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decrease the energy expenditure by reducing crude 
petroleum fuel imported from the Organization of 
Petroleum Exporting Countries (OPEC). In addition, 
alternative fuels from renewable resources are subjects 
for energy conservation which can replace petroleum fuel 
resources (Wyman, 1994). A renewable energy source 
such as ethanol was used in Brazil and the USA by 
mixing fuel oils to increase the octane number of fuel oil 
(Laluce, 1991). Ethanol can be produced through 
fermentation of lignocellulosic biomass such as sugar 
cane and corn using microorganisms (Morais et al., 
1996).    

Lignocellulosic biomass is a potential source of cheap 
sugars for producing fuels and chemicals, and a 
pretreatment stage is essential to make the cellulose 
accessible to hydrolysis by a dilute acid (Mohagheghi et 
al., 2004). Cazetta et al. (2007) studied the utilization of 
lignocellulosic biomass which has been closely 
associated with a new technological concept, the so 
called Biorefinery. Therefore, ethanol is one of the most 
important renewable fuels contributing to the reduction of 
negative environmental impacts generated by the 
utilization of fossil fuels (Dale, 1999).  

Thailand is an agricultural country which has plentiful 
agricultural wastes. They can be used as material 
sources for ethanol production such as sugarcane 
bagasse, cassava stem, corn stover and rice straw. 
Therefore, Lin and Tanaka (2006) have developed a new 
material which has a high content of lignocellulosic 
biomass and possesses a reduced demand for supplying 
the ethanol production process, the so called 
lignocellulosic ethanol. Pineapple peel is one of the 
agricultural wastes which has lignocellulosic biomass. 
Although most of lignocellulosic biomass is composed of 
38 to 50% cellulose, 23 to 32% hemicellulose, and 13 to 
30% lignin (Sierra et al., 2008), pineapple peel is an 
interesting biomass resource for lignocellulosic ethanol 
production because there is a lot of peel waste. However, 
the production of lignocellulosic ethanol is a relatively 
complicated process. Reddy and Reddy (2005) have 
developed the transformation of biological resources as 
rich energy crops requiring the optimum conditions for 
conversion as lignocellulosic ethanol by fermenting 
organisms. Additionally, aqueous solutions of ethanol 
should be concentrated for obtaining hydrous ethanol 
(Maiorella et al., 1984). The ethanol in gasoline was used 
as an oxygenated fuel. Cardona and Oscar (2007) 
studied the complexity of this process partly to explain 
why fuel ethanol has not played a leading role in 
comparison to cheaper oil derived fuels. Due to rising 
environmental concerns and the periodic crises in some 
of the larger oil exporting countries, it has become a 
viable and realistic alternative in the energy market 
(Bayrock and Ingledew, 2001).  

In addition, the main components of lignocellulosic 
biomass and  type  of  microorganisms  can  also  affect  
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lignocellulosic ethanol production (Boerjan et al., 2003). 
Thomas and Rose (1979) have developed non-pretreated 
lignocellulosic biomass and Saccharomyces cerevisiae 
for use in lignocellulosic ethanol production with the 
advantage of simple ethanol production. It can grow in 
aerobic conditions and is used in the baking and brewing 
industries (Lynd et al., 1991; Narendranath and Power, 
2005). Grosz and Stephanpoulos (1990) have developed 
ethanol producing organisms used in industrial 
processes. In previous works, lignocellulosic ethanol from 
pineapple peel by the enzymatic hydrolysis process via 
Simultaneous Saccharification and Fermentation (SSF) 
was studied (Itelima et al., 2013). Although the enzymatic 
hydrolysis process can give high yield bioethanol, it is 
difficult to perform it at a large scale for ethanol 
production industries as a result of the complicated 
procedure and high cost. The aim of this study was to 
produce the lignocellulosic ethanol via batch fermentation 
from the dilute acid hydrolysis process of pineapple peel 
waste. This work was conducted to provide an added 
value to this waste for the canned fruit industries. The 
main components (lignin, hemicellulose and cellulose) 
were characterized by Fourier Transform Infrared (FTIR) 
and TG/DTA techniques. In addition, the contents of total 
reducing sugars and lignocellulosic ethanol obtained 
were investigated by the spectrophotometric technique 
and gas chromatography - flame ionization detector (GC-
FID), respectively. 
 
