxococcus xanthus and Sphingomonas capsulata 
(Shan et al., 2004; Gass et al., 2005)   and   Lactobacillus  

helveticus (Chen et al., 2003). 
Nevertheless, some contradictory results were noticed 

concerning PEP from F. meningosepticum. Matysiak-
Budnik et al. (2004) showed that the hydrolysis of the 33-
mer by PEP of F. meningosepticum in CD patients was 
not complete and led to the release of potentially 
immunogenic peptides. In addition, Shan et al. (2004) 
and Stepaniak et al. (2006) reported that PEPs are 
inactivated by pepsin and acidic conditions in stomach. 
Therefore, Stepaniak et al. (2006) introduced the use of a 
new enzyme; a prolyl endopeptidase from Aspergillus 
niger that was stable under gastric conditions (pH 2.0), 
optimally active at pH 4 to 5 and is completely resistant to 
digestion with pepsin, and efficiently degrades gluten 
proteins. Also, this PEP can be used as an oral 
supplement to reduce gluten intake in patients (Stepaniak 
et al., 2006; Tennyson et al., 2009). This enzyme can be 
produced at low-cost at food-grade quality in an industrial 
setting (Edens et al., 2005). 
 
 
CEREAL PROTEASE (PROTEASES FROM 
GERMINATING CEREALS) 
 
The role of the proline and glutamine-rich storage 
proteins of cereals is to supply the embryo with nitrogen 
and   amino   acids   during   the  first  period  of  seedling  
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Figure 2. Proteolysis by sourdough fermentation: a tool for making gluten free products. 

 
 

 

development. Therefore, it is likely that endogenous 
cereal proteases synthesized during germination (GCP: 
germinating cereal proteases) would be capable of 
extensively hydrolyzing these proteins. Many studies 
have checked this approach. Hartmann et al. (2006) 
showed the ability of proteases, isolated from wheat, rye 
and barley to degrade gliadin-petides toxic for celiac 
patients. Results show that GCP were able to degrade 
intact gluten and celiac toxic peptides. These authors 
assumed that GCP are active in the stomach during 
digestion of food and also in the small intestine.  

Bethume et al. (2006) showed gliadin hydrolysis (the 
33-mer peptide) by EP-B2, a barley cystein proteinase 
responsible for hydrolyzing the bulk of the hordeins 
during barley germination. To facilitate gluten 
degradation, a two-enzyme cocktail, consisting of a 
glutamine-specific cysteine protease derived from barley  
B2) and a bacterially derived PEP (from S. capsulata), 
was developed (Siegel et al., 2006; Gass et al., 2007). 
The enzyme cocktail was called ‘glutenase’. The efficacy 
of this two-enzyme glutenase was verified in a rat model 
of gastric gluten digestion. By combining two enzymes 
with gastric activity, it should be possible to increase the 
safe threshold of ingested gluten, thereby ameliorating 
the burden of a highly restricted diet for patients with 
celiac sprue. Recently, Tye-Din et al. (2010) reported that 
pre-treatment  of  gluten  using  glutenase  (ALV003)  can 

abolish immune responses induced by gluten in patients 
(in vivo) with CD for three days. 
 
 
PROTEOLYSIS BY LACTIC ACID BACTERIA AS 
STARTERS FOR SOURDOUGH FERMENTATION: 
CEREAL FOOD PROCESS  
 
Proteolysis by lactic acid bacteria has been suggested as 
a new tool for food processing for celiac persons (Di 
Cagno et al., 2002, 2004, 2008; Rizzello et al., 2006; 
Gobbetti et al., 2007).  

The potential of sourdough lactic acid bacteria as 
source of proteolytic enzymes was investigated during 
the last years. Sourdough is a mixture of flour and water 
that is fermented with indigenous lactic acid bacteria and 
yeasts (De Vuyst and Neysens, 2005). The use of 
sourdough as a natural leavening agent in the modern 
biotechnology of baked goods is increasing, largely 
because of the metabolic activities of lactic microflora. 
The use of sourdough fermentation for gluten 
degradation is shown in Figure 2. 

Lactobacilli have been shown to possess an 
outstanding potential in decreasing the CD-inducing 
effects of gluten (Rollán et al., 2005; Gobbetti et al., 
2007; Corsetti and Settani, 2007). Di Cagno et al. (2002) 
demonstrated a considerable degradation of various  Pro- 



 
 
