Full Length Research Paper

# Expression and purification of the central stalk subunits of Na<sup>+</sup>-translocating V-type ATPase from Enterococcus hirae

## K. M. Mozaffor Hossain<sup>1</sup>, Satoshi Arai<sup>1</sup>, Shinya Saijo<sup>1</sup>, Yoshimi Kakinuma<sup>2</sup>, Takeshi Murata<sup>3</sup>, and Ichiro Yamato<sup>1\*</sup>

<sup>1</sup>Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan.

<sup>2</sup>Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan.

<sup>3</sup>Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan.

Accepted 09 December, 2010

Enterococcus hirae (E. hirae) vacuolar ATPase (V-ATPase) is composed of a soluble catalytic domain (V<sub>1</sub>; NtpA<sub>3</sub>-B<sub>3</sub>-D-G) and an integral membrane domain (V<sub>o</sub>; Ntpl-K<sub>10</sub>) connected by a central and peripheral stalks. Central stalk of Na<sup>+</sup>-translocating V-type ATPase of *E. hirae* is composed of NtpC, NtpD and NtpG subunits. The aim of the present study was cloning and expression of these central stalk subunits of *E. hirae* V-type Na<sup>+</sup>-ATPase. Here we cloned the synthesized DNA fragments, corresponding to *ntpC*, *ntpD* and *ntpG* genes, into the plasmid vector, pET23d. NtpC, NtpD and NtpG subunit proteins were expressed, separately as His-tagged soluble proteins in *Escherichia coli* BL21(DE3) cells and then, purified by Ni Sepharose 6 fast flow column. Purification of expressed protein was confirmed by sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE). The amount of purified NtpC, NtpD and NtpG subunit proteins were measured as 14, 17 and 15 mg/1 liter culture, respectively.

Key words: Enterococcus hirae, V-ATPase, central stalk subunits, expression.

#### INTRODUCTION

Vacuolar ATPases (V-ATPases) function as ATP-dependent proton pumps in acidic organelles and in plasma

Abbreviations: PCR, Polymerase chain reaction; DNA, deoxyribonucleic acid; SDS-PAGE, sodium dodecylsulphate polyacrylamide gel electrophoresis; ATP, adenosine 5 triphosphate; dNTP, deoxynucleotide triphosphate; IPTG, isopropyl (thio)  $\beta$ -D-galactoside; BSA, bovine serum albumin; DTT, dithiothreitol; CBB, Coomassie brilliant blue; EDTA, ethylenediaminetetraacetic acid; LB, Luria-Bertani; m-DM-CA, modified-Davis Mingioli-casamino acid; OD600, optical density at 600 nm.

membranes of eukaryotic cells (Forgac, 2007). This acidification is involved in concentration of neurotransmitters, processing of secretory proteins, endocytosis and other important cellular processes (Forgac, 2007). V-ATPases have globular catalytic domain, V<sub>1</sub>, where ATP is hydrolyzed, attached by a central and peripheral stalks to intrinsic membrane domain, V<sub>o</sub>, where ions are pumped across the membrane (Forgac, 2007). V-ATPase is an ion-translocating rotary motor (Forgac, 2007) in which hydrolysis of ATP generates rotation of the central stalk and an attached membrane ring of the hydrophobic subunits. Ions are pumped through a pathway at the interface between the rotating ring and a static membrane component, which is linked to the outside of the V<sub>1</sub> domain by the peripheral stalks (Forgac, 2007).

A family of V-ATPases are also found in the membranes

<sup>\*</sup>Corresponding author. E-mail:iyamato@rs.noda.tus.ac.jp. Tel: +81-4-7124-1501 ext. 4405.

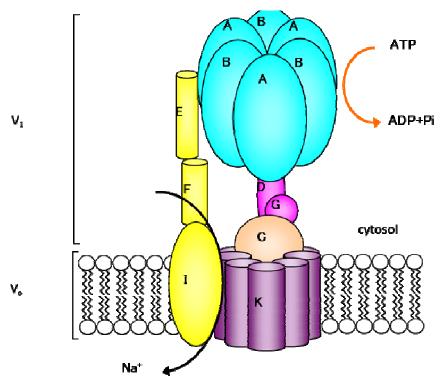



Figure 1. Structural model of V-ATPase from *E. hirae.* ( $V_1$  indicates catalytic domain and  $V_o$  indicates membrane domain; Murata et al., 2008).

of some bacteria (Lolkema et al., 2003; Yokoyama and Imamura, 2005; Murata et al., 2005a). One example is V-ATPase from the thermophilic bacterium, *Thermus thermophilus* (Tsutsumi et al., 1991; Yokoyama et al., 1994). *T. thermophilus* V-ATPase functions as an ATP synthase *in vivo* like as F-type ATP synthases (Yokoyama et al., 2003). *T. thermophilus* V-ATPase is composed of nine subunits; A, B, D, F, C, E, G, I and L (Yokoyama et al., 2000) in which D, F and C subunits form the central stalk (Yokoyama et al, 2003; Iwata et al., 2004). Central stalk subunits D and F of *T. thermophilus* V-ATPase have been shown to play an important role in the regulation of enzyme activity (Imamura et al., 2004) and subunit C has an important role in reversible association/dissociation of V-type ATPase (Iwata et al., 2004).

A fermentative bacterium *Enterococcus hirae* (*E. hirae*) has a variant of V-ATPase which physiologically transports Na<sup>+</sup> rather than H<sup>+</sup> (Heefner and Harold, 1982). This enzyme is composed of nine subunits fewer than eukaryotic V-ATPases (Murata et al., 2005b), which are encoded by nine *ntp* subunit genes (*ntpFIKECGABD*) organized in the *ntp* operon (Takase et al., 1994; Murata et al., 1999). Therefore, *E. hirae* Na<sup>+</sup>-translocating V-ATPase is a homolog of eukaryotic V-type ATPase. The catalytic domain (V<sub>1</sub>) of this ATPase is consisted of NtpA<sub>3</sub>-B<sub>3</sub>-D-G, where NtpG subunit corresponds to F subunit of other V-ATPases (Hosaka et al., 2006). The membrane domain (V<sub>o</sub>) in which the rotation energy is converted to Na<sup>+</sup> translocation is composed of oligomers

of 16 kDa NtpK (corresponds to eukaryotic subunit c) forming a membrane rotor ring and a single copy of the Ntpl subunit (corresponds to eukaryotic subunit a) (Murata et al., 2008). The peripheral stalks of this enzyme is composed of NtpF (corresponds to eukaryotic subunit G) and NtpE subunits together with the N-terminal hydrophilic domain of Ntpl subunit (Murata et al., 2005b). The central stalk of Na<sup>+</sup>-translocating V-ATPase in E. hirae is composed of NtpC, NtpD and NtpG subunits (Figure 1). NtpA<sub>3</sub>-B<sub>3</sub>-D-G complex and V<sub>o</sub> moiety are connected by a central stalk subunit NtpC of V1 (Murata et al., 2005b). The molecular weights of NtpC, NtpD and NtpG subunits are 38, 27 and 11 kDa, respectively, though their structural arrangement is not clear (Murata et al., 1997). It is expected that central stalk subunits of Na<sup>+</sup>translocating V-type ATPase in E. hirae play an important role in its enzymatic activities but not yet confirmed (Murata et al., 2005a). We expect that the biochemical and molecular biological studies of this bacterial ATPase should give us a fundamental understanding of the properties of V-type ATPases.

For understanding the structure and mechanism of V-ATPase, it is pre-requisite and essential to express and purify different subunits of Na<sup>+</sup>-translocating V-type ATPase from *E. hirae*. In this study, we expressed NtpC, NtpD and NtpG subunit proteins individually in *Escherichia coli* BL21 (DE3) cells by isopropyl (thio)  $\beta$ -D-galactoside (IPTG) induction and purified by Ni Sepharose 6 fast flow column.

#### MATERIALS AND METHODS

#### Cloning and sequencing of the central stalk subunit genes

Synthesized DNA fragments corresponding to ntpC, ntpD or ntpG gene having optimal codon usage for E. coli expression system was collected from the Takara Co. Ltd., Japan. The DNA fragments of ntpC, ntpD and ntpG genes were 984, 630 and 309 bp, respectively (Takase et al., 1994). The plasmid vector pET23d was digested by Styl and Dralll restriction enzymes separately to clone ntpC, ntpD and *ntpG* genes, respectively. All recombinant processing (DNAs digestion by restriction endonucleases, T4-DNA ligase, plasmid preparation and growth of bacterial cultures) were performed, for each previously mentioned gene, according to Sambrook and Russell (2001) so that we can generate pET23d-HisNtpC, pET23-HisNtpD and pET23-HisNtpG. Recombinant DNAs were transformed into E. coli JM109 competent cells and grown on Luria-Bertani (LB) agar plates containing ampicillin (50 µg/ml) for cloning purposes. Recombinant plasmids were purified from E. coli JM 109 cells separately using a plasmid purification kit (Qiagen) according to the manufacturer's instructions and amplified by PCR using BigDye premix and sequence buffer. Amplified regions were checked by sequencing using BigDye Terminator v3.0 sequencing kit and ABI 3100-Avant sequencer. Sequencing results were compared with the sequences of ntpC, ntpD and ntpG genes using CLUSTALW program (Thomson et al., 1994) to ensure successful cloning (Figure 2). Positive clones of ntpC, ntpD and ntpG genes were preserved separately at -80 °C with 10% glycerol as constructs for expression of NtpC, NtpD and NtpG subunit proteins.

#### Expression of the central stalk subunit proteins

Cloned ntpC, ntpD and ntpG genes were transformed separately into E. coli BL21 (DE3) cells. E. coli BL21(DE3) cells containing ntpC, ntpD or ntpG genes were inoculated separately into one liter modified-Davis Mingioli-casamino acid (m-DM-CA) culture medium (3.4 gm KH<sub>2</sub>PO<sub>4</sub>, 7.3 gm Tris, 0.5 gm Na-citrate, 0.01% (w/v) MgSO<sub>4</sub>, 0.4%(w/v) Bacto casamino acid (Difco, Technical), 0.4% lactate, (pH 7.4) containing ampicillin (50 µg/ml)) (Mogi and Anraku, 1984). Bacterial cultures were incubated at 30 °C for ntpC and ntpG genes for 12 h and at 20°C for ntpD gene for 18 h with shaking at 100 rpm. After the  $OD_{600}$  reached 0.4 to 0.6, IPTG was added at the concentration of 0.2 mM and the cultures were incubated at the same temperature for further 6 h for *ntpC* and *ntpG* genes and 8 h for ntpD gene. E. coli BL21(DE3) cells were harvested separately by centrifugation at 6,000 rpm for 10 min at 4 °C. Cells were suspended separately in 30 ml of buffer A (50 mM Tris-HCI (pH 8.5), 10 mM EDTA) and suspensions were centrifuged separately at 3,000 rpm for 30 min at 4 °C. Collected cells were suspended again separately in 30 ml of buffer B (50 mM Tris-HCI (pH 8.5), 1 mM EDTA, 20% sucrose) and treated with lysozyme (100 µg/ml) to obtain spheroplasts. Sphero-plasts were resuspended separately in 30 ml of buffer C (20 mM Tris-HCl (pH 8.5), 150 mM NaCl) and disrupted with sonication (Branson sonifier, output 5, duty cycle 50%, five times of 3 min at 4°C). NtpC, NtpD and NtpG polypeptides were recovered sepa-rately in the supernatant cell lysate after centrifugation at 15,000 rpm for 10 min at 4 °C.

#### Purification of NtpC, NtpD and NtpG subunit proteins

Total cell lysates of different subunits were added separately to 5 ml bed volume of Ni Sepharose 6 fast flow (GE Healthcare) equilibrated with buffer D (20 mM Tris-HCl (pH 8.5), 0.5 M KCl, 5 mM imidazole, 0.1 mM DTT) and incubated at 4  $^{\circ}$ C with gentle agitation (end-over-end rotation) for 1 h. Supernatants were removed separately by aspiration after sedimentation; resins were resus-

pended separately in 10 ml of buffer D and transferred separately into 20 ml chromatography columns (Bio-Rad). Flow through fractions were discarded and bound proteins were eluted separately (sequentially) with 25 ml buffer E (20 mM Tris-HCl (pH 8.5), 0.5 M KCl, 400 mM imidazole, 0.1 mM DTT) at a flow rate of 0.3 ml/min. Purified protein samples were pooled and concentrated separately to 1 ml volume by ultrafiltration with Amicon ultra centrifugal filter devices (pore size; MW 10 kDa for NtpC and NtpD and 3 kDa for NtpG). Protein concentrations were measured according to the Lowry method (Lowry et al., 1951) with bovine serum albumin as the standard.

#### SDS-PAGE analysis

SDS-PAGE was carried out according to Laemmli (1970). Protein markers used were phosphorylase b (97.0 kDa), BSA (66.0 kDa), ovalbumin (45.0 kDa), carbonic anhydrase (30.0 kDa), trypsin inhibitor (20.1 kDa) and  $\alpha$ -lactalbumin (14.4 kDa) (low molecular weight marker, GE Healthcare). All eluted and purified proteins were analyzed by SDS-PAGE on 15% gel and subsequently stained with Coomassie brilliant blue (CBB).

#### **RESULTS AND DISCUSSION**

### Cloning and sequencing of the central stalk subunit genes

Synthesized DNA fragments corresponding to *ntpC*, *ntpD* and *ntpG* genes were successfully ligated separately to pET23d vectors. Cloning was verified by PCR and restriction digestion analysis. The transformed cells (JM109) were grown well in LB agar plate containing ampicillin. The number of transformed cells on LB agar plate containing ampicillin indicated that ligation and transformations were successful. Sequenced data of three samples were the same with those of the original *ntpC*, ntpD and ntpG genes. Multiple alignments of nucleotide and amino acid sequences by CLUSTALW program confirmed the identity of clones as showed 100% homology with ntpC, ntpD and ntpG genes of E. hirae V-ATPase. In Figure 2, the alignments of nucleotide and amino acid sequences of cloned ntpC, ntpD and ntpG genes and their products with the sequences of those from E. hirae were shown.

