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The Pf-toxin (C5H11O5N) has been genetically associated with the pathogenesis mechanism in 
plasmalemma cells of pine needles in previous reports. In this study, a toxin was obtained from 
Pestalotiopsis funerea (called Pf- toxin) by concentrating and column chromatography. Responses of 
the needles of eight pine species against the toxin were investigated. The O2

- 
production rate, 

malondialdehyde (MDA) content, fatty acid composition, relative conductivity, and lesion length of the 
needles were determined. The severest damage and lipid peroxidation were exhibited by the needle 
plasmalemma of Pinus massoniana, Pinus yunnanensis, and Pinus tabuliformis. Pinus elliottii and 
Pinus taeda followed. Pinus armandi, Pinus radiata and Pinus thunbergii came last. The resistance 
capability of resistant species against the Pf-toxin precedes that of susceptible species. 
 
Key words: Pestalotiopsis funerea, Pestalotia needle blight, Pinus, resistance. 

 
 
INTRODUCTION 
 
Pestalotia needle blight caused by Pestalotiopsis funerea 
(Desm.) Stey is a common and serious disease in young 
pine trees. This has been the most important conifer 
disease in Chinese forests since 1980 (Qiu et al., 1980; 
Wu and Wei, 1987). To date, many pine species have 
been infected by this disease. Such species include 
Pinus massoniana Lamb., Pinus yunnanensis Franch., 
Pinus armandii Franch., Pinus tabulaeformis Carr., Pinus 
thunbergii Parl., Pinus elliottii Engelm, Pinus caribaea 
Morelet, Pinus taeda Linn., and Pinus latteri Mason. P. 
massoniana and Pinus tabuliformis are the most 
seriously susceptible to the diseases. Their foliage turns 
brown and their twigs die. Successive years of severe 
infection result in decreased growth, and ultimately, 
death. Previous studies have focused mainly on the 
pathogen and symptoms (Zhao and He, 1993; Huang 
and  He,  2000;  Sutarman  et  al.,  2004),  the  hosts  and  
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regularity (Liang et al., 2002; Jeewon et al., 2004), as 
well as disease control (Qiao et al., 2006; Jiang et al., 
2007; Pan et al., 2010). However, the toxicity of the 
compounds produced by P. funerea (Pf-toxin) has only 
been reported by us. We have studied the cultivating 
conditions (Zheng and Zhu, 2006), isolation and 
purification (Zhu et al., 2003), as well as the structure 
(Zhu et al., 2005) of the Pf-toxin. Therefore, the patho-
genesis mechanisms of the Pf-toxin on pines are still 
unknown.  

Pathogens damage hosts mainly producing toxins, 
enzymes, and/or altering the metabolism of phyto-
hormones (Heitefuss and Williamas, 1991). Previous 
studies have demonstrated that the toxin destroys the 
structure and function of the plasmalemma, cell nucleus, 
mitochondria, chloroplasts, as well as ribosomes 
(Damann et al., 1974; Holden, 1984; Ye et al., 2000; 
Manning and Ciuffetti, 2005; Potrich et al., 2009). 
Changes in the plasmalemma permeability are an ordi-
nary reaction of plant tissues upon toxin exposure. These 
changes are usually characterized by electrolyte leakage 
(EL) as well  as  depolarization  and  hyperpolarization  of  
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the membrane electric potential energy (Shah, 2005). 
Thus far, these effects have been reported to be exhibited 
by toxins such as those involved in fusariose on 
pineapple (Hidalgo et al., 1998), Ptr ToxA on wheat 
(Rasmussen et al., 2004), as well as AK-I, AK, and AM-I 
on pear (Park et al., 1987; Shimizu et al., 2006). In 
addition, Zhang et al. (2006) and Jiang et al. (2007) have 
suggested that microbial toxins cause increased potential 
differences and the eventual disruption of the host cell. 
However, Cahill (1996) has indicated that, in Eucalyptus 
marginata seedling infected by Pc-toxin, EL may be a 
resistance reaction and not a result of infection. 
Nevertheless, the Pf-toxin has been confirmed as one of 
the major factors in the pathogenesis of Pestalotia needle 
blight on pine trees (Luo and Zhu, 2002; Zhu et al., 2003, 
2005). The introduction of the mature toxin into the pine 
needles has resulted in a typical response similar with the 
disease symptoms induced by the pathogen. Such 
symptoms include chlorosis, necrotic bands on live 
needles, and ultimately, death of the needles. However, 
the mechanisms by which the Pf-toxin acts on the 
plasmalemma and of lipid peroxidation have not been 
reported until now. Moreover, a lot of reports had claimed 
that a series of reactions of the plasmalemma might 
reflect the resistance of plants against the toxin, and then 
indirectly revealed their resistance level against 
pathogens (Lu et al., 2004; Zhen and Li, 2004; Yang et 
al., 2011). Although so far, the data of the relationship 
between Pf-toxin and pines’ resistance is still lacking.  