 
 
rich peptides, including the 33-mer peptide during 
sourdough fermentation by some lactobacilli species. 
This finding has been exploited to produce sourdoughs 
containing 30% of wheat flour and 70% of other (non-CD-
inducing) flours such as oat, buckwheat and millet, 
started with selected lactobacilli and fermented for 24 h 
(under specific processing conditions: long-time and 
semi-liquid fermentation). Following this, the mixed 
starter composed of Lb. alimentarius, Lb. brevis, Lb. 
sanfranciscensis and Lactobacillus hilgardii was shown to 
almost completely hydrolize gliadin fractions and 
consequently the resulting bread was tolerated by CD 
patients as shown by intestinal permeability challenge (Di 
Cagno et al., 2004). The type of bread was 
technologically suitable. The same approach as those 
described for sourdough wheat bread (Di Cagno et al., 
2004) was adapted for pasta making. The same pool of 
selected sourdough lactobacilli (L. alimentarius 15M, L. 
brevis 14G, L. sanfranciscensis 7A and L. hilgardii 51B) 
was used to preferment durum wheat semolina under 
semi-liquid conditions (Di Cagno et al., 2005). After 
fermentation, the dough was freeze-dried, mixed with 
buckwheat flour at a ratio of 3:7, and used to produce the 
‘‘fusilli’’ type Italian pasta at an industrial level. As shown 
by immunological analysis, the concentration of gluten 
decreased from 6280 to 1045 ppm (destructive efficacy 
83%) in the pasta fermented with lactic acid bacteria. 
This value was higher than those recommended by the 
Codex. Two levels are distinguished by the Codex 
Alimentarius Commissions of the World Health 
Organization and the Food and Agriculture Organization 
of the United Nations; < 20 ppm for foods that are 
naturally free of gluten or < 200 ppm for foods that have 
been rendered gluten free (Gallagher et al., 2004). 

Recently, the same research team listed in the 
foregoing (Rizzello et al., 2007) showed that selected 
sourdough lactobacilli (for high and complementary 
proteolytic activities), in combination with fungal 
proteases, decreased the residual concentration of gluten 
(Triticum aestivum flour) below 10 ppm during food 
fermentation. The gluten concentration was lower than 
the threshold level indicated by the Codex Alimentarius 
Commissions of WHO and FAO for the gluten-free foods. 
This sourdough was fermented for 48 h at 37°C with ten 
lactobacili (Lb. alimentarius 15M, Lb. brevis 14G, Lb. 
sanfranciscensis 7A , Lb. hilgardii 51B and Lb. 
sanfranciscensis LS3, LS10, LS19, LS23, LS38, LS47) 
(each strain at 10

9
 CFU/ml of dough) and two proteases 

of A. niger and A. oryzae, that were routinely used for 
bakery applications. Proteins fractions (gliadin and 
glutenin) extracted from this sourdough were freeze dried 
and incubated with small intestine mucosa (in vitro organ 
culture) from six patients. None of the intestinal T-cell 
lines demonstrated immunoreactivity (no interferon 
production) on the contrary to the negative control (dough 
without a bacterial and enzyme inoculum).  

The  same  approach  was  investigated  by  M’hir et al. 
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(2009) where a pool of selected three enterococci (each 
strain at 10

9
 CFU/ml of dough) (M’hir et al., 2008) and 

fungal proteases (R. oryzae) was used to hydrolyse 
wheat gluten during long-time fermentation (doughs were 
incubated for 48 h at 37°C). The residual gluten on 
sourdough started with enterococci was 1648 from 
75 621 ppm (98% of the gluten was hydrolysed) as 
shown by R5 antibody-based sandwich and competitive 
enzyme-linked immunosorbent assay (ELISA). By adding 
fungal proteases, the residual gluten decreased to a 
concentration of 1106 ppm, higher than those requested 
by the Codex Alimentarius Commission.   

Fungal proteases, routinely used as bakery improvers, 
are indispensable to start the primary proteolysis of 
gluten. Polypeptides of intermediate dimensions (4 to 40 
amino acids), generated from the native proteins, are the 
substrates for secondary proteolysis by complementary 
peptidases of sourdough lactobacilli (De Angelis et al., 
2010; Gänzle et al., 2008; Rizzello et al., 2007). A 
combination of sourdough lactic acid bacteria selected for 
high and complementary proteolytic activities and an 
external addition of two fungal protease preparations 
were shown to hydrolyse gluten (72 h at 37°C) of durum 
wheat to less than 20 ppm (De Angelis et al., 2010). 
Durum wheat is an important food crop of the 
Mediterranean area, not only because of the large 
acreage but also for its importance in the human diet 
(Flagella, 2006). Durum wheat is largely used for making 
pasta, especially in the European and North Africa 
countries. Bread, burghul and couscous are also manu-
factured with durum wheat in several countries. 

Longtime fermentation of dough by selected lactic acid 
bacteria was also shown to be a potential tool to 
decrease the risk of rye contamination of gluten free 
products for celiac patients (De Angelis et al., 2006a; 
Rizzello et al., 2006). 