 
MATERIALS AND METHODS 
 
Fresh pineapple peel was collected from the Food Service Center 
in Khon Kaen University (KKU), Khon Kaen province, Thailand. 
Firstly, the pineapple peel was washed thoroughly with distilled 
water, minced and dried at 60°C in a hot-air oven. After that, it was 
ground and sieved to obtain particle sizes of less than 500 µm. This 
sample was stored in a plastic box before use and then 
characterized by a FTIR spectrometer (Spectrum One; Perkin 
Elmer, Germany) with the KBr pellet method. 
 
 
Determination of main components 
 
The main components in the pineapple peel such as lignin, 
hemicellulose and cellulose were determined by a Perkin Elmer 
Thermogravimetry (TG) (Pyris Diamond TG/DTA 6300, Germany) 
with temperature ranging from 30 to 830°C and heating rate of 
10°C/min under nitrogen atmosphere (Nishiyama et al., 2002). 
 
 
Removal of main components 
 
This method was modified from the Technical Association of Pulp 
and Paper Industrial T203 test method (TAPPI, 1994-1995). Briefly, 
10 g of raw pineapple peel powder was extracted with the solvent, a 
mixture of hexane: methanol of 2:1 by volume to remove ester 
compounds by shaking at 180 rpm for 30 min and drying in a fume 
hood for solvent disposal (assigned as Sample I). The lignin 
removal was done by soaking Sample I in 150 mL deionized water 
with the addition of 1.5 g  NaClO4  and 10 drops of 18 M CH3COOH  
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in a water bath at 70°C for 1 h. Then, it was washed thoroughly with 
distilled water, dried in an oven at 80°C for 1 h and weighed 
(assigned as Sample II). Then, the powder of Sample II had the 
hemicellulose removed with soaking in 0.25 M NaOH for 24 h and 
then it was boiled at 70°C for 1 h as modified from the TAPPI T203 
test method. It was then washed thoroughly with distilled water, 
dried in an oven at 60°C and weighed to achieve dried cellulose 
(assigned as Sample III) at the end. All three samples were 
characterized by using a FTIR spectrometer with the KBr pellet 
method. 
 
 
Diluted acid hydrolysis 
 
Ten (10) g of samples were weight hydrolyzed with 100 mL 0.2 M 
H2SO4 using an electrical autoclave (All American Pressure 
Sterilizer, U.S.A.) at 120°C, 15 psi for 90 min. The working 
conditions for diluted acid hydrolysis were studied (Xu et al., 2003). 
Then, the hydrolyzed solution obtained was filtered through filter 
paper. The total reducing sugars of the hydrolyzed solution were 
determined according to the dinitrosalicylic acid method at 
wavelength 570 nm by a UV-VIS spectrophotometer (Agilent 8453 
UV-Visible Spectroscopy System, Germany) (Miller, 1959). 
 
 
Fermentation 
 
A pure yeast strain of S. cerevisiae TISTR 5048 in this experiment 
was purchased from the Microbiological Resources Center, 
Thailand Institute of Science and Technological Research (TISTR), 
Pathum Thani Province, Thailand. For the batch fermentation 
process, the hydrolyzed solution of pineapple peel was neutralized 
to pH 7.0 using 2.0 M NaOH and filtered through filter paper. Then, 
this solution was added into the synthetic medium (consisting of 1.0 
g/L yeast extract, 1.0 g/L MgSO4, 2.0 g/L (NH4)2SO4 and 0.5 g/L 
KH2PO4 in 1 L of distilled water) (Brown et al., 1981). After that, it 
was sterilized using an electrical autoclave at 120°C, 15 psi for 30 
min. Then, 10.0 mL of S. cerevisiae TISTR 5048 broth was loaded 
into this medium. Finally, the batch fermentation was carried out by 
a rotary shaker with speed 150 rpm at 30°C for 72 h. by sampling 
every 6 h. 
 