#### Expression of the central stalk subunit proteins

Different expression systems have been developed for expression of proteins such as *E. coli* prokaryotic system, yeast expression system, insect and mammalian cell expression systems. Each of these systems has its own advantages and disadvantages (Sambrook and Russell, 2001). It has been shown that *E. coli* system is a very rapid, inexpensive and efficient for the production of recombinant proteins (Li et al., 2008). So, *E. coli* could be used as suitable expression system of different subunit proteins of V-type ATPase from *E. hirae. In vivo* synthesis of NtpC, NtpD and NtpG were performed as described in

| 1                                                                                                                                                                                                     | ATGGAGTATCATGAATTAAATCCCTTGATACGTGGTAGAGAATTAGAGTTGATTTCAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                       | M E Y H E L N P L I R G R E L E L I S K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1                                                                                                                                                                                                     | ATGGAATATCACGAACTGAACCCGCTGATTCGTGGTCGTGAACTGGAACTGATCAGCAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1                                                                                                                                                                                                     | M E Y H E L N P L I R G R E L E L I S K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 61                                                                                                                                                                                                    | GACACGTTTGAGCAAATGATCCAAACCGATTCGATCGATTCACTTGGAGAAATCTTACAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 21                                                                                                                                                                                                    | D T F E Q M I Q T D S I D S L G E I L Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 61                                                                                                                                                                                                    | GATACCTTCGAACAAATGATCCAGACCGATAGCATTGATAGCCTGGGCGAAATTCTGCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 21                                                                                                                                                                                                    | D T F E Q M I Q T D S I D S L G E I L Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 121                                                                                                                                                                                                   | TCCACGATCTATCAGCCGTATATCTATGACGGCTTTGACAAGGATTTTGAAGCCAATCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 41                                                                                                                                                                                                    | S T I Y Q P Y I Y D G F D K D F E A N L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                       | AGCACCATCTATCAGCCGTATATCTATGATGGCTTCGATAAAGATTTCGAAGCGAACCTC<br>S T I Y Q P Y I Y D G F D K D F E A N L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 181                                                                                                                                                                                                   | TCTCAGGAACGCAGCAAATTATTCCAGTGGTTGAAAGAATCTGCACCAGAACCAGAAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                       | S Q E R S K L F Q W L K E S A P E P E I<br>AGCCAGGAACGTAGCAAACTGTTCCAGTGGCTGAAAGAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 61                                                                                                                                                                                                    | S Q E R S K L F Q W L K E S A P E P E I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                       | · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                       | GTTTGGATCTATACGATGCGTTACACTTTCCATAATTTGAAAGTATTGACAAAGGCTGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                       | GTTTGGATCTATACCATGCGCTACACCTTCCATAACCTGAAAGTGCTGACCAAAGCGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 81                                                                                                                                                                                                    | V W I Y T M R Y T F H N L K V L T K A E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 301                                                                                                                                                                                                   | ATCACAGGGCAAAACCTTGATCACCTTTACATCCATGATGGATTTTATTCGCTGGAAGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                       | I T G Q N L D H L Y I H D G F Y S L E V<br>ATTACCGGCCAGAACCTGGATCATCTGTATATCCACGATGGCTTCTATAGCCTGGAAGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                       | I T G Q N L D H L Y I H D G F Y S L E V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                       | · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 361                                                                                                                                                                                                   | TTGAAAGATGCGATTCACACGCAAGTGTCGGTGGAATTGCCAGACAGTCTCATGGATTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                       | L K D A I H T Q V S V E L P D S L M D Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                       | CTGAAAGATGCGATCCATACCCAGGTTAGCGTTGAACTGCCGGATAGCCTGATGGATTAG<br>L K D A I H T Q V S V E L P D S L M D Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 121                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 421                                                                                                                                                                                                   | ATTCGAGAAGTTCATGAATACTGCGAAGAATCGACTATTTTACAAGGGATCGATGTGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 141                                                                                                                                                                                                   | IREVHEYCEESTILQGIDVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                       | ATCCGCGAAGTTCACGAATATTGCGAAGAAAGCACCATTCTGCAAGGCATCGATGTGAT<br>I R E V H E Y C E E S T I L Q G I D V I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 141                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 481                                                                                                                                                                                                   | TATGACCGTTGTTTTCTAACCGAGCAACGTCGCTTAGGGGAACAGCTTGGTTACCCTGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 161                                                                                                                                                                                                   | Y D R C F L T E Q R R L G E Q L G Y P E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                       | TAT <u>GATCGCTGCTTCCTG</u> ACC <u>GAACAGCGTCGGCTGGAACAGCTG</u> GGT <u>TATCCGGAA</u><br>Y D R C F L T E Q R R L G E Q L G Y P E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 101                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 541                                                                                                                                                                                                   | CTATTAGAAGAGATCATTGCTTTTATCGATTTAACGAATATCACCACGACAGCAAGAGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 181                                                                                                                                                                                                   | L L E E I I A F I D L T N I T T T A R G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 541<br>181                                                                                                                                                                                            | CTGCTGGAAGAAATTATCGCGTTCATCGATCTGACCAACATTACCACCACCGCGCGTGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 101                                                                                                                                                                                                   | L L E E I I A F I D L T N I T T A R G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 601                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 601<br>201                                                                                                                                                                                            | ATCTTGCAGCATCGTTCTGCAGGTTTTATGACAACAGTTATTTCAAGTTCAGGAAGTAT<br>I L Q H R S A G F M T T V I S S S G S I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 601<br>201<br>601                                                                                                                                                                                     | ATCTTGCAGCATCGTTCTGCAGGTTTTATGACAACAGTTATTTCAAGTTCAGGAAGTAT<br>I L Q H R S A G F M T T V I S S S G S I<br><u>ATTCTGCAA</u> CATCGT <u>AGCGCG</u> GGTTTTATG <u>ACCACCGTG</u> ATT <u>AGCAGCAGCGGGAGCA</u> T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 601<br>201                                                                                                                                                                                            | ATCTTGCAGCATCGTTCTGCAGGTTTTATGACAACAGTTATTTCAAGTTCAGGAAGTAT<br>I L Q H R S A G F M T T V I S S S G S I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 601<br>201<br>601<br>201                                                                                                                                                                              | $\begin{array}{cccc} \text{ATCTTGCAGCATCGTTCTGCAGGTTTTATGACAACAGTTATTTCAAGTTCAGGAAGTATT}\\ \text{I} & \text{L} & \text{Q} & \text{H} & \text{R} & \text{S} & \text{A} & \text{G} & \text{F} & \text{M} & \text{T} & \text{T} & \text{V} & \text{I} & \text{S} & \text{S} & \text{S} & \text{S} & \text{I} \\ \underline{\text{ATTCTGCAA}} \\ CATCGTAGCGTGGGGGGGGGGGGGGGGGGGGGGGGGGGG$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 601<br>201<br>601<br>201<br>661<br>221                                                                                                                                                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 601<br>201<br>201<br>201<br>661<br>221<br>661                                                                                                                                                         | ATCTTGCAGCATCGTTCTGCAGGTTTTATGACAACAGTTATTTCAAGTTCAGGAAGAGAGTAT<br>I L Q H R S A G F M T T V I S S G G S I<br>ATCTGCAACATCGTAGCGCGGGGTTTATGACCACCGTGATTAGCACCAGCGGTAGCAT<br>I L Q H R S A G F M T T V I S S S G S I<br>CCGAAGACACTTGCTTCCTTTGTTCGTGGGGGAAATGGCATCTTTTACTCAGTTTTT<br>P K D T L L S F V R G E M A S F T Q F L<br>CCGAAGATACCTGCTGTCTTTTGTTCGTGGGGAAATGGCGAGCTTTACCCAGTTTCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 601<br>201<br>601<br>201<br>661<br>221                                                                                                                                                                | ATCTTGCAGCATCGTTCTGCAGGTTTTATGACAACAGTTATTTCAAGTTCAGGAAGAGTTI<br>I L Q H R S A G F M T T V I S S S G S I<br>ATCTGCAACATCGTAGCGCGGGGGTTTATGACCACCGTGATTAGCAGCAGCGGTAGCAT<br>I L Q H R S A G F M T T V I S S S G S I<br>CCGAAAGACATTGCTTTCCTTTGTTCGTGGGGAAATGGCATCTTTTATCAGTTTTT<br>P K D T L L S F V R G E M A S F T Q F L<br>CCGAAAGATACCCTGCTGTCTTTGTTCGTGGGGAAATGGCGAGCTTTACCCAGTTTCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 601<br>201<br>601<br>201<br>661<br>221<br>661<br>221                                                                                                                                                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 601<br>201<br>601<br>201<br>661<br>221<br>661<br>221                                                                                                                                                  | ATCTTGCAGCATCGTTCTGCAGGTTTTATGACAACAGTATTTCAAGTCAGGAAGAAGAAGAAGAATGAGTATTTCAAGTCAGGAAGAAGAAGAATGGCAGCGTGTTATGACCACGTGATTAGCACCAGGGGGGAAGAGAAGAGGCATGGCTATTAGAGAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 601<br>201<br>601<br>201<br>661<br>221<br>661<br>221<br>721<br>241<br>721                                                                                                                             | ATCTTGCAGCATCGTTCTGCAGGTTTTATGACAACAGTTATTCAAGTCAGGAAGTATTCAAGTCAGGAAGTATTCAAGTCAGGAAGTATTCAAGTCAGGAAGAGAGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 601<br>201<br>601<br>201<br>661<br>221<br>661<br>221<br>721<br>241                                                                                                                                    | ATCTTGCAGCATCGTTCTGCAGGTTTTATGACAACAGTATTTCAAGTCAGGAAGTATT<br>I L Q H R S A G F M T T V I S S S G S I<br>ATTCTGCAACATCGTAGCGCGGGGGTTTTATGACCACCGTGATTAGCAGCGCGCGGGGAGCAT<br>I L Q H R S A G F M T T V I S S S G S I<br>CCGAAAGACATTGCTTTCCTTTGTTCGTGGGGAAATGGCATCTTTACTCAGTTTTT<br>P K D T L L S F V R G E M A S F T Q F L<br>CCGAAAGATACCTGCTGCTTTTTTTTCTCGTGGGGAAATGGCAGCTTTACCCAGTTTTCT<br>P K D T L L S F V R G E M A S F T Q F L<br>CCGAACAACATCGCTGCTATTAAAGCAAGTCATCCATGAAGAACAGATTGATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 601<br>201<br>601<br>221<br>661<br>221<br>721<br>241<br>721<br>241                                                                                                                                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 601<br>201<br>601<br>221<br>661<br>221<br>721<br>241<br>721<br>241                                                                                                                                    | ATCTTGCAGCATCGTTCTGCAGGTTTTATGACAACAGTTATTTCAAGTTCAGGAAGTATTTCAAGTTCAGGAAGTATT<br>I L Q H R S A G F M T T V I S S S G S I<br>ATTCTGCAACATCGTAGCGCGGGGTTTATGACCACCGTGATTAGCACGCGCGGTAGCAT<br>I L Q H R S A G F M T T V I S S S G S I<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 601<br>201<br>601<br>221<br>661<br>221<br>661<br>221<br>721<br>241<br>721<br>241<br>721<br>241<br>781<br>261                                                                                          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 601<br>201<br>601<br>221<br>661<br>221<br>661<br>221<br>721<br>241<br>721<br>241<br>721<br>241<br>781<br>261                                                                                          | ATCTTGCAACATTGCAGGTCTTTATGACAACAGTTTTTCAAGTTCAAGGAGTATTT<br>$L \ Q \ H \ R \ S \ A \ G \ F \ M \ T \ T \ V \ I \ S \ S \ S \ G \ S \ I$<br>ATCTTGCAACATCGTAGCGCGGGGTTTTATGACCACGTGATTAGCACGCGGGGGGAATG<br>ATTCTGCAACATCGTAGCGCGGGGGTTTATGACCACGGTGTTAGCACGCGGGGGAATGGCACGGGGGGAATGGCACGGGGGGAATGGCACGGGGGGAATGGCACCTTTTACCAGGTTTTT<br>$I \ L \ Q \ H \ R \ S \ A \ G \ F \ M \ T \ T \ V \ I \ S \ S \ S \ G \ S \ I$<br>CCGAAAGACATTGCTTCCTTTGTTCGTGGGGGAATGGCATCTTTTACTCAGGTTTTT<br>$P \ K \ D \ T \ L \ L \ S \ F \ V \ R \ G \ E \ M \ A \ S \ F \ T \ Q \ F \ L$<br>CCGAAAGATACCTGCTGCTGTCTTTTGTCGTGGGGAAATGGCAGCTTTACCCAGTTTTT<br>$P \ K \ D \ T \ L \ L \ S \ F \ V \ R \ G \ E \ M \ A \ S \ F \ T \ Q \ F \ L$<br>CCGAAAGATACCTGCTGCTGTCTTTTGTCGTGGGGAAATGGCAGCTTTACCCAGTTTTT<br>$P \ K \ D \ T \ L \ L \ S \ F \ V \ R \ G \ E \ M \ A \ S \ F \ T \ Q \ F \ L$<br>CTGACAACAGATTACAGTGGAGCTATTAAAGCAAGTCATCCATGAAGAACAGATTGATT                                         |
| 601<br>201<br>601<br>221<br>661<br>221<br>661<br>221<br>721<br>241<br>721<br>241<br>721<br>241<br>781<br>261                                                                                          | ATCTTGCACACCGATCGTTCTGCAGGTTTTATGACAACAGTTATTTCAAGTCAGGAGAGACAGATTT<br>I L Q H R S A G F M T T V I S S S G S I<br>ATTCTGCAACATCGTAGCGCGGGGTTTATGACCACCGTGATTAGCACCAGCGGGGGCATT<br>I L Q H R S A G F M T T V I S S S G S I<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 601<br>201<br>601<br>221<br>661<br>221<br>661<br>221<br>721<br>241<br>721<br>241<br>721<br>241<br>781<br>261<br>781                                                                                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 601<br>201<br>601<br>221<br>661<br>221<br>661<br>221<br>721<br>241<br>721<br>241<br>721<br>241<br>781<br>261<br>781<br>261<br>781<br>261<br>841                                                       | ATCTTGCAGCATCGTTCTGCAGGTTTTATGACAACAGTTATTTCAAGTTCAGGAGTATT<br>I L Q H R S A G F M T T V I S S S G S I<br>ATTCTGCAACATCGTAGCGCGGGGGTTTATGACCACCGTGATTAGCACGCGGGGGGACAT<br>GCGAAGACACATGCTTTCCTTTGTTCGTGGGGGAAATGGCATCTTTTACTCAGTTTTT<br>P K D T L L S F V R G E M A S F T Q F L<br>CCGAAAGATACCCTGCTGTCTTTTGTCGTGGTGAAATGGCAGCTTACCCAGTTTCTC<br>P K D T L L S F V R G E M A S F T Q F L<br>CCGAAAGATACCCTGCTGTCTTTTGTCGTGGTGAAATGGCAGCTTTACCCAGTTTCTC<br>P K D T L L S F V R G E M A S F T Q F L<br>CCGAAAGATACCCTGCTGTCTTTTGTCGTGGTGAAATGGCAGCTTTACCCAGTTTCTC<br>P K D T L L S F V R G E M A S F T Q F L<br>CCGAAAGATACCCTGCTGTCTTTTGTCGTGGTGAAATGGCAACTTACCCAGTTTACCCAGTTTCTC<br>CTGACAACAGATTACAGTGAGCTATTAAAGCAAGTCATCCATGAAGAACAGATTGATT                                                                                                                                                                                                                                    |
| 601<br>201<br>601<br>221<br>661<br>221<br>661<br>221<br>721<br>241<br>721<br>241<br>721<br>241<br>781<br>261<br>781<br>261<br>781<br>281                                                              | ATCTTGCAGCATCGTTCTGCAGGTTTTATGACAACAGTTATTTCAAGTTCAGGAAGAT<br>I L Q H R S A G F M T T V I S S S G S I<br>ATTCTGCAACATCGTAGCGCGGGGGTTTATGACCACCGTGATTAGCACCAGGGGGGGACAT<br>GCGAAGACACGTGCGCTTTTGTTCGTGGGGGAAATGGCATCTTTTACTCAGTTTTT<br>P K D T L L S F V R G E M A S F T Q F L<br>CCGAAAGATACCCTGCTGTCTTTTGTCGTGGTGAAATGGCAGCTTTACCCAGTTTCT<br>P K D T L L S F V R G E M A S F T Q F L<br>CCGAAAGATACCCTGCTGTCTTTTGTCGTGGTGAAATGGCAGCTTTACCCAGTTTCT<br>P K D T L L S F V R G E M A S F T Q F L<br>CCGAAAGATACCCTGCTGTCTTTTGTCGTGGTGAAATGGCAGCTTTACCCAGTTTCT<br>CTGACAACAGATTACAGTGAGCTATTAAAGCAAGTCATCCCATGAAGAACAGATTGATT                                                                                                                                                                                                                                                                                                                                                        |
| 601<br>201<br>201<br>201<br>221<br>221<br>221<br>221<br>721<br>221<br>721<br>221<br>721<br>221<br>721<br>221<br>721<br>221<br>721<br>221<br>721<br>221<br>721<br>221<br>721<br>221<br>721<br>221<br>2 | ATCTTGCAGCATCGTTCTGCAGGTTTTATGACAACAGTTATTTCAAGTTCAGGAAGTAGTATT<br>$L \ Q \ H \ R \ S \ A \ G \ F \ M \ T \ T \ V \ I \ S \ S \ S \ G \ S \ I$<br>ATCTGCAACATCGTAGCGCGGGGTTTATGACCACGTGATTAGCACCAGGGGGGAAGCACGGGAGGATT<br>$I \ L \ Q \ H \ R \ S \ A \ G \ F \ M \ T \ T \ V \ I \ S \ S \ S \ G \ S \ I$<br>CCGAAAGACATTGCTTCCTTTGTTCGTGGGGGAAATGGCATCTTTTACTCAGGTTTTT<br>$P \ K \ D \ T \ L \ L \ S \ F \ V \ R \ G \ E \ M \ A \ S \ F \ T \ Q \ F \ L$<br>CCGAAAGACACCGTGGTGTCTTTGTTCGTGGGGGAAATGGCAGCTTTACCCAGTTTTT<br>$P \ K \ D \ T \ L \ L \ S \ F \ V \ R \ G \ E \ M \ A \ S \ F \ T \ Q \ F \ L$<br>CCGAAAGATACCTGCTGTGTTTTTGTTCGTGGGGGAAATGGCAGCTTTACCCAGTTTTT<br>$P \ K \ D \ T \ L \ L \ S \ F \ V \ R \ G \ E \ M \ A \ S \ F \ T \ Q \ F \ L$<br>CCGAAAGATACCTGCTGGTGTTTTTGTTCGTGGGGAAATGGCAGCTTTACCCAGTTTTT<br>$L \ T \ T \ D \ Y \ S \ E \ L \ L \ K \ Q \ V \ I \ H \ E \ E \ Q \ I \ D \ L$<br>CTGACCACGATTACAGTGGGAACTGGCTGAAACAGGTGATCCATCGAAGAACAGATTGATT |
| 601<br>201<br>201<br>201<br>221<br>221<br>221<br>221<br>721<br>221<br>721<br>221<br>721<br>221<br>721<br>221<br>721<br>221<br>721<br>221<br>721<br>221<br>721<br>221<br>721<br>221<br>721<br>221<br>2 | ATCTTGCAGCATCGTTCTGCAGGTTTTATGACAACAGTTATTTCAAGTTCAGGAAGATT<br>I L Q H R S A G F M T T V I S S S G S I<br>ATTCTGCAACATCGTAGCGCGGGGTTTATGACCACCGTGATTAGCACAGCGGTAGCAT<br>I L Q H R S A G F M T T V I S S S G S I<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 601<br>201<br>201<br>201<br>201<br>221<br>221<br>221<br>721<br>221<br>721<br>241<br>721<br>261<br>781<br>261<br>841<br>281<br>841<br>281<br>901<br>301                                                | ATCTTGCAGCATCGTTCTGCAGGTTTTATGACAACAGTTATTTCAAGTTCAGGAGTATT<br>I L Q H R S A G F M T T V I S S S G S I<br>ATTCTGCAACATCGTAGCGCGGGGTTTATGACCACCGTGATTAGCACGCGGGGTATAGCACGCGGGGTATTAGCACGCGGGGTATTAGCACGCGGGGACATGGCAGCGTAGCACGAGAGAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 601<br>201<br>201<br>201<br>201<br>221<br>221<br>221<br>721<br>221<br>721<br>241<br>721<br>261<br>781<br>261<br>841<br>281<br>841<br>281<br>901<br>301                                                | ATCTTGCAGCATCGTTCTGCAGGTTTTATGACAACAGTTATTTCAAGTTCAGGAGAGTATT<br>I L Q H R S A G F M T T V I S S S G S I<br>ATTCTGCAACATCGTAGCGCGGGGTTTATGACCACCGTGATTAGCACAGCGGGTAGCAT<br>I L Q H R S A G F M T T V I S S S G S I<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 601<br>201<br>201<br>201<br>201<br>201<br>201<br>211<br>221<br>241<br>241<br>241<br>241<br>241<br>24                                                                                                  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 601<br>201<br>201<br>201<br>201<br>201<br>201<br>211<br>221<br>241<br>241<br>241<br>241<br>241<br>24                                                                                                  | ATCTTGCAGCATCGTTCTGCAGGTTTTATGACAACAGTTATTTCAAGTTCAGGAGTATT<br>I L Q H R S A G F M T T V I S S S G S I<br>ATTCTGCAACATCGTAGCGCGGGGTTTATGACCACCGTGATTAGCACAGCGGTAGCAT<br>I L Q H R S A G F M T T V I S S S G S I<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                       | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| ~                                                                                                     |                                                                                                                      |                                                                                                             |                                                                                                  |                                                                                                                               |                                                                                              |                                                                                                            |                                                                                                    |                                                                                                                                                                     |                                                                                                          |                                                                                                          |                                                                                                                                                                                             |                                                                                                                               |                                                                                         |                                                                                  |                                                                                                                                          |                                                                                             |                                                                                         |                                                                                                                                           |                                                                                  |                                                                                                 |                                                                                                         |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
