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The ability to distinguish transgenic cells of untransformed cell mass is a key step for the production of 
transgenic plants. Thus, the use of selection marker genes for identification of genetically modified 
plants is necessary. The aim of this study was to determine the optimal concentration of four selective 
agents (kanamycin, hygromycin, phosphinothricin and mannose) to inhibit in vitro growth of Urochloa 
brizantha cv. Marandu calli. Embryogenic calli were obtained from mature seeds inoculated in MS 
medium supplemented with 30 g/L sucrose, 3 mg/L 2,4-dichlorophenoxy acetic acid (2,4-D) and 300 
mg/L hydrolysate casein and their growth rate was monitored for 74 days by measuring calli fresh 
weight. It was demonstrated that U. brizantha calli are more sensitive to low concentrations of 
hygromycin than kanamycin (25 and 50 mg/L, respectively). For the herbicide phosphinothricin, 5 mg/L 
was enough to prevent the calli growth, but allowed escape. Mannose should be used as the only 
carbon source on the plant tissue culture medium. All selective agents tested here, in the appropriate 
concentration, could be used in experiments aiming to produce transgenic signal grass. However, 
mannose selection might reduce environmental concerns about gene flow and development of 
herbicide resistance in escaped Urochloa populations.  
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INTRODUCTION 
 
A number of steps are required for producing transgenic 
plants, such as the introduction of DNA into cells, 
identification or selection of cells that have the 
exogenous DNA integrated into the plant genome and 
regeneration of the transformed plant cells. Due to the 
low efficiency of transgene integration, selectable marker 
genes (SMGs) are routinely used to differentiate 
transformed cells from a population of untransformed 
cells, and are typically  co-transformed  with  the  gene  of 

interest. Among the commonly used SMGs are those that 
confer tolerance to antibiotics or herbicides (Ji et al., 
2013). Genes providing resistance to these compounds 
are known as negative selectable markers and have 
been used to kill or reduce the population of non-
transgenic cells (Puchta, 2003).  

The SMGs that confer resistance to antibiotics are 
involved in bacterial detoxification systems and are 
distinct  enough  from plant processes, so the interactions 
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between the SMGs and the co-processing genes are 
unlikely (Miki and McHugh, 2004). Aminoglycoside 
antibiotics include a number of molecules that are very 
toxic to plant, animal and fungal cells by binding to the 
ribosomal subunits and inhibiting protein synthesis in 
eukaryote plastids and mitochondria. The bacterial 
neomycin phosphotransferase II (NPTII) has been shown 
to be very effective as a selectable marker in mammalian 
and yeast cells, and in plants (Miki and McHugh, 2004; 
Padilha and Burgos, 2010). Currently, 45 events of 
genetically modified plants have been approved for 
commercial release containing the nptII gene  including: 
oilseed rape, corn, potato, tomato, flax, chicory, papaya, 
melon, plum, zucchini, sugar beet, rose, tobacco and 
cotton  (CERA, 2015). No risk for humans, animals or on 
the environment has been related to using NPTII or the 
nptII gene (Fuchs et al., 1993).  

Hygromycin is also an antibiotic inhibitor of protein 
synthesis with a broad spectrum activity against 
prokaryotes and eukaryotes. The Escherichia coli gene 
aphIV (hph, hpt), coding for hygromycin B phos-
photransferase, confers resistance on bacteria, fungi, 
animal cells and plant cells by detoxifying hygromycin 
(Waldron et al., 1985). In plants, this antibiotic is very 
toxic and has been applied in transformation procedures 
for various monocot tissues (Sharma et al., 2005). 

Amino acid biosynthesis pathways are also a target for 
selective agents in distinguishing transgenic from non-
transgenic events. An example of marker genes used for 
monocotyledons transformation comprises, respectively, 
of the bar and pat genes from Streptomyces 
hygroscopicus and Streptomyces viridochromogenes, 
which confer resistance to the herbicide phosphinothricin 
(PPT), also known as ammonium glufosinate (Thompson 
et al., 1987; Strauch et al., 1988). This herbicide inhibits 
glutamine synthetase, a key enzyme in nitrogen 
assimilation, causing ammonia accumulation, damage of 
cell membranes and inhibition of photosynthesis and, 
eventually, plant death. 