 
Ethanol analysis 
 
The fermented broth was obtained, centrifuged at 3000 rpm for 10 
min and filtered through a 0.45 µm filter membrane. The bioethanol 
was monitored by a (GC-FID) (TraceGC, Thermo Finnigan, Italy) 
using a DB-5 column (30 m × 0.25 mm i.d., 0.25 µm film thickness). 
The temperature of the injector was set at 250°C. The flame 
ionization detector was kept at 280°C. The temperature was 
programmed at 50°C for 2 min, from 50 to 100°C at 10°C/min, then 
held for 2 min at 100°C. The internal standard used was n-butanol 
(Caylak and Vardar, 1998). 
 
 
RESULTS AND DISCUSSION 
 
Identification of main components in pineapple peel  
 
The IR spectra of the raw pineapple peel from Figure 1a 
for mode assignment showed O-H stretching of acid and 
methanol in  reducing sugars at  3500 to 3200 cm-1, C–Hn  

 
 
 
 
stretching of alkyl, aliphatic and aromatic occurring at 
1750 cm-1, C=O stretching of ketone and carbonyl 
occurring at 1590 cm-1, C=C stretching of aromatic 
skeletal mode in lignin occurring at 1475 cm-1, C-O-C 
stretching of aryl-alkyl ether linkage occurring at 1250 cm-1 
and C-O-C stretching vibration in hemicellulose occurring 
at 1164 cm-1 (Yang et al., 2007). These confirmed main 
components were present in the raw pineapple peel such 
as the reducing sugars in cellulose and hemicellulose, 
the ester compounds, and the lignin portion. From the 
main components removal with the modified TAPPI T203 
test method, Sample I had alkyl, aliphatic and aromatic 
compounds removed from raw pineapple peel as shown 
in Figure 1b in which there is no peak at 1750 cm-1. In 
Figure 1c of Sample II spectra peaks disappeared at 
1590 and 1475 cm-1 due to the absence of lignin. In 
Sample III due to the hemicellulose removal the peak of 
arabinose disappeared at 1250 and 1164 cm-1 (Figure 
1d). The characterization of the main components was 
successfully achieved by FTIR at each step. 
 
 
Determination of main components by the TG/DTA 
technique 
 
The DTG curve in Figure 2a shows that the first event 
was moisture removal (1) up to around 100°C followed by 
the second, third and fourth events around 150 to 300°C 
were the evolution of hemicelluloses (2) and cellulose (3) 
degradation, respectively. Degradation of lignin took 
place slowly over a wide temperature range and rose to a 
higher temperature (4) (Yang et al., 2006; Yang et al., 
2007). The TG curve shows a maximum percentage of 
weight loss occurring in the temperature range of 150 to 
450°C. The first step that could be attributed to decom-
position begins with moisture about 100°C. The second 
mass loss step was hemicellulose degradation of 
9.50±0.77%. It has an amorphous structure and linear 
polymer structure with short side chains which are easier 
to remove than cellulose and some hydrocarbons at the 
lower temperature. The third step, related to cellulose, 
mainly consists of a semicrystalline arrangement of 
chains associated with others which is a strong structure 
degrading by 21.16±0.73% and the final step was 
42.11±0.85% for the lignin degradation because it is 
complex and has a strong structure of a phenolic polymer 
covering the polysaccharides of the cell walls as shown in 
Figure 2b (Wanitwattanarumlug et al., 2012). 
 
 
Determination of main components by removal 
processes 
 
The modified TAPPI T203 test method can be used to 
determine the main components in pineapple peel. It can 
be performed from the weight loss of three samples by 
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