The Pf-toxin is usually removed from P. funerea by 
column chromatography. On this basis, the present study 
aimed to determine the effects of this toxin on needle 
cells of different pine species. The parameters evaluated 
were the production rate of the superoxide anion radical 
(O2

-
), malondialdehyde (MDA), which is an indicator for 

lipid peroxidation, membrane fatty acid composition, 
relative conductivity, and lesion length in the needles of 
different pine species. The pathogenesis mechanism of 
the Pf-toxin on the plasmalemma was proposed, and the 
resistance of different pine species was also determined 
by above tests.  
 
 
MATERIALS AND METHODS 

 
Isolation and purification of the Pf-toxin from culture filtrates 

 
P. funerea (Desm.) Stey (provided by the Laboratory of Forest 
Protection, Sichuan Agricultural University) was statically cultured in 
liquid potato dextrose agar at 25°C for 27 days. The culture was 
filtered through double gauze, and the filtrate was centrifuged at 
10 000 ×g for 30 min. The supernatant was filtered through a 0.45 
mm millipore filter and used as a crude toxin extract (Dubery and 
Smit, 1994). The crude toxin was loaded onto silica gel for column 
chromatography (100 to 200 mesh) with the selective phase (n-
butanol: methanol: H2O = 4:1:2). The flow rate was kept constant at 
2 ml·min-1. The compound was confirmed as C5H11O5N (Mw = 165) 
using mass spectrometry, nuclear magnetic resonance, and infrared 
spectroscopy (Zhu et al., 2005). The purified toxin was diluted by 
sterile distilled  water  to  a  concentration  of  100 μg·ml-1  and  was  

 
 
 
 
stored at 4°C. 
 
 
Plant materials and toxin treatments 
 
Five-year-old pines were planted at the arboretum of Sichuan 
Agricultural University. These included the susceptible species P. 
massoniana, P. tabuliformis, and P. yunnanensis, as well as the 
resistant ones P. armandi, P. elliottii, P. taeda, Pinus radiata, and P. 
thunbergii. One-year-old needles were used for seven toxin 
treatments (0, 6, 12, 24, 48, 72, and 96 h) with the impregnation 
method (Ho et al., 1996); the clean needles from the shoots were 
cultured in solution containing 1 ml of 100 μg·ml-1 purified toxin in 
centrifuge tubes at 25°C. A control treated with sterile distilled water 
was used. 10 g needles were used per one treatment and each 
treatment was repeated five times (total 400 g needles per 
species). All treated needles were measured lesion lengths firstly, 
and then used to assay the other items.  
 
 
Determination of lesion lengths in the pine needles  
 
After 0, 6, 12, 24, 48, and 96 h of toxin treatment, lesion lengths 
(mm) in the pine needles were measured.  
 
 
Measurement of the superoxide anion radical (O2

-) production 
rate 
 
The O2

- production rate was determined by the hydroxylamine 
oxidation method (Elstner and Heupel, 1976; Wang and Luo, 1990) 
with some modifications. About 0.5 g of needle samples was 
homogenized with 3 ml of 65 mmol·l-1 potassium phosphate buffer 
(pH 7.8). The solution was then centrifuged at 10 000 ×g for 15 min. 
Subsequently, 0.5 ml of the supernatant was mixed with 0.5 ml of 
65 mmol·l-1 potassium phosphate buffer (pH 7.8) and 1 ml of 10 
mmol·l-1 hydroxylamine chloride. The homogenized mixture was 
warmed for 20 min at 25°C. About 1 ml of 58 mmol·l-1 p-
aminobenzene sulfonic acid and 1 ml of 7 mmol·l-1 α-naphthylamine 
were added. The mixture was warmed for 20 min at 25°C. About 4 
ml of n-butyl alcohol was added, and the final supernatant was 
used for measuring the absorbance at 530 nm. A standard curve 
was constructed using the nitrogen dioxide radical (NO2

-) to 
calculate the production rate of O2

-. This rate was expressed in 
μmol·min-1·g-1FW. 
 