Alternatively, probiotics have been demonstrated to 
degrade gluten during sourdough fermentation (De 
Angelis et al., 2006b, 2007). In fact, as reported by 
Gobbetti et al. (2010) probiotics are functional micro-
organisms that contribute to food tolerance through their 
enzyme portfolio. Functional microorganisms are used in 
novel strategies for decreasing phenomenon of food 
intolerance (gluten intolerance) and allergy. The probiotic 
VSL#3 preparation (VSL Pharmaceuticals, Gaithesburg, 
MD) (ca. 450 billion cells/sachet) used containing 
Streptococcus thermophilus, Lb. plantarum, Lb. 
acidophilus, Lb. casei, Lb. delbrueckii spp. bulgaricus, 
Bifidobacterium breve, Bifidobacterium longum and 
Bifidobacterium infantis. When VSL#3 was used as a 
starter for bread making, it caused a marked degradation 
of wheat proteins. Celiac jejunal biopsies exposed to the 
Peptic-Tryptic digest from the dough fermented by VSL#3 
did not show an increase of the infiltration of CD3+ 
intraepithelial lymphocytes.  

Loponen et al. (2007, 2009) used germinated grains 
(wheat  or rye)     as    a   raw    material    in    sourdough  
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Table 1. Summary of studies using proteolysis to degrade celiac peptides. 

 

Strategy used Protease from microorganism and/ or cereal Reference 

Bacterial protease 

 Flavobacterium meningosepticum Shan et al. (2002)  

Myxococcus xanthus Piper et al. (2004) 

Sphingomonas capsulata Gass et al. (2005) 

Lactobacillus helveticus Chen et al.(2003) 

   

Fungal protease Aspergillus niger Stepaniak et al. (2006) 

   

Germinated cereal protease (GCP) Wheat, rye and barley Hartmann et al. (2006) and Loponen et al. (2007,2009) 

   

Mixture: GCP and bacterial protease 
GCP from barley (EP-B2) and PEP: Sphingomonas capsulata 
(SC-PEP) 

Siegel et al. (2006), Gass et al. (2007) and Tye-Din et al. 
2010 

   

LAB used as « starter » 

Lactobacillus Di Cagno et al. (2002, 2004, 2008), Rollàn et al. (2005) and 

Lactobacillus+Streptococcus+Bifidobacterium De Angelis et al. (2006,2007) 

Enterococcus M’hir et al. (2008) 

   

Mixture: fungal protease and bacteria 
used as « starter »  

Lactobacillus + Po Aspergillus oryzae +Pn Aspergillus niger 

Enterococcus + S Rhizopus oryzae 

Rizzello et al. (2007), Greco et al. (2011) and M’hir et al. 
(2009) 

 

PEP, Prolyl endopeptidases; Po, purified protease from Aspergillus oryzae; Pn, purified protease from Aspergillus niger; S, supernatant containing protease of Rhizopus oryza 

 

 

fermentation. The results show that prolamins, 
including gliadins, were extensively hydrolyzed. 
These examples of trends in food technology to 
use sourdough fermentation for hydrolysis of the 
cereal proteins were attractive alternatives 
strategies as reported by Cabrera-Chávez and 
Calderón de la Barca (2010). For the first time, 
wheat flour which was rendered gluten-free during 
sourdough fermentation and was shown to be not 
toxic after administration to CD patients. Patients 
showed normal values of hematology, serology 
and intestinal permeability (Di Cagno et al., 2010). 
Later, the safety of daily administration of sweet 
baked goods made of wheat flour extensively 
digested by lactobacilli and fungal proteases was 
evaluated within patients with CD (in vivo) for 60 
days. These patients’ did  not  show  clinical 

symptoms, neither an increase of anti-TG 
antibodies nor a modification of the architecture or 
the grade of inflammation of the intestinal mucosa 
(Greco et al., 2011). 
 
 
CONCLUSION 
 
CD involves a complex interplay between environ-
mental, genetic and immunologic factors. Wheat 
gluten and related proteins lead to inflammation in 
the small intestine. Stress factors like gastro-
intestinal infections have been found to increase 
the risk of triggering CD. The only currently 
available treatment for CD is complete elimination 
of gluten from toxic cereals: wheat, rye and 
barley. They can be substituted  by  other  grains 

such as rice, corn, quinoa, amaranth, sorghum, 
oats without cross contamination (with toxic 
cereals) and buckwheat, which are found to be 
safe (Briani et al., 2008; Kemppainen et al., 2007; 
Saturni et al., 2010). Improvements of symptoms 
are generally seen within days to weeks after the 
initiation of gluten-free diet. 

Alternative treatments, such as oral doses of 
microbial endopeptidases to degrade wheat 
peptides are under trials. Also, sourdough 
degradation of gluten proteins is an option for food 
processing that includes fermentation. 

From the reported results, the gluten hydrolysis 
can be achieved by cereal or bacterial or fungal 
protease or the combination of them. Table 1 
summarizes strategies that have been used for 
gluten       hydrolysis.       Fundamental       studies  



 
 
 
 
(sourdough fermentation during long-time, adding 
selected lactic acid bacteria, fungal proteases and 
germinated cereal protease) have revealed several 
attractive targets for gluten destruction and prevention of 
CD. This alternative food technology may provide the 
option to reduce or even eliminate the harmful prolamins 
from cereal grains.It will be interesting to see whether any 
of these will become reality in the coming years. 
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