Among the alternative methods to produce transgenic 
plants without the use of antibiotic or herbicide marker 
genes are the so-called positive selection systems, which 
are defined as those that allow the growth of transformed 
tissues (Joersbo et al., 1998; Miki and McHugh, 2004). In 
this system, substances that are not normally 
metabolized by plants are used as selective agent– for 
example, the carbohydrate mannose. The manA gene 
from E. coli, which codes the phosphomannose isomerase 
enzyme (PMI, E.C. 5.3.1.8) converts mannose-6-
phosphate into fructose-6-phosphate, so transformed 
plant cells can assimilate mannose via glycolysis while 
non-transformed cells cannot metabolize this carbohy-
drate (Reed et al., 2001). The selective mode of action of 
this system has been suggested to be mediated by the Pi 
sequestration by phosphorylating mannose into mannose-
P (Brouquisse et al., 2001) and/or by the inability of the 
plant cell to utilize mannose as a carbon source (Stoykova 
and  Stoeva-Popova,  2011).  It  has  been  demonstrated 

 
 
 
 
that the use of the manA gene enhanced the efficiency of 
transformation of monocots as compared to traditional 
selection on herbicide containing medium (Wright et al., 
2001). The manA gene has successfully been applied as 
a selectable marker in plant transformation for several 
dicot and monocot plants including wheat and maize 
(Wright et al., 2001), sorghum (Gurel et al., 2009), oil 
palm (Bahariah et al., 2013), sugarcane (Zhang et al., 
2014) and rice (Gui et al., 2014), among others. 

In addition to the choice of the appropriate SMG, the 
establishment of its correct concentration on the culture 
media is a very important step in the transformation 
process. Low concentrations of SMGs may allow escapes 
to regenerate, whereas too high concentrations impose a 
stringent process capable of killing the transformed plants 
expressing moderate levels of resistance (Ijaz et al., 
2012). Therefore, the optimum concentration of selective 
agents has to be determined a priori by testing a variety 
of concentrations in the laboratory. 

The Urochloa genus belongs to the Poaceae family, 
which also covers important species such as rice, wheat 
and maize, that together account for about half the 
world’s food production (Bennetzen and Freeling, 1993). 
Although significant research progress has been made 
concerning in vitro plant regeneration and genetic 
transformation in grasses (Giri and Praveena, 2015), this 
has not been the case for Urochloa species. Transient 
expression of glucuronidase gene (gus) under several 
heterologous promoters has been first reported in U. 
brizantha (signal grass), however, no transgenic plant 
was regenerated (Silveira et al., 2003). The only report 
that describes the regeneration of Urochloa transgenic 
plants used a genotype of U. ruziziensis (congo grass). In 
that study, a vector containing the bar and gus genes, the 
former conferring resistance to phosphinothricin was 
introduced into embryogenic callus by particle bombard-
ment, but only two transformed plants were regenerated 
(Ishigaki et al., 2012).  

Recently, our group published a paper that described 
an improvement of the protocol for in vitro regeneration of 
different Urochloa species (Takamori et al., 2015). Here, 
we reported results of the optimal concentrations of four 
selective agents (kanamycin, hygromycin, 
phosphinothricin and mannose) to restrict the in vitro 
growth of Urochloa brizantha cv. Marandu embryogenic 
callus as a part of the establishment of a transformation 
system for a recalcitrant species like signal grass.  

 
 
MATERIALS AND METHODS 

 
Plant material and callus induction media 

 
Mature seeds of U. brizantha cv. Marandu were used as initial 
explants for callus induction. First, the seeds were scarified by 
immersion in concentrated sulfuric acid in a glass Becker and mixed 
with glass rod for 15 min. The seeds were then rinsed in running 
water to remove the acid and dried at room temperature. The 
scarified  seeds  were  manually peeled and sterilized by immersion 



 
 
 
 
in 70% ethanol (v/v) for 5 min and in sodium hypochlorite 5% (v/v) 
containing 3 drops of Tween 80™ per 20 min, followed by 5 rinses 
in autoclaved double distilled water. 

The medium for inducing callus (MIC) was composed of MS salts 
(Murashige and Skoog, 1962) supplemented with 30 g/L sucrose, 3 
mg/L 2,4-dichlorophenoxy acetic acid (2,4-D) and 300 mg/L 
hydrolysate casein, and solidified with 8 g/L agar. The media pH 
was adjusted to 5.8 ± 0.1 and autoclaved for 20 min at 121 ± 1°C. 
Ten seeds were inoculated per Petri dishes and the plates were 
kept in the dark at 25 ± 1°C. The calli were subcultured into fresh 
medium every 14 days and maintained under the same conditions.  