 
Analysis of the fatty acid composition 
 
Membrane fatty acids were extracted following the procedure of Su 
et al. (1980) with slight modifications. About 2 g of needle samples 
were heated for 5 min at 100°C to inactivate enzymes. Homo-
genization with chloroform-methanol (1:2, v/v) followed. The 
homogenized mixture was centrifuged at 10 000 ×g for 10 min, and 
the supernatant was mixed with 2 ml of chloroform for washing. 
Subsequently, 2 ml of 0.76% NaCl were added. After standing and 
layering, the subnatant liquid was mixed with 1 ml of methanol, and 
was washed three times with petroleum ether (boiling temperature, 
Tb, range = 90 to 120°C). The thrice-washed subnatant liquids were 
mixed back together, and were rewashed twice with petroleum 
ether before removing the superstratum. The extract was vacuum 
dried with drops of 0.4 N KOH and 1 ml of petroleum ether (Tb 
range = 30 to 60°C)/benzene (1:1, v/v). After allowing the extract to 
stand for 15 min, distilled water was added. The mixture was 
allowed to stand for another 5 min. The supernatant was used in 
the fatty acid analyses. 

The analyses were performed on a gas chromatograph (HP 
6890, Hewlett Packard, Avondale, PA, USA) equipped with  a  mass  



 
 
 
 
selective detector (Agilent 5973, Hewlett Packard). A capillary 
column (60 m × 0.25 mm; BPX 70, SGE, Victoria, Australia) was 
used. Helium was utilized as the carrier gas (1.2 ml·min-1), and the 
injection volume was 1 μl. The injection was done in the splitless 
mode for 2 min. The oven temperature was increased from 65 to 
230°C at 5°C·min-1, and was maintained for l0 min at 230°C. The 
temperature during both injection and detection was 230°C. The 
results were expressed as relative percentages of each fatty acid, 
which were calculated as the ratio of the surface area of the 
considered peak to the total area of all peaks. All analyses were 
made in triplicate. All chemicals used were analytical grade. 
 
 
Assessment of lipid peroxidation 
 
The level of lipid peroxidation was measured by the amount of 
MDA, a product of unsaturated fatty acid peroxidation. The method 
of Heath and Packer (1968) was used with slight modifications. 
About 0.5 g of needle samples were homogenized in 8 ml of 10% 
trichloroacetic acid and the homogenate was centrifuged at 4000 ×g 
for 20 min. About 2 ml of 0.6% thiobarbituric acid were added to 2 
ml of the supernatant. The sample was then incubated at 100°C for 
20 min. The reaction was stopped by placing the reaction tubes in 
an ice bath. The samples were then centrifuged at 10 000 ×g for 30 
min. The supernatant was removed, and the absorptions at 532, 
600, and 450 nm were obtained. The concentration was calculated 
according to the following formula:  
 
CMDA (µmol·l-1) = 6.45 (OD532 – OD600) – 0.56OD450.  
 
The MDA content was computed according to: 
 
[MDA] (µmol·g-1FW) = CMDA × extract volume (ml) / fresh weight (g). 
 
 
Assessment of relative electrical conductivity 
 
Relative electrical conductivity (EL) was measured as described by 
Ye et al. (2000) with slight modifications. The conductivity was 
determined using an automatic conductivity meter (DDS-307). The 
initial conductivity was described as E1 with the needle sample 
treated by the toxin. On the other hand, E2 represented needle 
samples treated by sterile distilled water. The formula of the relative 
conductivity is:  
 
Relative conductivity (%) = (E1 – E2) / E2 × 100. 
 
 
Statistical analyses 
 
All data were subjected to one-way analysis of variance (ANOVA) to 
determine the significance of individual differences between 
different Pf-toxin treatments at P < 0.05 level. Significant means 
were compared using the least significant difference (LSD) test. All 
statistical analyses were conducted using the commercial SPSS 
statistical package (Version 13.0 for Windows, SPSS Inc., Chicago, 
USA). 
 
 

RESULTS 
 

Superoxide anion radical production rate in the pine 
needles 
 

O2
-
 is the mono-negatron reduction product of O2, and is 

the active oxygen species initially produced by an 
organism. The rate of O2

- 
production  gradually  increased 
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before 12 h, and varied afterwards among the eight pine 
species studied (Figure 1). For P. massoniana, P. 
tabuliformis, and P. yunnanensis (first group), their O2

- 

production rates did not significantly differ from one 
another before 12 h. From 12 to 48 h, the rates declined 
and then increased thereafter. The O2

- 
production rate of 

P. massoniana was significantly higher than the others. 
For P. elliottii and P. taeda (second group), the rates 
gradually increased before 48 h, and then decreased 
thereafter. The succeeding rates were always higher than 
the initial rates. The rates of P. elliottii and P. taeda were 
close. For P. radiata, P. thunbergii, and P. armandi (third 
group), the rates inconspicuously increased for the entire 
experiment. The rate of P. radiata was the highest in this 
group. Overall, the O2

- 
production rate had the trend: first 

group > second group > third group.  
 