|                                                                                                       |                                                                                                                      |                                                                                                             |                                                                                                  |                                                                                                                               | •                                                                                            |                                                                                                            |                                                                                                    |                                                                                                                                                                     |                                                                                                          |                                                                                                          |                                                                                                                                                                                             | •                                                                                                                             |                                                                                         |                                                                                  | •                                                                                                                                        |                                                                                             |                                                                                         |                                                                                                                                           |                                                                                  |                                                                                                 |                                                                                                         |
| E.hirae                                                                                               | 1                                                                                                                    | ATGC                                                                                                        | CGA                                                                                              | TT                                                                                                                            | AAA                                                                                          | CGT                                                                                                        | CAA                                                                                                | TCC                                                                                                                                                                 | TAC                                                                                                      | GAG                                                                                                      | AAT                                                                                                                                                                                         | GGA                                                                                                                           | GCT                                                                                     | AAC                                                                              | TCG                                                                                                                                      | TTT                                                                                         | AAA                                                                                     | GAA                                                                                                                                       | ACA                                                                              | ATT                                                                                             | AAC                                                                                                     |
|                                                                                                       | 1                                                                                                                    | M F                                                                                                         | 2                                                                                                | L                                                                                                                             | Ν                                                                                            | V                                                                                                          | Ν                                                                                                  | Ρ                                                                                                                                                                   | Τ                                                                                                        | R                                                                                                        | М                                                                                                                                                                                           | Ε                                                                                                                             | L                                                                                       | Т                                                                                | R                                                                                                                                        | L                                                                                           | Κ                                                                                       | Κ                                                                                                                                         | Q                                                                                | L                                                                                               | Т                                                                                                       |
| optimal codon                                                                                         | 1                                                                                                                    | ATG                                                                                                         | CGT                                                                                              | CT                                                                                                                            | GAA                                                                                          | TGT                                                                                                        | <u>G</u> AA                                                                                        | TCC                                                                                                                                                                 | GAC                                                                                                      | CCG                                                                                                      | TAT                                                                                                                                                                                         | GGA                                                                                                                           | ACT                                                                                     | GAC                                                                              | <u>C</u> CG                                                                                                                              | TCT                                                                                         | GAA                                                                                     | AAA.                                                                                                                                      | ACA                                                                              | GCT                                                                                             | GAC                                                                                                     |
|                                                                                                       | 1                                                                                                                    | M F                                                                                                         | ٢                                                                                                | L                                                                                                                             | Ν                                                                                            | V                                                                                                          | Ν                                                                                                  | Ρ                                                                                                                                                                   | Т                                                                                                        | R                                                                                                        | М                                                                                                                                                                                           | Ε                                                                                                                             | L                                                                                       | Т                                                                                | R                                                                                                                                        | L                                                                                           | K                                                                                       | K                                                                                                                                         | Q                                                                                | L                                                                                               | Т                                                                                                       |
|                                                                                                       |                                                                                                                      |                                                                                                             |                                                                                                  |                                                                                                                               | •                                                                                            |                                                                                                            |                                                                                                    | •                                                                                                                                                                   |                                                                                                          |                                                                                                          |                                                                                                                                                                                             | •                                                                                                                             |                                                                                         |                                                                                  | •                                                                                                                                        |                                                                                             |                                                                                         | •                                                                                                                                         |                                                                                  |                                                                                                 |                                                                                                         |
| E.hirae                                                                                               | 61                                                                                                                   | ACAG                                                                                                        |                                                                                                  |                                                                                                                               | -                                                                                            |                                                                                                            | -                                                                                                  | -                                                                                                                                                                   | -                                                                                                        |                                                                                                          |                                                                                                                                                                                             |                                                                                                                               |                                                                                         |                                                                                  |                                                                                                                                          |                                                                                             |                                                                                         |                                                                                                                                           |                                                                                  |                                                                                                 | ATTI                                                                                                    |
|                                                                                                       | 21                                                                                                                   | ΤĀ                                                                                                          |                                                                                                  | Т                                                                                                                             | R                                                                                            | G                                                                                                          | H                                                                                                  | K                                                                                                                                                                   | L                                                                                                        | L                                                                                                        | K                                                                                                                                                                                           | D                                                                                                                             | K                                                                                       | Q                                                                                | D                                                                                                                                        | E                                                                                           | L                                                                                       | М                                                                                                                                         | R                                                                                | Q                                                                                               | F                                                                                                       |
| optimal codon                                                                                         | 61                                                                                                                   | ACCO                                                                                                        |                                                                                                  |                                                                                                                               |                                                                                              |                                                                                                            |                                                                                                    | _                                                                                                                                                                   |                                                                                                          |                                                                                                          |                                                                                                                                                                                             |                                                                                                                               | _                                                                                       |                                                                                  | _                                                                                                                                        |                                                                                             |                                                                                         | _                                                                                                                                         |                                                                                  |                                                                                                 | _                                                                                                       |
|                                                                                                       | 21                                                                                                                   | ΤA                                                                                                          | ł                                                                                                | Т                                                                                                                             | R                                                                                            | G                                                                                                          | Η                                                                                                  | K                                                                                                                                                                   | L                                                                                                        | L                                                                                                        | K                                                                                                                                                                                           | D                                                                                                                             | K                                                                                       | Q                                                                                | D                                                                                                                                        | Е                                                                                           | L                                                                                       | М                                                                                                                                         | R                                                                                | Q                                                                                               | F                                                                                                       |
|                                                                                                       | 101                                                                                                                  |                                                                                                             |                                                                                                  | 0.00                                                                                                                          | •                                                                                            | 000                                                                                                        | <b>د د</b> ت                                                                                       | •<br>~ ~ ~                                                                                                                                                          | ת תידו                                                                                                   | TON                                                                                                      | 0 m m                                                                                                                                                                                       | •                                                                                                                             | 003                                                                                     | 100                                                                              | •<br>•                                                                                                                                   | 7 0 7                                                                                       |                                                                                         | •                                                                                                                                         | 770                                                                              | 1003                                                                                            | 7707                                                                                                    |