 
 
Determination of the optimal concentration of selective agents 
 
After 35 days of seed inoculation, the pro-embryogenic calli were 
transferred to the MIC medium containing different concentration of 
the selective agents as follows: 0, 25, 50 and 100 mg/L for the 
aminoglycoside antibiotics kanamycin and hygromycin, and 0, 5, 
10, 20 and 40 mg/L for the herbicide phosphinothricin. In the case 
of mannose as the selective agent, the calli were cultivated in the 
MIC media containing various concentrations of mannose as the 
sole carbon source, or in combination with sucrose, in the following 
mixtures: 0:30; 10: 20; 15:15; 20:10; 30:0 g/L of mannose: sucrose. 
The Petri dishes were kept in the dark at 25 ±1°C. 

After 30 days, the calli were weighed and transferred to MS 
media without 2,4-D and casein, supplemented with 30 g/L sucrose 
and the corresponding concentrations of kanamycin, hygromycin, 
phosphinothricin and Mannose:sucrose. All petri dishes were kept 
under light (30 µmol/m2/s1) with photoperiod 16/8 (light/dark) for 14 
days (44 days under selection). After this period, they were 
weighed again and subcultured into half strength MS salts 
supplemented with 2 mg/L benzyladenine and kept under the same 
light conditions for 30 days (74 days under selection), when the last 
weighing was done on a precision scale. Callus relative growth rate 
was determined on a fresh weight basis according to the formula: 
[(initial weight - final weight / initial weight)] (Dennehey et al., 1994).  

 
 
Statistical analysis   

 
All the experiments were composed of a control (without selective 
agent) and different concentrations of the selective agents. The 
treatments were arranged in a completely randomized design with 
six replicates, each replicate consist of a Petri dish with six calli 
(150 mg each). The experiments were repeated three times.  

Raw data were subjected to analysis of variance (ANOVA) to 
detect significant differences between means. Mean separation was 
conducted by Tukey's test (p < 0.05) using the statistics software 
SISVAR Version 5.3 (Ferreira, 2011).  

 
 
RESULTS AND DISCUSSION  
 
Calli of U. brizantha cv. Marandu were induced from 
scarified mature seeds. After 35 days in induction medium 
(MIC), the calli were weighed and subcultured onto media 
containing different concentrations of the selective agents 
(kanamycin, hygromycin, phosphinothricin or mannose: 
sucrose combinations).  

Mature seeds of U. brizantha are known to be good 
explant source for callus induction. Explants cultured on 
modified MS medium containing 2,4-D produced 
embryogenic   callus,  characterized  by  whitish  globular  
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structures surrounded by friable calli (Takamori et al., 
2015). Calli maintained in medium without the addition of 
the selective agents (control treatment) increased their 
mean fresh weight as much as 5 times (724 mg fresh 
weight) over that of the initial value at the time of 
inoculation in the MIC medium at the end of the 
experiment.  
 
 
Antibiotics 
 
In order to determine the optimal inhibitory concentration 
of the aminoglycoside antibiotics, kanamycin and 
hygromycin, the growth of U. brizantha cv. Marandu calli 
was assessed at 30, 44 and 74 days after inoculation in 
the different media (Figure 1A and B ). 

In medium with kanamycin, there was a progressive 
restriction in callus growth up to the concentration of 75 
mg/L. After 74 days under selective conditions, the 
growth reduction caused by kanamycin was 37, 57 and 
66% relative to the control at the concentrations of 25, 50 
and 75 mg/L, respectively (Figure 1A). There were no 
significant difference in the magnitude of calli growth 
reduction between the higher concentrations (75 and 100 
mg/L) of kanamycin. Treatment of U. brizantha callus with 
increasing concentrations of kanamycin produced a 
progressive darkening in color from white to pale-yellow. 
After 44 days under selection at the concentration of 25 
mg/L kanamycin, some albino shoots with purple 
pigmentation on the leaves were visible, yet any of these 
chlorotic shoots were able to further elongate and 
regenerate into plants. There was no shoot formation at 
any other kanamycin concentration tested (Figure 4A). 

In contrast, the presence of hygromycin in the medium 
caused a dramatic reduction on growth of U. brizantha 
calli already at 30 days of selection. Even at the lowest 
concentration of hygromycin (25 mg/L), a severe callus 
growth reduction (66.5%) was observed as compared to 
the control cultures. There was no significant differences 
in callus growth among all hygromycin treatments (Figure 
2B), as no further increase in the concentration elicited 
any greater response. There was no visual morphology of 
calli among the hygromycin concentrations (Figure 4).  