 
Fatty acid components of pine needles 
 
The fatty acid components of the plasmalemma of eight 
pines species were cetylic (C16:0), stearic (C18:0), oleic 
(C18:1), linoleic (C18:2) and linolenic (C18:3) acids 
(Table 1). In saturated fatty acids (SFAs), the content of 
C16:0 was higher than that of C18:0. In addition, C18:3 
content was the highest in unsaturated fatty acids 
(USFAs). The content of C16:0 in the needles of P. 
massoniana and P. tabuliformis was the highest. In the 
other species, the content of C18:3 was the highest. The 
content changes in these components differed from one 
another according to the toxin treatment time. The SFA 
contents (C16:0 and C18:0) declined from 0 to 12 h, and 
then increased afterwards. The USFA contents (C18:1, 
C18:2 and C18:3) had the opposite trend (Figure 2).  

Among the eight pine species, the SFA content was the 
highest in P. massoniana, and was significantly different 
from the other species. In contrast, the SFA content was 
the lowest and relatively constant in P. armandi. On the 
other hand, the USFA content was significantly highest in 
P.armandi and remained constant. The USFA content 
rapidly declined after 12 h in P. massoniana, P. 
tabuliformis, P. yunnanensis, and P. elliottii. Moreover, the 
results of index of unsaturated fatty acids (IUFA) (Figure 
3) indicated a trend similar with USFA content. The IUFA 
of all eight pine species decreased after Pf-toxin 
treatment. However, the IUFA of P. armandi showed a 
relatively smooth change, whereas that of P. massoniana 
and P. tabuliformis rapidly decreased.  
 
 

Malondialdehyde (MDA) content in pine needles  
 
Lipid peroxidation measured as an increase in MDA 
content is known to be a good indicator of oxidative 
damage to membrane lipids. In this study, the MDA 
content increased with the Pf-toxin treatment compared 
with the control. The differences were significant between 
the  control  and  toxin-treated  groups  for  all  eight  pine  
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Figure 1. O2
- production rate in the plasmalemma of pine needles treated with the Pf-toxin. O2

- production rate was indirectly 
replaced with the absorbance amount at 530 nm (A530), and A530 was converted to the concentration of [NO2

-] according to the 
standard curve of nitrous acid colour reaction (Elstner and Heupel, 1976). O2

- production rate (µmol·min-1·g-1FW) = ([NO2
-] 

concentration × 2 × total volume of solution) / (warmed time × fresh weight of plant tissue). Data in the same column followed by 
different lowercase letters indicate significant differences by the LSD test (P < 0.05, n = 5). LSD, Least significant difference. 

 
 
 

Table 1. Fatty acid components of pine needles treated with the Pf-toxin. 
 

Species Time (h) 
Component (%)  

Species 
Time 
(h) 

Component (%) 

C16:0 C18:0 C18:1 C18:2 C18:3  C16:0 C18:0 C18:1 C18:2 C18:3 

P. massoniana 

0 48.15 14.01 2.25 17.22 18.37  

P. 
tabuliformis 

0 33.54 5.69 8.99 19.26 32.52 

6 38.75 12.02 5.00 22.00 22.23  6 24.46 3.91 11.27 11.61 48.75 

12 32.56 9.03 6.45 28.05 23.91  12 21.25 2.57 12.14 14.06 49.98 

24 36.26 12.00 4.08 22.28 25.38  24 24.66 7.17 7.72 19.82 40.63 

48 38.71 14.51 2.34 21.33 23.11  48 37.17 10.17 1.26 15.84 35.56 

72 47.14 15.08 2.06 17.25 18.47  72 42.51 11.21 1.05 12.34 32.89 

96 60.03 15.56 0.50 11.55 12.36  96 55.96 14.84 0.26 10.00 18.94 

               

P. yunnanensis 

0 29.89 10.01 2.54 21.38 36.18  

P. elliottii 

0 27.67 9.95 3.01 25.40 33.97 

6 23.00 6.40 1.59 26.51 42.50  6 22.02 8.74 6.35 30.50 32.39 

12 20.80 5.33 1.89 30.85 41.13  12 19.48 6.67 7.34 31.05 35.46 

24 25.60 9.91 1.26 27.45 35.78  24 22.55 9.73 5.09 28.77 33.86 

48 26.04 12.13 0.67 26.12 35.04  48 27.60 10.43 3.12 25.53 33.32 

72 29.11 14.55 0.35 22.56 33.43  72 33.87 14.32 2.56 22.77 26.48 

96 39.19 18.36 0.33 17.08 25.04  96 36.65 16.30 1.99 22.81 22.25 

               