| E.hirae                                                                                               | 121                                                                                                                  | ATTI                                                                                                        |                                                                                                  |                                                                                                                               |                                                                                              |                                                                                                            |                                                                                                    |                                                                                                                                                                     |                                                                                                          |                                                                                                          |                                                                                                                                                                                             |                                                                                                                               |                                                                                         |                                                                                  |                                                                                                                                          |                                                                                             |                                                                                         |                                                                                                                                           |                                                                                  |                                                                                                 |                                                                                                         |
|                                                                                                       | 41                                                                                                                   | II                                                                                                          |                                                                                                  | L                                                                                                                             | I                                                                                            | R                                                                                                          | K                                                                                                  | N                                                                                                                                                                   | N                                                                                                        | E                                                                                                        | L                                                                                                                                                                                           | R                                                                                                                             | Q                                                                                       | A                                                                                | I                                                                                                                                        | E                                                                                           | K                                                                                       | E                                                                                                                                         | T                                                                                | Q                                                                                               | T                                                                                                       |
| optimal codon                                                                                         | 121<br>41                                                                                                            | ATTC<br>I I                                                                                                 |                                                                                                  | L                                                                                                                             | GAI<br>T                                                                                     | R                                                                                                          | I AA<br>K                                                                                          | N                                                                                                                                                                   | N                                                                                                        | E                                                                                                        | L                                                                                                                                                                                           | <u>G</u> CG<br>R                                                                                                              | 0                                                                                       | A                                                                                | T                                                                                                                                        | <u>I</u> GA<br>E                                                                            | AAA<br>K                                                                                | .aga<br>E                                                                                                                                 | AAC<br>T                                                                         |                                                                                                 | T                                                                                                       |
|                                                                                                       | 41                                                                                                                   | 1 1                                                                                                         | 1                                                                                                | Ц                                                                                                                             | Ŧ                                                                                            | R                                                                                                          | N                                                                                                  | IN                                                                                                                                                                  | IN                                                                                                       | Ľ                                                                                                        | Ц                                                                                                                                                                                           | К                                                                                                                             | Q                                                                                       | A                                                                                | T                                                                                                                                        | Ŀ                                                                                           | N                                                                                       | L                                                                                                                                         | 1                                                                                | Q                                                                                               | T                                                                                                       |
| E.hirae                                                                                               | 181                                                                                                                  | GCAA                                                                                                        | TC                                                                                               | האי                                                                                                                           | •                                                                                            | TTT                                                                                                        | TGT                                                                                                | •<br>೧۳۳                                                                                                                                                            | AGC                                                                                                      | <u>א א א</u>                                                                                             | стс                                                                                                                                                                                         | •                                                                                                                             | лст                                                                                     | CC 7                                                                             | •<br>> C >                                                                                                                               | 7.00                                                                                        | TTT                                                                                     | •<br>TAT                                                                                                                                  | TCA                                                                              | 007                                                                                             | ACTI                                                                                                    |
| E.hirae                                                                                               | 61                                                                                                                   | A N                                                                                                         | -                                                                                                | K                                                                                                                             | D                                                                                            | F                                                                                                          | V                                                                                                  | L                                                                                                                                                                   | AGC                                                                                                      | K                                                                                                        | S                                                                                                                                                                                           | T                                                                                                                             | V                                                                                       | E                                                                                | E                                                                                                                                        | AGC                                                                                         | F                                                                                       | T                                                                                                                                         | D                                                                                | E                                                                                               | L                                                                                                       |
| optimal codon                                                                                         | 181                                                                                                                  | GCGA                                                                                                        |                                                                                                  |                                                                                                                               | -                                                                                            | -                                                                                                          | -                                                                                                  | _                                                                                                                                                                   |                                                                                                          |                                                                                                          |                                                                                                                                                                                             | -                                                                                                                             |                                                                                         |                                                                                  |                                                                                                                                          |                                                                                             | -                                                                                       | -                                                                                                                                         | -                                                                                |                                                                                                 |                                                                                                         |
| opumarcodon                                                                                           | 61                                                                                                                   | A M                                                                                                         |                                                                                                  | K                                                                                                                             | D                                                                                            | F                                                                                                          | V                                                                                                  | L                                                                                                                                                                   | A                                                                                                        | K                                                                                                        | S                                                                                                                                                                                           | T                                                                                                                             | V                                                                                       | E                                                                                | E                                                                                                                                        | A                                                                                           | F                                                                                       | I                                                                                                                                         | D                                                                                | E                                                                                               | L                                                                                                       |
|                                                                                                       | 01                                                                                                                   | 11 1                                                                                                        | -                                                                                                | 11                                                                                                                            |                                                                                              | -                                                                                                          | v                                                                                                  |                                                                                                                                                                     |                                                                                                          | 10                                                                                                       | U                                                                                                                                                                                           |                                                                                                                               | •                                                                                       |                                                                                  |                                                                                                                                          |                                                                                             | -                                                                                       |                                                                                                                                           | D                                                                                |                                                                                                 |                                                                                                         |
| E.hirae                                                                                               | 241                                                                                                                  | TTGG                                                                                                        | GCA                                                                                              | TT                                                                                                                            | ACC                                                                                          | AGC                                                                                                        | GGA                                                                                                | AAA                                                                                                                                                                 | CGT                                                                                                      | CTC                                                                                                      | AAT                                                                                                                                                                                         | TTC                                                                                                                           | TGT                                                                                     | AGT                                                                              | TGA                                                                                                                                      | GAA                                                                                         | AAA                                                                                     | TAT                                                                                                                                       | TAT                                                                              | GAG                                                                                             | TGTO                                                                                                    |