Antibiotics are extensively used as a selection agent 
from the beginning of plant transformation. The popularity 
of these selection systems is reflected on the efficiency, 
availability and applicability of their use across a wide 
range of plant species and its regenerative efficacy in 
plant tissue culture systems (Sundar and Sakthivel, 
2008).  

The susceptibility to antibiotics varies among species, 
genotypes and explant source (Padilha and Burgos, 
2010). Generally, dicotyledonous plants are most 
sensitive to kanamycin than monocots. For example, a 
low concentration of kanamycin (50 mg/L) allowed the 
regeneration of transgenic adventitious buds from 
epicotyl sections of the citrus rootstock, Swingle citrumelo  
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Figure 1. Relative growth rate of U. brizantha Marandu calli in medium containing different concentrations of kanamycin (A) 
and Hygromycin (B) over 74 days. Columns followed by the same letter in each sampling time did not differ significantly by 
Tukey's test (P < 0.05).  

 
 
 

 
 

Figure 2. Relative growth rate of U. brizantha cv. Marandu calli in medium 
containing different concentrations of glufosinate ammonium over 74 days. 
Columns followed by the same letter in each sampling time did not differ 
significantly by Tukey's test (P < 0.05). 

 
 
 

transformed via Agrobacterium (Molinari et al., 2004). 
Even lower concentration of kanamycin (20 mg/L) was 
used to recover transgenic shoots of Jatropha curcas 
(Pan et al., 2010).  

In contrast, some monocots such as Triticum 
monococcum, Panicum maximum, Pennisetum 
americanum and a hybrid between Pennisetum 
americanum,  Pennisetum  purpureum   and  Pennisetum
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squamulatum have been shown to be resistant to 
kanamycin selection requiring high antibiotic 
concentrations (800 mg/L) to inhibit 30% of growth as 
compared to the control (Hauptmann et al., 1988). 
Despite that, the antibiotic kanamycin, together with the 
selective marker gene neomycin phosphotransferase 
(nptII), has allowed high frequency recovering of 
transgenic monocots (Cheng et al., 2003; Liu et al., 2007; 
Gasparis et al., 2008; Liu and Goodwin, 2012). In this 
work, kanamycin at 50 mg/L appears to be sufficient to 
restrict the calli growth in U. brizantha cv. Marandu. This 
result was similar to those obtained for Caucasian 
bluestem (Bothriochloa ischaemum), a warm-season 
perennial grass in which calli growth was not completely 
suppressed but considerably reduced at the concentration 
of 50 mg/L kanamycin (Franklin et al., 1990). 

The selectable marker gene hygromycin phospho-
transferase (htp) is also reported to be suitable for 
selection of monocot transformants (Hiei and Komari 
2008; Ozawa 2009) and are commonly used when nptII 
is ineffective (Miki and McHugh 2004). The growth rates 
of U. brizantha cv. Marandu calli in medium containing 
different concentrations of hygromycin were dramatically 
reduced. The concentration of 25 mg/L hygromycin was 
sufficient to restrict the calli growth. Similar data were 
reported by Ramamoorthy and Kumar (2012), who 
demonstrated that low concentrations of hygromycin (25 
and 50 mg/L) were sufficient to restrict cell proliferation of 
calli of Panicum virgatum as compared to the control. On 
the other hand, another report showed that all P. 
virgatum plants regenerated on selective medium 
containing 25 mg/L of hygromycin escaped. Only a 
concentration of 75 mg/L was able to select transgenic 
events with the hptII gene (Xi et al., 2009). In maize, 
hygromycin was shown to be a better selective agent as 
compared to kanamycin, inhibiting cellular growth and 
proliferation at 30 mg/L (Ishida et al., 2007). In this study, 
it should be noted that U. brizantha cv. Marandu calli are 
more sensitive to hygromycin than kanamycin. With this 
latter antibiotic, some escapes occurred at the 
concentration of 50 mg/L kanamycin, despite the fact that 
the small plant shoots became chlorotic and died within 
few weeks. 
 
 
Phosphinothricin (PPT)  
 
The herbicide Finale® (Bayer CropScience SG), which 
contains in its commercial formulation, 20% of the 
phosphinothricin, was used at 0, 5, 10, 20 and 40 mg/L of 
the active ingredient in this experiment. Within the first 30 
days in the selective medium, there was a cessation of 
active growth and slight browning of the callus surface in 
all concentrations tested (Figure 2). The longer the callus 
remained in medium containing PPT, the darker they 
became (Figure 5).  