P. taeda 

0 27.54 9.61 3.49 25.86 33.50  

P. radiata 

0 20.12 3.97 7.41 26.69 41.81 

6 21.59 8.13 6.87 30.32 33.09  6 14.06 2.05 10.55 30.25 43.09 

12 20.16 7.09 7.97 31.25 33.53  12 15.69 2.99 10.01 28.77 42.54 

24 22.20 9.05 6.89 29.78 32.08  24 16.41 3.78 9.50 28.00 42.31 

48 26.14 10.79 5.36 26.67 31.04  48 19.03 7.97 7.20 25.15 40.65 

72 32.97 12.35 3.38 23.09 28.21  72 23.30 9.19 4.41 22.88 40.22 

96 35.99 15.50 2.04 21.69 24.78  96 25.54 12.31 2.79 21.95 37.41 
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Table 1 Contd. 
 

P. thunbergii 

0 16.36 3.38 9.99 29.07 41.20  

P. armandi 

0 9.51 – 12.34 29.17 48.98 

6 12.52 1.87 11.65 31.19 42.77  6 7.62 – 13.27 30.06 49.05 

12 14.14 2.98 11.47 30.15 41.26  12 10.17 0.41 12.46 28.12 48.84 

24 15.33 4.74 11.03 28.16 40.74  24 11.22 0.45 12.09 27.67 48.57 

48 16.20 5.93 10.41 27.04 40.42  48 11.75 0.46 11.94 27.31 48.54 

72 19.00 8.02 8.14 25.35 39.49  72 12.33 0.46 11.78 26.95 48.48 

96 21.21 8.59 8.07 24.94 37.19  96 12.66 0.46 11.7 26.74 48.44 
 
 
 

 

 
 

Figure 2. Percent saturated fatty acids (SFA) (a), and unsaturated fatty acids (USFA) (b), in the plasmalemma of pine 
needles treated with the Pf-toxin. The content of SFA was the sum of C16:0 and C18:0 content; the content of USFA was 
the sum of C18:1, C18:2 and C18:3 content. Percent SFA (%) = SFA content / total content of fatty acid; percent USFA (%) 
= USFA content / total content of fatty acid. Data in the same column followed by different lowercase letters indicate 
significant differences by the LSD test (P < 0.05, n = 5). LSD, Least significant difference. 
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Figure 3. Index of unsaturated fatty acids (IUFA) in the plasmalemma of pine needles treated with the Pf-toxin. IUFA (%) 
=1×C18:1(%) + 2×C18:2(%) + 3×C18:3(%). Data in the same column followed by different lowercase letters indicate significant 
differences by the LSD test (P < 0.05, n = 5). LSD, Least significant difference. 

 
 
 

species (Table 2). In the Pf-toxin treatment group, the 
MDA content increased from 6 to 12 h, and decreased 
from 12 to 24 h among all the pine species. The MDA 
content in P. massoniana was the highest, and was 
significantly different from the other pines. The MDA 
content in P. thunbergii was the lowest during the entire 
experiment. Figure 4 shows that the changes in MDA 
content were similar for all pines. The MDA content 
increased from 6 to 12 h, and peaked at 12 h. The MDA 
content then decreased rapidly until 24 h, except in P. 
massoniana (48 h). After 24 h, the changes remained 
constant. The increase rate was significantly highest in P. 
tabuliformis, followed by P. massoniana and P. 
yunnanensis with non-significant differences. P. elliottii, P. 
taeda, P. radiata, P. thunbergii, and P. armandi came last 
with non-significant differences.  
 
 
Relative electrical conductivity (EL) in pine needles 
 
The effects of the Pf-toxin on the structure and function of 
the plasmalemma is usually expressed as the EL, which 
is measured as the relative conductivity (Figure 5). The 
relative conductivity indices of each pine species 
increased until the peak was reached during Pf-toxin 
treatment, and then became steady. However, the 
degrees of relative conductivity changed differently for 
each pine species. In P. massoniana, P. tabuliformis, and 

P. yunnanensis, the changes in the relative conductivity 
were similar as the index rapidly increased from 6 to 24 
h; afterwards, the high levels were maintained. On the 
other hand, the degrees of relative conductivity in P. 
elliottii and P. taeda were significantly lower than those of 
the aforementioned three pine species, although in a 
proportional manner. Moreover, the increased amplitudes 
of P. radiata, P. thunbergii, and P. armandi were less 
inconspicuous than the aforementioned five pine species. 
These indices increased up to 48 h of toxin treatment.  
 