|                                                                                                       | 81                                                                                                                   | LA                                                                                                          |                                                                                                  | L                                                                                                                             | P                                                                                            | A                                                                                                          | E                                                                                                  | N                                                                                                                                                                   | V                                                                                                        | S                                                                                                        | Ι                                                                                                                                                                                           | S                                                                                                                             | V                                                                                       | V                                                                                | E                                                                                                                                        | K                                                                                           | N                                                                                       | I                                                                                                                                         | М                                                                                | S                                                                                               | V                                                                                                       |
| optimal codon                                                                                         | 241                                                                                                                  | CTGG                                                                                                        | GCG                                                                                              | GCT                                                                                                                           | GCC                                                                                          | GGC                                                                                                        | GGA                                                                                                | AAA                                                                                                                                                                 | TGT                                                                                                      | TAG                                                                                                      | CAT                                                                                                                                                                                         | CAG                                                                                                                           | CGT                                                                                     | TGT                                                                              | GGA                                                                                                                                      | AAA                                                                                         | AAA                                                                                     | CAT                                                                                                                                       | CAT                                                                              | GAG                                                                                             | CGT                                                                                                     |
|                                                                                                       | 81                                                                                                                   | L A                                                                                                         | ł                                                                                                | L                                                                                                                             | Ρ                                                                                            | A                                                                                                          | Е                                                                                                  | N                                                                                                                                                                   | V                                                                                                        | S                                                                                                        | I                                                                                                                                                                                           | S                                                                                                                             | V                                                                                       | V                                                                                | Е                                                                                                                                        | K                                                                                           | N                                                                                       | I                                                                                                                                         | M                                                                                | S                                                                                               | V                                                                                                       |
|                                                                                                       |                                                                                                                      |                                                                                                             |                                                                                                  |                                                                                                                               |                                                                                              |                                                                                                            |                                                                                                    |                                                                                                                                                                     |                                                                                                          |                                                                                                          |                                                                                                                                                                                             |                                                                                                                               |                                                                                         |                                                                                  |                                                                                                                                          |                                                                                             |                                                                                         |                                                                                                                                           |                                                                                  |                                                                                                 |                                                                                                         |
| E.hirae                                                                                               | 301                                                                                                                  | AAAG                                                                                                        | GTT                                                                                              | CC                                                                                                                            | ССТ                                                                                          | CAT                                                                                                        | GAA                                                                                                | TTT                                                                                                                                                                 | TCA                                                                                                      | ATA                                                                                                      | CGA                                                                                                                                                                                         | TGA                                                                                                                           | AAC                                                                                     | ATT                                                                              | GAA                                                                                                                                      | TGA                                                                                         | GAC                                                                                     | ACC                                                                                                                                       | ATT                                                                              | AGA                                                                                             | GTAI                                                                                                    |
|                                                                                                       | 101                                                                                                                  | ΚV                                                                                                          | 7                                                                                                | P                                                                                                                             | L                                                                                            | М                                                                                                          | Ν                                                                                                  | F                                                                                                                                                                   | Q                                                                                                        | Y                                                                                                        | D                                                                                                                                                                                           | Е                                                                                                                             | Т                                                                                       | L                                                                                | Ν                                                                                                                                        | Е                                                                                           | Т                                                                                       | Ρ                                                                                                                                         | L                                                                                | Е                                                                                               | Y                                                                                                       |
| optimal codon                                                                                         | 301                                                                                                                  | AAA                                                                                                         | GTG                                                                                              | GCC                                                                                                                           | GCT                                                                                          | GAT                                                                                                        | GAA                                                                                                | CTT                                                                                                                                                                 | CCA                                                                                                      | GTA                                                                                                      | CGA                                                                                                                                                                                         | TGA                                                                                                                           | AAC                                                                                     | ССТ                                                                              | GAA                                                                                                                                      | TGA                                                                                         | AAC                                                                                     | CCC                                                                                                                                       | GCT                                                                              | GGA                                                                                             | ATAT                                                                                                    |
|                                                                                                       | 101                                                                                                                  | K V                                                                                                         | 7                                                                                                | Ρ                                                                                                                             | L                                                                                            | М                                                                                                          | Ν                                                                                                  | F                                                                                                                                                                   | 0                                                                                                        |                                                                                                          | D                                                                                                                                                                                           | Е                                                                                                                             |                                                                                         |                                                                                  |                                                                                                                                          |                                                                                             | m                                                                                       | D                                                                                                                                         | L                                                                                | -                                                                                               | Y                                                                                                       |
|                                                                                                       |                                                                                                                      |                                                                                                             |                                                                                                  |                                                                                                                               |                                                                                              |                                                                                                            |                                                                                                    | Г                                                                                                                                                                   | Ŷ                                                                                                        | Y                                                                                                        | D                                                                                                                                                                                           | Ľ                                                                                                                             | Т                                                                                       | L                                                                                | Ν                                                                                                                                        | Ε                                                                                           | Т                                                                                       | Ρ                                                                                                                                         | ш                                                                                | Ε                                                                                               | +                                                                                                       |
| E.hirae                                                                                               | 261                                                                                                                  |                                                                                                             |                                                                                                  |                                                                                                                               | •                                                                                            |                                                                                                            |                                                                                                    | г<br>•                                                                                                                                                              | Q                                                                                                        | Y                                                                                                        | D                                                                                                                                                                                           | г                                                                                                                             | Т                                                                                       | L                                                                                | N<br>•                                                                                                                                   | E                                                                                           | 1                                                                                       | P.                                                                                                                                        | Ш                                                                                | E                                                                                               | -                                                                                                       |
| Linnae                                                                                                | 361                                                                                                                  | GGCI                                                                                                        | AT                                                                                               | CT                                                                                                                            | TCA                                                                                          | TTC                                                                                                        | TAA                                                                                                |                                                                                                                                                                     | ~                                                                                                        |                                                                                                          |                                                                                                                                                                                             | •                                                                                                                             | _                                                                                       |                                                                                  | •                                                                                                                                        |                                                                                             | _                                                                                       | •                                                                                                                                         | _                                                                                |                                                                                                 | -                                                                                                       |