At  5  and   10 mg/L   of   PPT,   the  callus  growth  rate  
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decreased by circa 70% as compared to the control after 
74 days in the selective medium. However, the lowest 
concentration of the herbicide allowed the few escapes. 
With higher concentrations of PPT (20 and 40 mg/L), the 
growth rate was reduced by a factor of 4 at the end of the 
experimental period.  

In monocots, principally, a herbicide phosphinothricin 
was used as the selection system to distinguish 
transgenic from non-transgenic events (Ishida et al., 
2007; Molinari et al., 2007; Sandhu and Alpeter, 2008; 
Han et al., 2009). In Paspalum notatum, the concen-
tration of 1.0 mg/L increased the recovery of transgenic 
plants and minimized the amount of escapes 
(approximately 10%). This result validated the use of 
phosphinothricin as a robust and effective selective 
method to obtain a transformation frequency of 64.2% in 
this species (Mancini et al., 2014). Three selective agents 
(phosphinothricin, hygromycin and paromomycin) were 
tested for transformation of tall fescue (Long et al., 2011). 
Growth of non-transformed calli was completely inhibited 
on callus induction medium supplemented with 100 mg/L 
paromomycin without any signs of newly developing 
callus structures, while non-transformed calli cultured on 
2 mg/L PPT or 100 mg/L hygromycin grew normally for 
the first 1-2 weeks. After 2 weeks of selection, only 
transgenic calli continued to grow, while non-transformed 
calli displayed progressive necrosis. The bar gene with 
PPT was considered the most efficient combination for 
selecting transformed cells. Similar conclusions have 
been reported for other monocot transformation protocols 
(Somleva et al., 2002; Luo et al., 2004; Gondo et al., 
2005). 

Presently, the only transformed plant in Urochloa genus 
was achieved in U. ruziziensis using phosphinothricin as 
a selective agent. After 8-9 weeks in selective media 
containing 10 mg/L PPT, most of the calli were killed, and 
only four resistant calli (1.4% efficiency) showed strong 
GUS expression and remained highly embryogenic 
(Ishigaki et al., 2012). In this study, a complete inhibition 
of regeneration of U. brizantha cv. Marandu calli with 10 
mg/L of PPT was also observed in the medium. However, 
as shown in U ruziziensis, this concentration of the 
herbicide can affect the development of the plants, which 
tend to be sterile (Ishigaki et al., 2012). Thus, it may be 
preferable to use a concentration of 5 mg/L PPT even if 
some escapes occur.  
 
 
Mannose 
 
In all three sampling periods, calli cultivated only in 
sucrose (30 g/L) or in combinations of mannose: sucrose 
(10:20, 15:15, 20:10) continued to grow and produced 
shoot initials. At the end of the experiment (74 days), the 
highest growth rate was recorded for the combination 
10:20 g/L mannose: sucrose with about 3 times the initial 
weight (Figure 3). 
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Figure 3. Relative growth rate of U. brizantha cv. Marandu calli cultured in medium 
supplemented with different combinations of sucrose and mannose over 74 days. 
Columns followed by the same letter in each sampling time did not differ significantly by 
Tukey's test (P < 0.05). 

 
 
 

 
 

Figure 4. Morphology of U. brizantha cv. Marandu calli grown on media containing the antibiotics kanamycin 
are show in the upper row (A) while calli grown on medium containing hygromycin are shown in lower row 
(B) after 74 days of cultivation. The calli treated with different concentrations of antibiotics are shown in the 
photos marked 1 (0 mg/L – control), 2 (25 mg/L), 3 (50 mg/L), 4 (75 mg/L) and 5 (100 mg/L).  Bars = 1 cm. 

 
 
 
Independently of the sampling period, a significant 
difference was only detected when the calli were 
cultivated with mannose as the solely carbon source 
(Figure 3). The calli cultivated on medium containing only 
mannose (30 g/L) grew very poorly since the beginning of 
the selection procedure. A reduction in weight was 
observed thereafter, probably due to water loss and cells 
shrinkage. Regarding the morphology of the calli growing 
only on mannose, there was a change in color from 
cream to brown and gelatinous consistency with the 
increasing permanence of the calli in a selective media. 
Interestingly, root proliferation occurred at combination  of 

0:30, 20:10, 10:20 and 15:15 g/L mannose: sucrose, but 
they were not observed on the media containing 
mannose only (30:0) (Figure 6).  