 
Effects of Pf-toxin on lesion length of pine needles 
 
Disease spots are the visible symptoms of pine needles 
infected by Pf-toxin. The lesion length is one of the 
criteria for determining the degree of infection. In this 
study, changes in the lesion lengths are shown in Figure 
6. The lesion length increased with the time of toxin 
treatment. From 0 to 24 h, the lesion lengths sharply 
increased. However, from 24 to 96 h, these indices 
steadily increased. All the lesion lengths of the eight pine 
species had significant differences after 6 h of treatment 
time. There were three tendencies in lesion length 
changes. First is the high level length increase (P. 
massoniana, P. tabuliformis, and P. yunnanensis), second 
is the middle level increase (P. elliottii and P. taeda), and 
third is the low level increase (P. radiata, P. thunbergi and  
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Table 2. Malondialdehyde (MDA) content (μmol·g-1FW) in the plasmalemma of pine needles.  
 

Species Treatment 
Time (h) 

6 12 24 48 72 96 

P. massoniana 
Pf-toxin 3.12 ± 0.01

Ab
 3.56 ± 0.03

Ba
 2.36 ± 0.03

Bd
 1.60 ± 0.01

Ef
 2.24 ± 0.02

Ae
 2.80 ± 0.02

Ac
 

Control 3.28 ± 0.01
Ba

 2.40 ± 0.02
Dc

 2.16 ± 0.01
Cd

 1.44 ± 0.03
Gf

 2.00 ± 0.04
Ce

 2.56 ± 0.01
Bb

 

        

P. tabuliformis 
Pf-toxin 2.72 ± 0.01

Cb
 3.60 ± 0.02

Aa
 2.48 ± 0.03

Ac
 2.24 ± 0.03

Ad
 1.92 ± 0.02

Ee
 1.80 ± 0.04

Ff
 

Control 2.64 ± 0.01
Da

 1.76 ± 0.01
Jc

 1.60 ± 0.01
Hd

 2.00 ± 0.03
Cb

 1.76 ± 0.01
Fc

 1.60 ± 0.01
Hd

 

        

P. yunnanensis 
Pf-toxin 2.56 ± 0.03

Eb
 3.44 ± 0.02

Ca
 2.16 ± 0.01

Cd
 2.24 ± 0.03

Ac
 1.60 ± 0.02

Hf
 1.76 ± 0.01

Ge
 

Control 2.48 ± 0.02
Fa

 2.28 ± 0.02
Fb

 2.00 ± 0.02
Ec

 2.00 ± 0.03
Cc

 1.48 ± 0.02
Ie
 1.60 ± 0.01

Hd
 

        

P. elliottii 
Pf-toxin 2.16 ± 0.03

Gb
 2.36 ± 0.02

Ea
 2.00 ± 0.02

Ed
 2.08 ± 0.02

Bc
 2.04 ± 0.03B

cd
 2.00 ± 0.01

Dd
 

Control 2.08 ± 0.03
Ha

 2.00 ± 0.03
Gb

 1.84 ± 0.02
Fd

 1.92 ± 0.01
Dc

 1.96 ± 0.03
Dc

 1.96 ± 0.02
Ec

 

        

P. taeda 
Pf-toxin 2.00 ± 0.03

Id
 2.28 ± 0.03

Fa
 2.12 ± 0.04

Dbc
 2.00 ± 0.04

Cd
 2.00 ± 0.01

Cd
 2.08 ± 0.03

Cc
 

Control 1.88 ± 0.01
Jc

 1.88 ± 0.03
Ic
 2.00 ± 0.02

Ea
 1.92 ± 0.02

Dbc
 1.96 ± 0.03

Dab
 2.00 ± 0.03

Da
 

        

P. radiata 
Pf-toxin 1.76 ± 0.01

Kc
 2.00 ± 0.02

Ga
 1.84 ± 0.04

Fb
 1.60 ± 0.02

Ed
 1.76 ± 0.01

Fc
 1.60 ± 0.03

Hd
 

Control 1.68 ± 0.01
Lb

 1.68 ± 0.02
Jb

 1.76 ± 0.02
Ga

 1.60 ± 0.05
Ec

 1.68 ± 0.02
Gb

 1.60 ± 0.03
Hc

 

        

P. armandi 
Pf-toxin 1.68 ± 0.02

Lb
 1.92 ± 0.02

Ha
 1.60 ± 0.01

Hc
 1.52 ± 0.02

Fd
 1.44 ± 0.03

Jf
 1.48 ± 0.02

Ie
 

Control 1.60 ± 0.03
Mb

 1.68 ± 0.01
Ka

 1.52 ± 0.02
Ic
 1.44 ± 0.01

Gd
 1.44 ± 0.02

Jd
 1.44 ± 0.01

Jd
 

        

P. thunbergii 
Pf-toxin 1.60 ± 0.02

Mb
 1.76 ± 0.01

Ja
 1.52 ± 0.03

Ic
 1.52 ± 0.02

Fc
 1.40 ± 0.01

Kd
 1.28 ± 0.03

Ke
 

Control 1.60 ± 0.01
Ma

 1.52 ± 0.03
Lb

 1.52 ± 0.02
Ib
 1.52 ± 0.01

Fb
 1.36 ± 0.03

Lc
 1.24 ± 0.01

Ld
 

 

Data in the same row followed by different lowercase letters indicate significant differences between different exposure times by the LSD test (P < 
0.05, n = 5). Data in the same column followed by different capital letters indicate significant differences within pine species by the LSD test (P < 0.05, 

n = 5). LSD, Least significant difference. 
 