|                                                                                                       | 121                                                                                                                  | GGCI<br>G Y                                                                                                 |                                                                                                  | CT<br>L                                                                                                                       | ТСА<br>Н                                                                                     | TTC<br>S                                                                                                   | TAA<br>N                                                                                           |                                                                                                                                                                     | ~                                                                                                        |                                                                                                          |                                                                                                                                                                                             | •                                                                                                                             | _                                                                                       |                                                                                  | •                                                                                                                                        |                                                                                             | _                                                                                       | •                                                                                                                                         | _                                                                                |                                                                                                 |                                                                                                         |
| optimal codon                                                                                         |                                                                                                                      |                                                                                                             | 2                                                                                                | L                                                                                                                             | Η                                                                                            | S                                                                                                          | Ν                                                                                                  | TGC<br>A                                                                                                                                                            | AGA<br>E                                                                                                 | GTT<br>L                                                                                                 | gga<br>D                                                                                                                                                                                    | TCG<br>R                                                                                                                      | TTC<br>S                                                                                | GAT<br>I                                                                         | CGA<br>D                                                                                                                                 | TGG<br>G                                                                                    | TTT<br>F                                                                                | TAC<br>T                                                                                                                                  | GCA<br>Q                                                                         | -<br>GCT<br>L                                                                                   | CTTA<br>L                                                                                               |
| optimal codon                                                                                         | 121                                                                                                                  | GΥ                                                                                                          | (<br>TAT                                                                                         | L                                                                                                                             | Η                                                                                            | S                                                                                                          | Ν                                                                                                  | TGC<br>A                                                                                                                                                            | AGA<br>E                                                                                                 | GTT<br>L                                                                                                 | gga<br>D                                                                                                                                                                                    | TCG<br>R                                                                                                                      | TTC<br>S                                                                                | GAT<br>I                                                                         | CGA<br>D                                                                                                                                 | TGG<br>G                                                                                    | TTT<br>F                                                                                | TAC<br>T                                                                                                                                  | GCA<br>Q                                                                         | -<br>GCT<br>L                                                                                   | CTTA<br>L                                                                                               |
| optimal codon                                                                                         | 121<br>361<br>121                                                                                                    | G Y<br>GGCI<br>G Y                                                                                          | r<br>TAT<br>r                                                                                    | L<br>CT(<br>L                                                                                                                 | H<br>GCA<br>H                                                                                | S<br>T <u>AG</u><br>S                                                                                      | N<br>CAA<br>N                                                                                      | TGC<br>A<br>CGC<br>A                                                                                                                                                | AGA<br>E<br>E<br>E                                                                                       | GTT<br>L<br>ACT<br>L                                                                                     | GGA<br>D<br><u>G</u> GA<br>D                                                                                                                                                                | TCG<br>R<br>.TCG<br>R                                                                                                         | TTC<br>S<br>T <u>AG</u><br>S                                                            | GAT<br>I<br>CAT<br>I                                                             | CGA<br>D<br>TGA<br>D                                                                                                                     | TGG<br>G<br>T <u>GG</u><br>G                                                                | TTT<br>F<br><u>C</u> TT<br>F                                                            | TAC<br>T<br>T <u>AC</u><br>T                                                                                                              | GCA<br>Q<br>CCA<br>Q                                                             | L<br>GCT<br>AGCT<br>L                                                                           | CTTA<br>L<br>G <u>CTG</u><br>L                                                                          |
| optimal codon<br>E.hirae                                                                              | 121<br>361<br>121<br>421                                                                                             | G Y<br>GGCT<br>G Y<br>CCAA                                                                                  | r<br>TAT<br>Y<br>AAG                                                                             | L<br>CT<br>L                                                                                                                  | H<br>GCA<br>H<br>TTT                                                                         | S<br>T <u>AG</u><br>S<br>GAA                                                                               | N<br>CAA<br>N<br>GCT                                                                               | TGC<br>A<br>CGC<br>A                                                                                                                                                | AGA<br>E<br>CGGA<br>E<br>CAGA                                                                            | GTT<br>L<br>ACT<br>L<br>AGT                                                                              | GGA<br>D<br><u>G</u> GA<br>D<br>TGA                                                                                                                                                         | TCG<br>R<br>TCG<br>R<br>AAA                                                                                                   | TTC<br>S<br>T <u>AG</u><br>S<br>AAC                                                     | GAT<br>I<br>CAT<br>I<br>ATG                                                      | CGA<br>D<br>TGA<br>D                                                                                                                     | TGG<br>G<br>T <u>GG</u><br>G<br>ACT                                                         | TTT<br>F<br><u>C</u> TT<br>F<br>TAT                                                     | TAC<br>T<br>T <u>AC</u><br>T                                                                                                              | GCA<br>Q<br>CCA<br>Q<br>TGA                                                      | L<br>GCT<br>L<br>L<br>L                                                                         | CTTA<br>L<br>G <u>CTG</u><br>L                                                                          |
| E.hirae                                                                                               | 121<br>361<br>121<br>421<br>141                                                                                      | G Y<br>GGCT<br>G Y<br>CCAA<br>P K                                                                           | ZAT<br>ZAT<br>AAG                                                                                | L<br>CT<br>L<br>CT<br>L                                                                                                       | H<br>GCA<br>H<br>TTT<br>L                                                                    | S<br>T <u>AG</u><br>S<br>GAA<br>K                                                                          | N<br>CAA<br>N<br>GCT<br>L                                                                          | TGC<br>A<br>CGC<br>A<br>GGC<br>A                                                                                                                                    | E<br>E<br>E<br>E<br>CAGA<br>E                                                                            | GTT<br>L<br>ACT<br>L<br>AGT<br>V                                                                         | GGA<br>D<br><u>G</u> GA<br>D<br>TGA<br>E                                                                                                                                                    | TCG<br>R<br>TCG<br>R<br>AAA                                                                                                   | TTC<br>S<br>T <u>AG</u><br>S<br>AAC<br>T                                                | GAT<br>I<br>CAT<br>I<br>ATG<br>C                                                 | D<br>TGA<br>D<br>TCA                                                                                                                     | TGG<br>G<br>T <u>GG</u><br>G<br>ACT<br>L                                                    | TTT<br>F<br>CTT<br>F<br>TAT<br>M                                                        | TAC<br>T<br>T <u>AC</u><br>T<br>GGC<br>A                                                                                                  | GCA<br>Q<br>CCA<br>Q<br>TGA<br>E                                                 | L<br>GCT<br>L<br>GCT<br>L<br>AGAGA<br>E                                                         | CTTA<br>L<br>G <u>CTC</u><br>L<br>GATC<br>I                                                             |
| E.hirae                                                                                               | 121<br>361<br>121<br>421<br>141<br>421                                                                               | G Y<br>GGCI<br>G Y<br>CCAA<br>P K<br>CCGA                                                                   | ZAT<br>ZAT<br>AAG                                                                                | L<br>CT<br>L<br>CT<br>L                                                                                                       | H<br>GCA<br>H<br>TTT<br>L<br>GCT                                                             | S<br>T <u>AG</u><br>S<br>GAA<br>K<br>GAA                                                                   | N<br>CAA<br>N<br>GCT<br>L<br><u>A</u> CT                                                           | TGC<br>A<br>CGC<br>A<br>GGC<br>A<br>G <u>GC</u>                                                                                                                     | AGA<br>E<br>GGA<br>E<br>AGA<br>E<br><u>C</u> GA                                                          | GTT<br>L<br>ACT<br>L<br>AGT<br>V                                                                         | GGA<br>D<br>D<br>TGA<br>E<br><u>G</u> GA                                                                                                                                                    | TCG<br>R<br>TCG<br>R<br>AAA<br>K                                                                                              | TTC<br>S<br>T <u>AG</u><br>S<br>AAC<br>T                                                | GAT<br>I<br>CAT<br>I<br>ATG<br>C                                                 | D<br>TGA<br>D<br>TCA                                                                                                                     | TGG<br>G<br>T <u>GG</u><br>G<br>ACT<br>L                                                    | TTT<br>F<br>CTT<br>F<br>TAT<br>M<br><u>G</u> AT                                         | TAC<br>T<br>T<br>T<br>GGC<br>A<br>G <u>GC</u>                                                                                             | GCA<br>Q<br>Q<br>Q<br>TGA<br>E<br><u>G</u> GA                                    | L<br>GCT<br>L<br>GCT<br>L<br>AGAGA<br>E                                                         | CTTA<br>L<br>G <u>CTG</u><br>L<br>GATC<br>I                                                             |
| E.hirae                                                                                               | 121<br>361<br>121<br>421<br>141                                                                                      | G Y<br>GGCI<br>G Y<br>CCAA<br>P K<br>CCGA                                                                   | ZAT<br>ZAT<br>AAG                                                                                | L<br>CT<br>L<br>CT<br>L                                                                                                       | H<br>GCA<br>H<br>TTT<br>L                                                                    | S<br>T <u>AG</u><br>S<br>GAA<br>K                                                                          | N<br>CAA<br>N<br>GCT<br>L                                                                          | TGC<br>A<br>CGC<br>A<br>GGC<br>A                                                                                                                                    | E<br>E<br>E<br>E<br>CAGA<br>E                                                                            | GTT<br>L<br>ACT<br>L<br>AGT<br>V                                                                         | GGA<br>D<br><u>G</u> GA<br>D<br>TGA<br>E                                                                                                                                                    | TCG<br>R<br>TCG<br>R<br>AAA                                                                                                   | TTC<br>S<br>T <u>AG</u><br>S<br>AAC<br>T                                                | GAT<br>I<br>CAT<br>I<br>ATG<br>C                                                 | D<br>TGA<br>D<br>TCA                                                                                                                     | TGG<br>G<br>T <u>GG</u><br>G<br>ACT<br>L                                                    | TTT<br>F<br>CTT<br>F<br>TAT<br>M                                                        | TAC<br>T<br>T <u>AC</u><br>T<br>GGC<br>A                                                                                                  | GCA<br>Q<br>CCA<br>Q<br>TGA<br>E                                                 | L<br>GCT<br>L<br>GCT<br>L<br>AGAGA<br>E                                                         | CTTA<br>L<br>G <u>CTO</u><br>L<br>GATO<br>I                                                             |
| <i>E.hirae</i><br>optimal codon                                                                       | 121<br>361<br>121<br>421<br>141<br>421<br>141                                                                        | G Y<br>GGCI<br>G Y<br>CCAP<br>P K<br><u>CCGP</u><br>P K                                                     | <u>7</u><br>2 AT<br>4 AG<br>4 AA<br>4 AA<br>4 AA                                                 | L<br>CT<br>L<br>CT<br>L<br>L<br>L                                                                                             | H<br>GCA<br>H<br>ITTT<br>L<br>GCT<br>L                                                       | S<br>T <u>AG</u><br>S<br>GAA<br>K<br><u>GAA</u><br>K                                                       | N<br>CAA<br>N<br>GCT<br>L<br>ACT<br>L                                                              | TGC<br>A<br>CGC<br>A<br>GGC<br>A<br>G <u>GC</u><br>A                                                                                                                | AGA<br>E<br>CAGA<br>E<br>CAGA<br>E<br>CAGA<br>E                                                          | GTT<br>L<br>ACT<br>L<br>AGT<br>V<br>A <u>GT</u><br>V                                                     | GGA<br>D<br>GGA<br>D<br>TGA<br>E<br><u>G</u> GA<br>E                                                                                                                                        | TCG<br>R<br>TCG<br>R<br>AAA<br>K<br>AAA<br>K                                                                                  | TTC<br>S<br>T <u>AG</u><br>S<br>AAC<br>T<br>A <u>AC</u><br>T                            | GAT<br>I<br>CAT<br>I<br>ATG<br>C<br>C<br>C<br>C                                  | ·<br>CGA<br>D<br>TGA<br>D<br>·<br>TCA<br>Q<br>T <u>CA</u><br>Q                                                                           | TGG<br>G<br>T <u>GG</u><br>G<br>ACT<br>L<br><u>GCT</u><br>L                                 | TTT<br>F<br>CTT<br>F<br>TAT<br>M<br><u>G</u> AT<br>M                                    | TAC<br>T<br>T <u>AC</u><br>T<br>GGC<br>A<br>G <u>GC</u><br>A                                                                              | GCA<br>Q<br>CCA<br>Q<br>TGA<br>E<br><u>G</u> GA<br>E                             | L<br>AGCT<br>L<br>AGCT<br>E<br>AAGA<br>E                                                        | CTTA<br>L<br>G <u>CTG</u><br>L<br>GATC<br>I<br>AATT<br>I                                                |
| <i>E.hirae</i><br>optimal codon                                                                       | 121<br>361<br>121<br>421<br>141<br>421<br>141<br>481                                                                 | G Y<br>GGCI<br>G Y<br>CCAP<br>P K<br><u>CCGP</u><br>P K                                                     | <u>7</u><br>1AT<br>1<br>1AG<br>1<br>1AA                                                          | L<br>CT<br>CT<br>L<br>CT<br>L<br>L<br>L                                                                                       | H<br>GCA<br>H<br>ITTT<br>L<br>GCT<br>L<br>CAG                                                | S<br>T <u>AG</u><br>S<br>GAA<br>K<br><u>GAA</u><br>K                                                       | N<br>CAA<br>N<br>GCT<br>L<br>ACT<br>L                                                              | TGC<br>A<br>GGC<br>A<br>G <u>GC</u><br>A                                                                                                                            | E<br>GGA<br>E<br>CAGA<br>E<br>CGGA<br>E                                                                  | GTT<br>L<br>ACT<br>L<br>AGT<br>V<br>A <u>GT</u><br>V                                                     | GGA<br>D<br>GGA<br>D<br>TGA<br>E<br><u>G</u> GA<br>E<br>GTI                                                                                                                                 | TCG<br>R<br>TCG<br>R<br>AAAA<br>K<br>AAAA<br>K<br>GGA                                                                         | TTC<br>S<br>T <u>AG</u><br>S<br>AAC<br>T<br>A <u>AC</u><br>T                            | GAT<br>I<br>CAT<br>I<br>ATG<br>C<br>CTG<br>C<br>TAT                              | CGA<br>D<br>TGA<br>D<br>TCA<br>Q<br>T <u>CA</u><br>Q<br>GAC                                                                              | TGG<br>G<br>T <u>GG</u><br>G<br>ACT<br>L<br>G <u>CT</u><br>L                                | TTT<br>F<br>CTT<br>F<br>TAT<br>M<br><u>G</u> AT<br>M                                    | TAC<br>T<br>T<br>T<br>GGC<br>A<br>G <u>GC</u><br>A<br>TCA                                                                                 | GCA<br>Q<br>CCA<br>Q<br>TGA<br>E<br><u>G</u> GA<br>E<br>ATT                      | GGCT<br>L<br>AGCT<br>L<br>AAGA<br>E<br>AA <u>GA</u><br>E                                        | CTTA<br>L<br>G <u>CTC</u><br>L<br>GATC<br>I<br>AATT<br>I                                                |