The positive selection system using phosphomannose 
isomerase gene (manA) and its correspondent selectable 
agent mannose have been widely used for identification 
and selection of transgenic cells/tissues in several 
monocot species (Giri and Praveena, 2015). Using 
mannose as selective agent demands preliminary studies 
to determine the best concentration of a selective agent 
and the need for supplemental carbon source. The toxic 
effect  of   mannose   to   plant   cells   increases   with   a  
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Figure 5. Morphology of U. brizantha cv. Maradu calli on medium containing phosphinothricin after 74 days 
of cultivation. A- without herbicide control, B– 5 mg/L, C– 10 mg/L, D– 20 mg/L and E– 40 mg/L. Bars = 1 
cm. 

 
 
 

 
 

Figure 6. Morphology U. brizantha calli on media supplemented with different concentrations (g/L) of the 
mannose: sucrose A- 0:30, B – 10:20,  C – 15:15, D – 20:10,  E –30:0. Bars = 1 cm. 

 
 
 
decreasing concentration of sucrose in the medium, 
indicating that there is an interaction between these 
carbohydrates (Joersbo et al., 1998). Furthermore, it has 
been reported that high sucrose concentrations have an 
additive effect in inhibiting the formation of shoots when 
combined with high levels of mannose (Kim et al., 2002). 
The addition of sucrose to selective medium containing 
mannose seems to have a positive effect on the recovery 
of transgenic corn and wheat and reduced escapes. 
Transformation frequency was three times higher when 
sucrose was added to the medium during selection (Reed 
et al., 2001; Wright et al., 2001). 

In the first attempt to prevent U. brizantha calli 
formation using mannose as selective agent, it was 
demonstrated that 5 g/L mannose greatly inhibited callus 
formation and development of embryos even when 
sucrose (15 g/L) was added to the media (Silveira et al., 
2003). In this study, we confirm that the use of mannose 
as the sole source of carbohydrate severely restricted the 
growth of calli and no shoots were regenerated. The 
present data suggest that U. brizantha cv. Marandu do 
not have the capability to metabolize mannose, which is 
different from the findings of Bahariah et al. (2012) who 
observed that palm cells are partially able to use 
mannose as a carbon source as indicated by the ability to 
form shoots. The inhibitory effect of mannose was 
alleviated by adding sucrose to the medium. In all other 
combinations of mannose and sucrose, it was observed 
that, the emergence of shoots, showing that medium 
containing only mannose should be used when manA is 
chosen as a selective marker gene for U. brizantha 
transformation.  

Conclusion 
 
In this study, the authors determined the optimal 
concentration of four selective agents- kanamycin, 
hygromycin, glufosinate ammonium and mannose– for 
inhibiting the in vitro growth of U. brizanha cv. Marandu 
embryogenic calli. All selective agents tested here, in the 
appropriate concentration, could be applied in 
experiments aiming to produce transgenic signal grass.  

Although, the use of antibiotic marker genes have 
already been proven to be safe and very effective for 
transgenic plant selection on a variety of species, such 
SMGs from microbial origin may still cause public 
concerns (Breyer et al., 2014). In the case of genes 
conferring resistance to herbicides, as the pat and bar 
genes used in combination with phosphinothricin for 
selecting transformed plants, the main concerns are 
related to the introgression of the transgene in wild 
populations. Despite being an apomictic forage grass, the 
observation that Urochloa species exist in nature in the 
form of agamic complex and are cross-compatible with 
related species (Renvoize et al., 1996), gene flow can 
lead to the development of resistant volunteer plants, 
which may present management challenges for 
producers in different agricultural systems. In addition, 
with the transgenic trait for phosphinothricin resistance, 
management of volunteer signal grass could become 
costly. In this way, the use of mannose as a selective 
agent in Urochloa seems to be more appropriate for the 
development of transgenic plants for commercial 
purposes. The manA gene is considered a biosafe 
selectable  marker  due  to  its absence in plant genomes  
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and because its product, ManA, is not toxic (Stoykova 
and Stoeva-Popova, 2011). 

Finally, this work provides information on the choice of 
the proper concentrations of selective agents for the 
establishment of more efficient transformation protocols 
for U. brizantha since no transgenic plant of this species 
has been regenerated so far. 
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