 
 
P. armandi). 
 
 
Correlation analysis between physiological indices 
and lesion lengths 
 
Correlation coefficients were determined, and the results 
are shown in Table 3. All indices reached or exceeded 
significant levels. The correlation coefficients of P. 
thunbergii and P. armandi were also lower than the 
others, except for IUFA. The opposite was true for P. 
massoniana and P. tabuliformis.  
 
 
DISCUSSION 
 
Increased permeability and decreased stability are the 
indications that the plasmalemma of a plant cell has been 
exposed to a phytotoxin. These indicators accurately 
reveal that the plasmalemma is the initial toxin action site 
(Hartung, 1987; Yang et al., 2000). The results of the 
present study have suggested that the Pf-toxin may alter 
the permeability of pine needle plasmalemma and cause 

disease spots. These effects became more apparent with  
longer treatment times. Moreover, the capability of pine 
species in resisting toxic effects depended on the 
resistance of the plasmalemma against the Pf-toxin. Zhen 
and Li (2004) had confirmed that Verticillium dahliae toxin 
made different damage degrees to cell wall and 
plasmalemma in different cotton species; Yang et al. 
(2011) had reported that Phytophthora infestans toxin had 
effected different reactions of three potato species; on the 
basis of these theories, this study has indicated that the 
plasmalemma of resistant pine species incurred less 
damaged pine needles than that of susceptible species. 
Therefore, we believe that the plasmalemma is the action 
site of the Pf-toxin.  

The first reaction during a phytotoxin-induced oxidative 
burst is believed to be the one-electron reduction of mole-
cular oxygen to form the superoxide anion (O2

-
) (Mehdy, 

1994; Gechev et al., 2006). Keppler and Novacky (1987) 
reported that lipid peroxidation and pathogen-induced 
changes in membrane components were virtually the 
results of an O2

-
 startup. Similarly, in this study, the rate of 

O2
-
 production increased with increased toxin treatments 

in eight species of  pines  in  varying  degrees.  Moreover,  
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Figure 4. MDA content (relative percent) in pine needles. MDA content (relative percent, %) = [(MDA content in the toxin-treated 
group – MDA content in the control) / MDA content in the control] × 100%. Data in the same column followed by different 
lowercase letters indicate significant differences by the LSD test (P < 0.05, n = 5). LSD, Least significant difference; MDA, 
malondialdehyde. 

 
 

 
 
Figure 5. Relative conductivities in pine needles. Relative conductivity (%) = (E1-E2)/E2×100; E1, the initial conductivity with the 
needle sample treating by toxin; E2, the initial conductivity with the needle samples treating by sterile distilled water. Data in the 
same column followed by different lowercase letters indicate significant differences by the LSD test (P < 0.05, n = 5). LSD, Least 
significant difference. 
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Figure 6. Lesion lengths of pine needles. Lesion lengths (mm) in the pine needles were measured after 0, 6, 12, 24, 
48, and 96 h of toxin treatment. Data in the same column followed by different lowercase letters indicate significant 
differences by LSD test (P<0.05, n=5). LSD, Least significant difference. 

 
 
 

Table 3. Correlation coefficients among physiological indices and lesion lengths. 
 

Test 

Species 

P. 
massoniana 

P. 
tabuliformis 

P. 
yunnanensis 

P. 
elliottii 

P. 
taeda 

P. 
radiata 

P. 
thunbergii 

P. 
armandi 

O2
-
 producing rate 0.877* 0.883* 0.801* 0.765* 0.639* 0.681* 0.592* 0.635* 

MDA content 0.947* 0.971** 0.911** 0.904** 0.938** 0.770* 0.759* 0.750* 

IUFA 0.847* 0.850* 0.840* 0.840* 0.918** 0.862* 0.936** 0.927** 

Relative conductivity 0.946** 0.933** 0.973** 0.978** 0.985** 0.904** 0.897* 0.897* 
 

MDA, malondialdehyde; IUFA, index of unsaturated fatty acids. Lesion lengths in 24 h were used for correlation analysis. Data followed by different 

letters indicate significant differences at P < 0.05 by the LSD test. *Significant correlations among physiological indices and lesion lengths. LSD, 
Least significant difference. 