| E.hirae<br>optimal codon<br>E.hirae                                                                   | 121<br>361<br>121<br>421<br>141<br>421<br>141<br>421<br>141<br>481<br>161                                            | G Y<br>GGCI<br>G Y<br>CCAP<br>P K<br><u>CCGP</u><br>P K<br>GAGP                                             | Υ<br>ΤΑΤ<br>ΔΑG<br>ΔΑΑ<br>ΔΑΑ<br>ΔΑΑ<br>ΔΑΑ                                                      | L<br>CTC<br>L<br>CTC<br>L<br>L<br>L<br>L<br>L<br>CTC<br>L<br>T                                                                | H<br>H<br>ITTT<br>L<br>GCT<br>L<br>CAG<br>R                                                  | S<br>T <u>AG</u><br>S<br>GAA<br>K<br><u>GAA</u><br>K<br>AAG.<br>R                                          | N<br>CAA<br>N<br>GCT<br>L<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>R                             | TGC<br>A<br>CGC<br>A<br>GGC<br>A<br>GGC<br>A<br>CGGI<br>V                                                                                                           | AGA<br>E<br>CAGA<br>E<br>CAGA<br>E<br>CCAA<br>N                                                          | GTT<br>L<br>ACT<br>L<br>AGT<br>V<br>A <u>GT</u><br>V<br>TGC<br>A                                         | GGA<br>D<br>D<br>TGA<br>E<br><u>G</u> GA<br>E<br>GTI<br>L                                                                                                                                   | TCG<br>R<br>TCG<br>R<br>AAAA<br>K<br>AAAA<br>K<br>GGGA<br>E                                                                   | TTC<br>S<br>T <u>AG</u><br>S<br>AAC<br>T<br>AA <u>AC</u><br>T<br>ATA                    | GAT<br>I<br>CAT<br>I<br>ATG<br>C<br>C<br>TG<br>C<br>TAT<br>M                     | CGA<br>D<br>TGA<br>D<br>TCA<br>Q<br>TCA<br>Q<br>GAC<br>T                                                                                 | TGG<br>G<br>T <u>GG</u><br>G<br>ACT<br>L<br><u>GCT</u><br>L<br>GAT                          | TTT<br>F<br>CTT<br>F<br>TAT<br>M<br><u>G</u> AT<br>M<br>TCC<br>P                        | TAC<br>T<br>T <u>AC</u><br>T<br>T <u>AC</u><br>GGC<br>A<br>C<br>GGC<br>A<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | GCA<br>Q<br>CCA<br>Q<br>TGA<br>E<br><u>G</u> GA<br>E<br>ATT<br>L                 | LGCT<br>L<br>LGCT<br>L<br>LAGA<br>E<br>AAGA<br>E<br>CGGA<br>E                                   | CTTA<br>L<br>G <u>CTC</u><br>L<br>GATC<br>I<br>AATT<br>I<br>AGAA                                        |
| E.hirae<br>optimal codon<br>E.hirae                                                                   | 121<br>361<br>121<br>421<br>141<br>421<br>141<br>421<br>141<br>481<br>161<br>481                                     | G Y<br>GGCI<br>G Y<br>P K<br><u>CCGP</u><br>P K<br>GAGP<br>E K<br><u>GAA</u>                                | Υ<br>ΑΤ<br>ΑΤ<br>ΑΑ<br>ΑΑ<br>ΑΑ<br>ΑΑ<br>ΑΑ<br>ΑΑ<br>ΑΑ<br>ΑΑ                                    | L<br>CT(<br>L<br>CT<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L                      | H<br>GCA<br>H<br>TTT<br>L<br>GCT<br>L<br>CAG<br>R<br>CCG                                     | S<br>T <u>AG</u><br>S<br>GAA<br>K<br>GAA<br>K<br>AAG.<br>R<br>TCG                                          | N<br>CAA<br>N<br>GCT<br>L<br>AACT<br>L<br>AAG<br>R<br>TCG                                          | TGC<br>A<br>CGC<br>A<br>GGC<br>A<br>GGC<br>A<br>GGT<br>V<br>TGT                                                                                                     | E<br>CGGA<br>E<br>CAGA<br>E<br>CCAA<br>N<br>CCAA<br>N<br>CCAA                                            | GTT<br>L<br>ACT<br>L<br>AGT<br>V<br>A <u>GT</u><br>V<br>TGC<br>A                                         | GGA<br>D<br>GGA<br>D<br>TGA<br>E<br>GGA<br>GTI<br>L<br>G <u>CI</u>                                                                                                                          | TCG<br>R<br>TCG<br>R<br>AAAA<br>K<br>AAAA<br>K<br>GGA                                                                         | TTC<br>S<br>T <u>AG</u><br>S<br>AAC<br>T<br>AAAC<br>T<br>Y<br>ATA                       | GAT<br>I<br>CAT<br>I<br>ATG<br>C<br>CTG<br>C<br>TAT<br>M<br>TAT                  | CGA<br>D<br>TGA<br>D<br>TCA<br>Q<br>TCA<br>Q<br>GAC<br>T<br>GAC                                                                          | TGG<br>G<br>T <u>GG</u><br>G<br>ACT<br>L<br>G <u>AT</u><br>I<br><u>C</u> AT                 | TTT<br>F<br>CTT<br>F<br>TAT<br>M<br>GAT<br>M<br>TCC<br>P<br>T <u>CC</u>                 | TAC<br>T<br>TAC<br>T<br>T<br>GGC<br>A<br>GGC<br>A<br>C<br>GGC<br>TCA<br>Q<br>GCA                                                          | GCA<br>Q<br>CCA<br>Q<br>TGA<br>E<br>GGA<br>E<br>ATT<br>L<br>GCT                  | AGCT<br>L<br>AGCT<br>L<br>AAGA<br>E<br>CGGA<br>E<br>CGGA                                        | CTTF<br>L<br>GCTC<br>L<br>GGTC<br>I<br>AGATC<br>I<br>AGAA<br>AGAA                                       |
| E.hirae<br>optimal codon<br>E.hirae                                                                   | 121<br>361<br>121<br>421<br>141<br>421<br>141<br>421<br>141<br>481<br>161                                            | G Y<br>GGCI<br>G Y<br>CCAP<br>P K<br><u>CCGP</u><br>P K<br>GAGP                                             | Υ<br>ΑΤ<br>ΑΤ<br>ΑΑ<br>ΑΑ<br>ΑΑ<br>ΑΑ<br>ΑΑ<br>ΑΑ<br>ΑΑ<br>ΑΑ                                    | L<br>CTC<br>L<br>CTC<br>L<br>L<br>L<br>L<br>L<br>CTC<br>L<br>T                                                                | H<br>GCA<br>H<br>ITTT<br>L<br>CAG<br>R<br>CCG<br>R<br>R                                      | S<br>T <u>AG</u><br>S<br>GAA<br>K<br><u>GAA</u><br>K<br>AAG.<br>R                                          | N<br>CAA<br>N<br>GCT<br>L<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>G<br>R                        | TGC<br>A<br>CGC<br>A<br>GGC<br>A<br>GGC<br>A<br>CGGI<br>V                                                                                                           | AGA<br>E<br>CAGA<br>E<br>CAGA<br>E<br>CCAA<br>N                                                          | GTT<br>L<br>ACT<br>L<br>AGT<br>V<br>A <u>GT</u><br>V<br>TGC<br>A                                         | GGA<br>D<br>D<br>TGA<br>E<br><u>G</u> GA<br>E<br>GTI<br>L                                                                                                                                   | TCG<br>R<br>TCG<br>R<br>AAAA<br>K<br>AAAA<br>K<br>GGGA<br>E                                                                   | TTC<br>S<br>T <u>AG</u><br>S<br>AAC<br>T<br>AA <u>AC</u><br>T<br>ATA                    | GAT<br>I<br>CAT<br>I<br>ATG<br>C<br>C<br>TG<br>C<br>TAT<br>M                     | CGA<br>D<br>TGA<br>D<br>TCA<br>Q<br>TCA<br>Q<br>C<br>C<br>GAC<br>T                                                                       | TGG<br>G<br>T <u>GG</u><br>G<br>ACT<br>L<br><u>GCT</u><br>L<br>GAT                          | TTT<br>F<br>CTT<br>F<br>TAT<br>M<br><u>G</u> AT<br>M<br>TCC<br>P                        | TAC<br>T<br>T <u>AC</u><br>T<br>T <u>AC</u><br>GGC<br>A<br>C<br>GGC<br>A<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | GCA<br>Q<br>CCA<br>Q<br>TGA<br>E<br><u>G</u> GA<br>E<br>ATT<br>L                 | LGCT<br>L<br>LGCT<br>L<br>LAGA<br>E<br>AAGA<br>E<br>CGGA<br>E                                   | CTTA<br>L<br>G <u>CTC</u><br>L<br>GATC<br>I<br>AATT<br>I<br>AGAA                                        |
| <i>E.hirae</i><br>optimal codon<br><i>E.hirae</i><br>optimal codon                                    | 121<br>361<br>121<br>421<br>141<br>421<br>141<br>481<br>161<br>481<br>161                                            | G Y<br>GGCI<br>G Y<br>P K<br>CCGP<br>P K<br>GAGP<br>E K<br>GAAP                                             | ۲<br>۲<br>۹<br>۹<br>۹<br>۹<br>۹<br>۹<br>۹<br>۹<br>۹<br>۹<br>۹<br>۹<br>۹<br>۹<br>۹<br>۹<br>۹<br>۹ | L<br>CCT<br>L<br>CCT<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>CT<br>T<br>T                                                  | H<br>GCA<br>H<br>ITTT<br>L<br>CAG<br>R<br>CCG<br>R                                           | S<br>T <u>AG</u><br>S<br>GAA<br>K<br>GAA<br>K<br>AAG<br>R<br>TCG<br>R                                      | N<br>CAA<br>N<br>GCT<br>L<br>AACT<br>L<br>AAG<br>R<br>TCG<br>R                                     | TGC<br>A<br>CGC<br>A<br>GGC<br>A<br>GGC<br>A<br>GGI<br>V<br>TGT<br>V                                                                                                | E<br>CGGA<br>E<br>CAGA<br>E<br>CGGA<br>CAA<br>N<br>CGAA<br>N                                             | GTT<br>L<br>ACT<br>L<br>AGT<br>V<br>A <u>GT</u><br>V<br>TGC<br>A                                         | GGA<br>D<br>GGA<br>D<br>TGA<br>E<br>GGA<br>E<br>GTI<br>L<br>G <u>CI</u><br>L                                                                                                                | TCG<br>R<br>TCG<br>R<br>AAAA<br>K<br>AAAA<br>K<br>GGA<br>E<br>GGA<br>E                                                        | TTC<br>S<br>T <u>AG</u><br>S<br>AAC<br>T<br>AA <u>AC</u><br>T<br>ATA<br>Y<br>ATA<br>Y   | GAT<br>I<br>CAT<br>I<br>ATG<br>C<br>C<br>C<br>C<br>C<br>TAT<br>M<br>TAT<br>M     | CGA<br>D<br>TGA<br>D<br>TCA<br>Q<br>TCA<br>Q<br>GAC<br>T<br>GAC<br>T                                                                     | TGG<br>G<br>T <u>GG</u><br>G<br>ACT<br>L<br>G <u>GCT</u><br>I<br>GAT<br>I<br>CAT<br>I       | TTT<br>F<br>CTT<br>F<br>TAT<br>M<br>GAT<br>M<br>TCC<br>P<br>TCC<br>P                    | TAC<br>T<br>T<br>GGC<br>A<br>GGC<br>A<br>GGC<br>A<br>TCA<br>Q<br>GCA<br>Q                                                                 | GCA<br>Q<br>CCA<br>Q<br>TGA<br>E<br>GGA<br>E<br>ATT<br>L<br>GCT<br>L             | AGCT<br>L<br>AGCT<br>L<br>AAGA<br>E<br>AAGA<br>E<br>CGGA<br>E<br>CGGA<br>E                      | CTTA<br>L<br>G <u>GCTC</u><br>L                                                                         |
| <i>E.hirae</i><br>optimal codon<br><i>E.hirae</i><br>optimal codon                                    | 121<br>361<br>121<br>421<br>141<br>421<br>141<br>481<br>161<br>481<br>161<br>481<br>161<br>541                       | G Y<br>GGCT<br>G Y<br>CCAP<br>P K<br>CCGP<br>F K<br>GAGP<br>E K<br>GAAP<br>E K                              | ۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲                               | L<br>CCTC<br>L<br>CCTC<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L                                       | H<br>GCA<br>H<br>ITTT<br>L<br>GCT<br>L<br>CAG<br>R<br>CCG<br>R<br>CCG<br>R<br>ITTA           | S<br>T <u>AG</u><br>S<br>GAA<br>K<br>GAA<br>K<br>AAG<br>R<br>TCG<br>R                                      | N<br>CAA<br>N<br>GCT<br>L<br>AAG<br>R<br>TCG<br>R                                                  | CGCC<br>A<br>GGCC<br>A<br>GGCC<br>A<br>GGT<br>V<br>TGT<br>V<br>V<br>C<br>AAT                                                                                        | CAGA<br>E<br>CGGA<br>E<br>CAGA<br>E<br>CCAA<br>N<br>CGAA<br>N                                            | GTT<br>L<br>ACT<br>L<br>AGT<br>V<br>A <u>GT</u><br>V<br>TGC<br>A<br>TGC<br>A<br>GCT                      | GGA<br>D<br>TGA<br>E<br>GGA<br>E<br>G <u>C</u> T<br>L<br>G <u>C</u> T<br>L                                                                                                                  | TCG<br>R<br>TCG<br>R<br>AAAA<br>K<br>GGA<br>E<br>GGA<br>E<br>AGA                                                              | TTC<br>S<br>T <u>AG</u><br>S<br>AAC<br>T<br>AAA<br>Y<br>ATA<br>Y<br>AAA                 | GAT<br>I<br>CAT<br>I<br>ATG<br>C<br>CTG<br>C<br>TAT<br>M<br>TAT<br>M             | CGA<br>D<br>TGA<br>D<br>TCA<br>Q<br>TCA<br>Q<br>GAC<br>T<br>GAC<br>T                                                                     | TGG<br>G<br>T <u>GG</u><br>G<br>ACT<br>L<br>GAT<br>I<br>GAT<br>I<br>AGC                     | TTT<br>F<br>CTT<br>F<br>TAT<br>M<br>GAT<br>M<br>TCC<br>P<br>TCC<br>P<br>AGA             | TAC<br>T<br>T<br>T<br>GGCC<br>A<br>C<br>GGCA<br>Q<br>C<br>GCA<br>Q<br>A<br>GCA<br>Q                                                       | GCA<br>Q<br>Q<br>TGA<br>E<br>GGA<br>E<br>ATT<br>L<br>AAC                         | AGCT<br>L<br>AGCT<br>L<br>AAGA<br>E<br>CGGA<br>E<br>CGGA<br>E<br>CGGA<br>E<br>CGGA              | CTT7<br>L<br>GCTC<br>L<br>GATC<br>I<br>AAAT<br>L<br>AGAA<br>E<br>AGAA<br>E                              |
| E.hirae<br>optimal codon<br>E.hirae<br>optimal codon<br>E.hirae                                       | 121<br>361<br>121<br>421<br>141<br>421<br>141<br>421<br>141<br>481<br>161<br>481<br>161<br>541<br>181                | G Y<br>GGCT<br>G Y<br>CCAP<br>P K<br><u>CCGP</u><br>P K<br>GAGP<br>E K<br>GAAP<br>E K<br>GAAP<br>T I        | ۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲                               | L<br>CTC<br>L<br>CTC<br>L<br>CTC<br>L<br>L<br>CTC<br>T<br>L<br>ACC<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>Y                    | H<br>H<br>H<br>ITTT<br>L<br>GCT<br>L<br>CAG<br>R<br>CCCG<br>R<br>·<br>TTA<br>Y               | S<br>T <u>AG</u><br>S<br>GAA<br>K<br>GAA<br>K<br>AAG<br>R<br>TCG<br>R<br>TAT<br>I                          | N<br>CAA<br>N<br>GCT<br>L<br>AAG<br>R<br>TCG<br>R<br>TAA<br>K                                      | CGC<br>A<br>CGC<br>A<br>GGC<br>A<br>GGC<br>A<br>C<br>GGI<br>V<br>TGI<br>V<br>V<br>AAI<br>M                                                                          | E<br>CGGAA<br>E<br>CGGAA<br>N<br>CGAA<br>K                                                               | GTT<br>L<br>ACT<br>L<br>AGT<br>V<br>AGT<br>V<br>TGC<br>A<br>TGC<br>A<br>GCT<br>L                         | GGA<br>D<br>TGA<br>E<br>GGA<br>E<br>GTI<br>L<br>G <u>CT</u><br>L<br>G <u>G</u> A                                                                                                            | ·<br>TCG<br>R<br>TCG<br>R<br>·<br>AAAA<br>K<br>·<br>CGGA<br>E<br>·<br>CGGA<br>E<br>·<br>AGAA<br>E                             | TTC<br>S<br>T <u>AG</u><br>S<br>AAC<br>T<br>AAAC<br>T<br>AAAA<br>Y<br>AAAA<br>N         | GAT<br>I<br>CAT<br>I<br>ATG<br>C<br>CTG<br>C<br>TAT<br>M<br>TAT<br>M<br>CGA<br>E | ·<br>CGA<br>D<br>TGA<br>D<br>·<br>TCA<br>Q<br>·<br>C<br>GAC<br>T<br>C<br>GAC<br>T<br>·<br>R                                              | TGG<br>G<br>T <u>GG</u><br>G<br>ACT<br>L<br>G <u>CT</u><br>L<br>GAT<br>I<br>CAT<br>I<br>AGC | TTT<br>F<br>CTT<br>F<br>TAT<br>M<br>GAT<br>M<br>TCC<br>P<br>TCC<br>P<br>AGA             | TAC<br>TAC<br>T<br>TAC<br>T<br>T<br>GGCC<br>A<br>GGCA<br>Q<br>GCCA<br>Q<br>C<br>GCCA<br>Q<br>C<br>C<br>C<br>A<br>GCCA<br>V                | GCA<br>Q<br>CCA<br>Q<br>TGA<br>E<br>GGA<br>E<br>ATT<br>L<br>GCT<br>L<br>AAC<br>T | AGCT<br>L<br>AGCT<br>L<br>AAGA<br>E<br>AAGA<br>E<br>CGGA<br>E<br>CGGA<br>E<br>CCGGA<br>E        | GATC<br>I<br>GATC<br>I<br>GATC<br>I<br>AAATT<br>I<br>AGAA<br>E<br>AGAA<br>E<br>CCTC<br>L                |
| E.hirae<br>optimal codon<br>E.hirae<br>optimal codon<br>E.hirae                                       | 121<br>361<br>121<br>421<br>141<br>421<br>141<br>421<br>141<br>141<br>141<br>161<br>481<br>161<br>161<br>541<br>541  | G Y<br>GGCT<br>G Y<br>CCAPP K<br>CCGP<br>P K<br>GAGP<br>E K<br>GAAP<br>E K<br>GAAP<br>T I<br>ACGP           | CAT<br>CAT<br>CAAG<br>CAAA<br>CAAA<br>CAAA<br>CAAA<br>CAAA<br>CA                                 | L<br>CTC<br>L<br>CTC<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L                                    | H<br>GCA<br>H<br>ITTT<br>L<br>GCT<br>CAG<br>R<br>CCG<br>R<br>ITTA<br>Y<br>TTA                | S<br>T <u>AG</u><br>S<br>GAA<br>K<br>GAA<br>K<br>AAG<br>R<br>T <u>CG</u><br>R<br>TAT<br>I<br>TAT           | N<br>CAA<br>N<br>GCT<br>L<br>AACT<br>L<br>AAG<br>R<br>TCG<br>R<br>TAA<br>K<br>CAA                  | ·<br>TGC<br>A<br>CGCC<br>A<br>GGCC<br>A<br>GGCC<br>V<br>TGT<br>V<br>AAT<br>M<br>AAT                                                                                 | CAGA<br>CAGA<br>CAGA<br>CAGA<br>CAAA<br>N<br>CGAA<br>K<br>CGAA<br>K                                      | GTT<br>L<br>ACT<br>L<br>AGT<br>V<br>AGT<br>V<br>TGC<br>A<br>TGC<br>A<br>GCT<br>L<br>ACT                  | GGA<br>D<br>GGA<br>D<br>TGA<br>E<br>GGA<br>GGTI<br>L<br>GGCI<br>L<br>GGA<br>E<br>GGA                                                                                                        | TCG<br>R<br>TCG<br>R<br>AAAA<br>K<br>GGA<br>E<br>AGA<br>AGA                                                                   | TTC<br>S<br>TAG<br>S<br>AAC<br>T<br>AAA<br>Y<br>ATA<br>Y<br>ATA<br>Y<br>AAA<br>N<br>AAA | GAT<br>I<br>CAT<br>I<br>ATG<br>C<br>C<br>TGA                                     | ·<br>CGA<br>D<br>TGA<br>D<br>·<br>TCA<br>Q<br>·<br>C<br>T<br>CA<br>Q<br>·<br>C<br>GAC<br>T<br>C<br>GAC<br>T<br>·<br>C<br>ACG<br>R<br>ACG | TGG<br>G<br>T <u>GG</u><br>G<br>ACT<br>L<br>GAT<br>I<br>GAT<br>I<br>AGC<br>A<br>CGC         | TTT<br>F<br>CTT<br>F<br>TAT<br>M<br>GAT<br>M<br>TCC<br>P<br>TCC<br>P<br>AGA<br>E<br>GGA | TAC<br>T<br>T<br>T<br>GGC<br>A<br>GGC<br>A<br>GGC<br>A<br>T<br>CA<br>Q<br>Q<br>A<br>GCA<br>V<br>A<br>GT<br>V                              | GCA<br>Q<br>CCA<br>Q<br>TGA<br>E<br>GGA<br>E<br>ATT<br>L<br>GCT<br>L<br>AAC<br>T | AGCT<br>L<br>AGCT<br>L<br>AAGA<br>E<br>CGGA<br>E<br>CGGA<br>E<br>CGGA<br>E<br>CCGG<br>R<br>CCCG | CTTA<br>L<br>GGCTC<br>L<br>GATC<br>I<br>AGAAT<br>I<br>AGAA<br>E<br>AGAA<br>E<br>CCCTC<br>L<br>L<br>TCTC |
| •                                                                                                     | 121<br>361<br>121<br>421<br>141<br>421<br>141<br>421<br>141<br>481<br>161<br>481<br>161<br>541<br>181                | G Y<br>GGCT<br>G Y<br>CCAPP K<br>CCGP<br>P K<br>GAGP<br>E K<br>GAAP<br>E K<br>GAAP<br>T I<br>ACGP           | CAT<br>CAT<br>CAAG<br>CAAA<br>CAAA<br>CAAA<br>CAAA<br>CAAA<br>CA                                 | L<br>CTC<br>L<br>CTC<br>L<br>CTC<br>L<br>L<br>CTC<br>T<br>L<br>ACC<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>Y                    | H<br>GCA<br>H<br>TTTT<br>L<br>GCT<br>L<br>CAG<br>R<br>TTA<br>Y<br>TTA<br>Y                   | S<br>T <u>AG</u><br>S<br>GAA<br>K<br>GAA<br>K<br>AAG<br>R<br>TCG<br>R<br>TAT<br>I                          | N<br>CAA<br>N<br>GCT<br>L<br>AAG<br>R<br>TCG<br>R<br>TAA<br>K                                      | CGC<br>A<br>CGC<br>A<br>GGC<br>A<br>GGC<br>A<br>C<br>GGI<br>V<br>TGI<br>V<br>V<br>AAI                                                                               | E<br>CGGAA<br>E<br>CGGAA<br>N<br>CGAA<br>K                                                               | GTT<br>L<br>ACT<br>L<br>AGT<br>V<br>AGT<br>V<br>TGC<br>A<br>TGC<br>A<br>GCT<br>L                         | GGA<br>D<br>TGA<br>E<br>GGA<br>E<br>GTI<br>L<br>G <u>CT</u><br>L<br>G <u>G</u> A                                                                                                            | TCG<br>R<br>TCG<br>R<br>AAAA<br>K<br>AAAA<br>K<br>GGAA<br>E<br>AGAA<br>E<br>AGAA                                              | TTC<br>S<br>T <u>AG</u><br>S<br>AAC<br>T<br>AAAC<br>T<br>AAAA<br>Y<br>AAAA<br>N         | GAT<br>I<br>CAT<br>I<br>ATG<br>C<br>CTG<br>C<br>TAT<br>M<br>TAT<br>M<br>CGA<br>E | CGA<br>D<br>TGA<br>D<br>TCA<br>Q<br>TCA<br>Q<br>GAC<br>T<br>GAC<br>T<br>C<br>A<br>CG<br>R<br>R<br>A<br>CG<br>R                           | TGG<br>G<br>T <u>GG</u><br>G<br>ACT<br>L<br>G <u>CT</u><br>L<br>GAT<br>I<br>CAT<br>I<br>AGC | TTT<br>F<br>CTT<br>F<br>TAT<br>M<br>GAT<br>M<br>TCC<br>P<br>TCC<br>P<br>AGA             | TAC<br>TAC<br>T<br>TAC<br>T<br>T<br>GGCC<br>A<br>GGCA<br>Q<br>GCCA<br>Q<br>C<br>GCCA<br>Q<br>C<br>C<br>C<br>A<br>GCCA<br>V                | GCA<br>Q<br>CCA<br>Q<br>TGA<br>E<br>GGA<br>E<br>ATT<br>L<br>GCT<br>L<br>AAC<br>T | AGCT<br>L<br>AGCT<br>L<br>AAGA<br>E<br>AAGA<br>E<br>CGGA<br>E<br>CGGA<br>E<br>CCGGA<br>E        | CTTZ<br>L<br>GGCTC<br>L<br>GATC<br>I<br>AGAA<br>E<br>AGAA<br>E<br>CCTC<br>L                             |
| <i>E.hirae</i><br>optimal codon<br><i>E.hirae</i><br>optimal codon<br><i>E.hirae</i><br>optimal codon | 1211<br>361<br>121<br>421<br>141<br>421<br>141<br>421<br>141<br>481<br>161<br>541<br>181<br>541<br>181               | G Y<br>GGCT<br>G Y<br>CCAA<br>P K<br>CCCA<br>P K<br>GAGA<br>P K<br>GAGA<br>E K<br>GAA<br>T I<br>ACCA<br>T I | CAT<br>AAG<br>AAA<br>AAA<br>AAA<br>AAA<br>AAA<br>A<br>AAA<br>C                                   | L<br>CCTC<br>L<br>CCTC<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L                                       | H<br>GCA<br>H<br>TTTT<br>L<br>GCT<br>L<br>CAG<br>R<br>CCGG<br>R<br>TTA<br>Y<br>TTA<br>Y      | S<br>TAG<br>S<br>GAA<br>K<br>GAA<br>K<br>AAG<br>R<br>TCG<br>R<br>TAT<br>I<br>TAT<br>I<br>I                 | N<br>CAA<br>N<br>GCT<br>L<br>AAG<br>R<br>TCG<br>R<br>TAA<br>K<br>CAA<br>K                          | ·<br>TGC<br>A<br>CGC<br>A<br>GGC<br>A<br>GGC<br>A<br>GGI<br>V<br>TGI<br>V<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>· | CAGA<br>E<br>CAGA<br>E<br>CAGA<br>E<br>CCAA<br>N<br>CGAA<br>K<br>CGAA<br>K                               | GTT<br>L<br>AGT<br>L<br>AGT<br>V<br>AGT<br>V<br>TGC<br>A<br>TGC<br>A<br>GCT<br>L<br>ACT<br>L             | GGA<br>D<br>TGA<br>E<br>GGA<br>E<br>GGTI<br>L<br>G <u>GCI</u><br>C<br>GGA<br>E<br>GGA<br>E                                                                                                  | TCG<br>R<br>TCG<br>R<br>AAAA<br>K<br>AAAA<br>K<br>GGA<br>E<br>AGA<br>E<br>AGA                                                 | TTCC<br>S<br>TAG<br>S<br>AACC<br>T<br>AAA<br>Y<br>AAA<br>Y<br>AAAA<br>N<br>AAAA<br>N    | GAT<br>I<br>CAT<br>I<br>ATG<br>C<br>C<br>TGA                                     | ·<br>CGA<br>D<br>TGA<br>D<br>·<br>TCA<br>Q<br>·<br>C<br>T<br>CA<br>Q<br>·<br>C<br>GAC<br>T<br>C<br>GAC<br>T<br>·<br>C<br>ACG<br>R<br>ACG | TGG<br>G<br>T <u>GG</u><br>G<br>ACT<br>L<br>GAT<br>I<br>GAT<br>I<br>AGC<br>A<br>CGC         | TTT<br>F<br>CTT<br>F<br>TAT<br>M<br>GAT<br>M<br>TCC<br>P<br>TCC<br>P<br>AGA<br>E<br>GGA | TAC<br>T<br>T<br>T<br>GGC<br>A<br>GGC<br>A<br>GGC<br>A<br>T<br>CA<br>Q<br>Q<br>A<br>GCA<br>V<br>A<br>GT<br>V                              | GCA<br>Q<br>CCA<br>Q<br>TGA<br>E<br>GGA<br>E<br>ATT<br>L<br>GCT<br>L<br>AAC<br>T | AGCT<br>L<br>AGCT<br>L<br>AAGA<br>E<br>CGGA<br>E<br>CGGA<br>E<br>CGGA<br>E<br>CCGG<br>R<br>CCCG | CTTA<br>L<br>GGCTC<br>L<br>GATC<br>I<br>AGAAT<br>I<br>AGAA<br>E<br>AGAA<br>E<br>CCCTC<br>L<br>L<br>TCTC |
| <i>E.hirae</i><br>optimal codon<br><i>E.hirae</i><br>optimal codon<br><i>E.hirae</i><br>optimal codon | 1211<br>361<br>121<br>421<br>141<br>421<br>141<br>481<br>161<br>481<br>161<br>541<br>181<br>541<br>181<br>541<br>601 | G Y<br>GGCT<br>G Y<br>CCAP<br>P K<br>GAGP<br>E K<br>GAAP<br>E K<br>ACGP<br>T I<br>ACCP                      | CAT<br>CAT<br>CAAG<br>CAAA<br>CAAA<br>CAAA<br>CAAA<br>CAAA                                       | L<br>CCT(<br>L<br>CCT(<br>L<br>CCT(<br>L<br>CCT(<br>L<br>CCT(<br>T<br>L<br>ACC(<br>T<br>T<br>CTA'<br>Y<br>Y<br>Y<br>STA'<br>Y | H<br>GCA<br>H<br>ITTT<br>L<br>CAG<br>R<br>CCG<br>R<br>TTA<br>Y<br>GAA                        | S<br>TAG<br>S<br>GAA<br>K<br>GAA<br>K<br>AAAG<br>R<br>TCG<br>R<br>TAT<br>I<br>TAT<br>I<br>TAT<br>I<br>AAAA | N<br>CAA<br>N<br>GCT<br>L<br>ACT<br>L<br>AAG<br>R<br>TAA<br>K<br>CAA<br>K<br>TAT                   | TGC<br>A<br>GGC<br>A<br>GGT<br>V<br>TGT<br>V<br>AAT<br>M<br>AAT<br>M                                                                                                | ZAGA<br>E<br>CGGA<br>E<br>CCAA<br>N<br>CCAA<br>N<br>CGAA<br>K<br>CGAA<br>K                               | GTT<br>L<br>AGT<br>V<br>AGT<br>V<br>TGC<br>A<br>TGC<br>A<br>GCT<br>L<br>ACT<br>L<br>AGA                  | GGA<br>D<br>GGA<br>D<br>TGA<br>E<br>GGA<br>E<br>GGA<br>E<br>GGA<br>E<br>GGA<br>E<br>GGA                                                                                                     | TCG<br>R<br>TCG<br>R<br>AAAA<br>K<br>AAAA<br>K<br>GGGA<br>E<br>AGA<br>E<br>AGA<br>E<br>GGTA                                   | TTCC<br>S<br>TAG<br>S<br>AACC<br>T<br>AAA<br>Y<br>AAA<br>Y<br>AAAA<br>N<br>AAAA<br>N    | GAT<br>I<br>CAT<br>I<br>ATG<br>C<br>C<br>TGA                                     | CGA<br>D<br>TGA<br>D<br>TCA<br>Q<br>TCA<br>Q<br>GAC<br>T<br>GAC<br>T<br>C<br>A<br>CG<br>R<br>R<br>A<br>CG<br>R                           | TGG<br>G<br>T <u>GG</u><br>G<br>ACT<br>L<br>GAT<br>I<br>GAT<br>I<br>AGC<br>A<br>CGC         | TTT<br>F<br>CTT<br>F<br>TAT<br>M<br>GAT<br>M<br>TCC<br>P<br>TCC<br>P<br>AGA<br>E<br>GGA | TAC<br>T<br>T<br>T<br>GGC<br>A<br>GGC<br>A<br>GGC<br>A<br>T<br>CA<br>Q<br>Q<br>A<br>GCA<br>V<br>A<br>GT<br>V                              | GCA<br>Q<br>CCA<br>Q<br>TGA<br>E<br>GGA<br>E<br>ATT<br>L<br>GCT<br>L<br>AAC<br>T | AGCT<br>L<br>AGCT<br>L<br>AAGA<br>E<br>CGGA<br>E<br>CGGA<br>E<br>CGGA<br>E<br>CCGG<br>R<br>CCCG | GCTTA<br>L<br>GCTTA<br>L<br>GGTC<br>L                                                                   |
| E.hirae<br>optimal codon<br>E.hirae<br>optimal codon<br>E.hirae                                       | 1211<br>361<br>121<br>141<br>421<br>141<br>421<br>141<br>481<br>161<br>541<br>181<br>541<br>181<br>541<br>181<br>201 | G Y<br>GGCT<br>G Y<br>CCAP<br>P K<br>GAGP<br>E K<br>GAAP<br>E K<br>ACGP<br>T I<br>ACCP                      | CAT<br>CAT<br>CAAA<br>CAAA<br>CAAA<br>CAAA<br>CAAA<br>CAAA<br>C                                  | L<br>CCTC<br>L<br>CCTC<br>L<br>L<br>CCTC<br>L<br>L<br>CCTC<br>T<br>T<br>CTAC<br>T<br>T<br>CTAC<br>Y<br>Y<br>V<br>V            | H<br>GCA<br>H<br>ITTT<br>L<br>CAG<br>R<br>CCG<br>R<br>ITTA<br>Y<br>J<br>TTA<br>Y<br>GAA<br>K | S<br>TAG<br>S<br>GAA<br>K<br>GAA<br>K<br>AAAG<br>R<br>TCG<br>R<br>TAT<br>I<br>TAT<br>I<br>TAT<br>I<br>N    | N<br>CAA<br>N<br>GCT<br>L<br>AACT<br>L<br>AAG<br>R<br>TCG<br>R<br>TAA<br>K<br>CAA<br>K<br>TAT<br>M | ·<br>TGC<br>A<br>CGC<br>A<br>GGC<br>A<br>GGC<br>V<br>TGI<br>V<br>·<br>C<br>AAT<br>M<br>AAT<br>M<br>AAT<br>M<br>GGC<br>G                                             | AGA<br>E<br>CGGA<br>E<br>CAGA<br>E<br>CCAA<br>N<br>CGAA<br>K<br>CGAA<br>K<br>CGAA<br>K<br>CGAA<br>K<br>T | GTT<br>L<br>AGT<br>L<br>AGT<br>V<br>AGT<br>V<br>TGC<br>A<br>TGC<br>A<br>TGC<br>A<br>GCT<br>L<br>AGA<br>E | GGA<br>D<br>GGA<br>D<br>TGA<br>E<br>GGA<br>E<br>GGA<br>E<br>GGA<br>E<br>GGA<br>E<br>C<br>GGA<br>E<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | ·<br>TCG<br>R<br>TCG<br>R<br>·<br>AAAA<br>K<br>·<br>CGGA<br>K<br>·<br>CGGA<br>E<br>·<br>AGA<br>E<br>·<br>AGA<br>E<br>·<br>AGA | TTC<br>S<br>TAG<br>S<br>AAC<br>T<br>AAA<br>Y<br>AAA<br>Y<br>AAA<br>N<br>AAA<br>N<br>AAA | GAT<br>I<br>CAT<br>I<br>ATG<br>C<br>C<br>TGA                                     | CGA<br>D<br>TGA<br>D<br>TCA<br>Q<br>TCA<br>Q<br>GAC<br>T<br>GAC<br>T<br>C<br>A<br>CG<br>R<br>R<br>A<br>CG<br>R                           | TGG<br>G<br>T <u>GG</u><br>G<br>ACT<br>L<br>GAT<br>I<br>GAT<br>I<br>AGC<br>A<br>CGC         | TTT<br>F<br>CTT<br>F<br>TAT<br>M<br>GAT<br>M<br>TCC<br>P<br>TCC<br>P<br>AGA<br>E<br>GGA | TAC<br>T<br>T<br>T<br>GGC<br>A<br>GGC<br>A<br>GGC<br>A<br>T<br>CA<br>Q<br>Q<br>A<br>GCA<br>V<br>A<br>GT<br>V                              | GCA<br>Q<br>CCA<br>Q<br>TGA<br>E<br>GGA<br>E<br>ATT<br>L<br>GCT<br>L<br>AAC<br>T | AGCT<br>L<br>AGCT<br>L<br>AAGA<br>E<br>CGGA<br>E<br>CGGA<br>E<br>CGGA<br>E<br>CCGG<br>R<br>CCCG | GCTTA<br>L<br>GCTTA<br>L<br>GGTC<br>L                                                                   |