 
 
 

the rate of O2
-
 production rapidly increased in the initial 

stage of toxin treatment. This result showed that all the 
pines were sensitive to the toxin. However, the rate of O2

-
 

production in P. radiata, P. thunbergii and P. armandi 
remained stable in later stages. This stability may be due 
to the stronger resistance of these three species than the 
others. 

MDA is the product of lipid peroxidation and membrane 
damage. These phenomena result in physiological and 
biochemical disorders in related tissues, and could be 
regarded as signs of plasmalemma damage (Yuan et al., 
2007). In this study, the MDA content increased sharply 
during Pf-toxin treatment. This result could confirm the 
occurrence of lipid peroxidation. However, after 12 h, the 
MDA content probably decreased because of the 
instability of MDA and the aging of cells (Ye et al., 2000). 
The degree of EL is also an important parameter in 
determining changes in plasmalemma permeability 

(Zhang et al., 2008). In the EL experiment, relative 
conductivity initially increased, and then remained stable. 
These results suggest that all pine species had tolerance 
to the Pf-toxin, but the resistant pine species were more 
tolerant than the susceptible species. 

Fatty acids are key nutrients associated with energy 
production and storage as well as gene regulation (Jump, 
2004). Fatty acids are also the essential components of 
cell membrane phospholipids (Van der Vusse et al., 
1992). Kasamo et al. (1992) indicated that the phase 
transformation of plasmalemma occurs with difficulty, and 
that the plasmalemma may modulate the degree of 
unsaturation to improve membrane fluidity. The IUFA of 
all the pine species changed after Pf-toxin treatment. The 
SFA contents in the pine needles of P. armandi, P. 
thunbergii, and P. radiata were lower than in those of P. 
massoniana, P. tabuliformis, and P. yunnanensis. In 
contrast, the USFA contents had opposite  trends.  These  

a

a

a

a a a

a

b

b

b b b

a

b

c

b b
b

a

c

d

c c c

a

c

e

c c
c

a d
f

d d d

a

d
g

e e e

a
e

h
f f

f

-2

0

2

4

6

8

10

0 6 12 24 48 96

L
e
si

o
n

 l
e
n

g
th

 (
m

m
)

Time (h)

P.massoniana

P.tabuliformis

P.yunnanensis

P.elliottii

P.taeda

P.radiata

P.thunbergii

P.armandi



7406        Afr. J. Biotechnol. 
 
 
 
results have indicated that the needles of P. massoniana, 
P. tabuliformis, and P. yunnanensis were more easily 
damaged by lipid peroxidation. Their unsaturated bonds 
were oxidized in partial fatty acids (Wang et al., 2006). 
The needles of P. massoniana were the most seriously 
damaged. Nevertheless, the changes in the SFA and 
USFA contents did not increase or decrease only in 
response to the superoxide anion radical (Ye et al., 
2000). Subsequently, we found that the changes in USFA 
contents (C18:1, C18:2, and C18:3) were opposite to the 
SFA contents (C16:0 and C18:0). These results are 
consistent with previous studies on P. elliottii (Ye et al., 
2000), Pleurotus sp. (Pedneault et al., 2007), kiwifruit 
(Antunes and Sfakiotakis, 2008), P. tabuliformis (Ma et 
al., 2010), and Spiraea sp. (Liu et al., 2011).  

The results of the present study have indicated that 
lesion lengths in pine needles rapidly increased before 24 
h of toxin treatment. This finding significantly correlated 
with the rate of O2

-
 production, MDA content, IUFA, and 

relative conductivity. Based on the study of Guo et al. 
(2005), we presumed that lesion lengths were visible 
symptoms of phytotoxin exposure. We also presumed its 
close relation to internal physiological indices.  
 
 

Conclusion 
 
In conclusion, although phytotoxins may change plas-
malemma permeability and damage cell tissues, the 
plasmalemma can self-adjust and recover. More 
importantly, our data reveals the resistance capabilities of 
different pine species. In the present study, certain pine 
species (P. massoniana, P. tabuliformis, and P. 
yunnanensis) whose plasmalemma permeability in-
creased and with damaged cells and tissues have less 
resistance capabilities, while others (P. armandi, P, 
elliottii, P, taeda, P, radiata, and P, thunbergii). However, 
the activation of toxin degradation and the relief of toxicity 
in resistant species remain unclear. Nevertheless, the Pf-
toxin could be used to select pine species resistant 
against pine needle blight. Further research on the 
permeation of the Pf-toxin into the plasmalemma and on 
its other molecular and cellular targets is necessary, as 
well as the signal transduction pathway involved in plant 
resistance needs to be investigated.  
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