| C             |     |    |     |     |     |     |      |              |       |     |      |      |              |     |     |     |     |     |     |     |              |
|---------------|-----|----|-----|-----|-----|-----|------|--------------|-------|-----|------|------|--------------|-----|-----|-----|-----|-----|-----|-----|--------------|
| V             |     |    |     |     |     |     |      |              |       |     |      |      |              |     |     |     |     |     |     |     |              |
| E.hirae       | 1   | AT | GAC | TTA | TAA | AAT | CGG  | GAGT         | AGT   | AGG | TGA  | CAA  | AGGA         | TTC | TGI | CTC | GCC | TTT | TCG | ATT | ATTT         |
|               | 1   | М  | Т   | Y   | K   | Ι   | G    | V            | V     | G   | D    | K    | D            | S   | V   | S   | Ρ   | F   | R   | L   | F            |
| optimal codon | 1   | AT | GAC | СТА | TAA | AAT | TGG  | GCGT         | GGT   | GGG | CGF  | TAP  | AGP          | TAG | CGI | TAG | CCC | GTT | TCG | TCT | GTTT         |
|               | 1   | М  | Т   | Y   | K   | Ι   | G    | V            | V     | G   | D    | K    | D            | S   | V   | S   | Ρ   | F   | R   | L   | F            |
|               |     |    |     |     | •   |     |      |              |       |     |      |      |              |     |     |     |     |     |     |     |              |
| E.hirae       | 61  | GG | CTT | ΤGA | TGT | ACA | GCA  | ATGG         | TAC   | GAC | AAA  | GAC  | CTGA         | AAT | AAG | AAA | AAC | AAT | CGA | TGA | GATG         |
|               | 21  | G  | F   | D   | V   | Q   | Η    | G            | Т     | Т   | Κ    | Т    | Ε            | Ι   | R   | K   | Т   | Ι   | D   | Е   | Μ            |
| optimal codon | 61  | GG | CTT | ΤGA | TGT | GCA | .GCA | TGG          | CAC   | CAC | CAA  | AAC  | <u>CC</u> GP | AAT | CCG | CAA | AAC | CAT | CGA | TGA | AATG         |
|               | 21  | G  | F   | D   | V   | Q   | Η    | G            | Т     | Т   | Κ    | Т    | Е            | Ι   | R   | Κ   | Т   | Ι   | D   | Е   | М            |
|               |     |    |     |     | •   |     |      |              |       |     |      | •    |              |     | •   |     |     |     |     |     | •            |
| E.hirae       | 121 | GC | TAA | GAA | TGA | ATA | TGG  | STGT         | GAT   | CTA | TAT  | CAC  | CCGP         | ACA | ATG | TGC | AAA | TCT | GGT | CCC | TGAA         |
|               | 41  | А  | Κ   | Ν   | Е   | Y   | G    | V            | Ι     | Y   | Ι    | Т    | Ε            | Q   | С   | А   | Ν   | L   | V   | Ρ   | Ε            |
| optimal codon | 121 | GC | GAA | AAA | CGA | ATA | TGG  | <u>SC</u> GT | GAT   | CTA | CAI  | CAC  | CCGP         | ACA | GTG | TGC | GAA | TCT | GGT | GCC | <u>G</u> GAA |
|               | 41  | A  | K   | Ν   | Е   | Y   | G    | V            | I     | Y   | Ι    | Т    | Ε            | Q   | С   | Α   | Ν   | L   | V   | Ρ   | Е            |
|               |     |    |     |     | •   |     |      |              |       |     |      | •    |              |     | •   |     |     | •   |     |     | •            |
| E.hirae       | 181 | AC | GAT | TGA | GCG | СТА | TAA  | AGG          | ACA   | ATT | GAC  | CACC | CTGC         | GAT | CAI | TTT | GAT | TCC | TAG | TCA | TCAA         |
|               | 61  | Т  | Ι   | Е   | R   | Y   | K    | G            | Q     | L   | Т    | Ρ    | A            | Ι   | Ι   | L   | Ι   | Ρ   | S   | Η   | Q            |
| optimal codon | 181 |    |     |     | ACG | _   |      |              |       |     |      |      |              |     | _   |     | GAT |     |     |     | T <u>CAG</u> |
|               | 61  | Т  | Ι   | Е   | R   | Y   | K    | G            | Q     | L   | Т    | Ρ    | A            | Ι   | Ι   | L   | I   | Ρ   | S   | Η   | Q            |
|               |     |    |     |     | •   |     |      |              |       |     |      | •    |              |     | •   |     |     | •   |     |     | •            |
| E.hirae       | 241 |    | AAC |     | TGG | TAT | CGG  | TTT          | 11011 | AGA | .GAI | CCP  | AAA          |     | TGI |     | AAA | AGC | TGT | TGG | ACAA         |
|               | 81  | G  | Т   | L   | G   | Ι   | G    | L            | Е     | E   | Ι    | Q    | Ν            | S   | V   | Е   | K   | A   | V   | G   | Q            |
| optimal codon | 241 |    |     |     | GGG |     | _    |              |       |     | _    | -    | -            |     |     | _   |     |     |     |     | CCAG         |
|               | 81  | G  | Т   | L   | G   | Ι   | G    | L            | Е     | E   | Ι    | Q    | Ν            | S   | V   | Е   | K   | A   | V   | G   | Q            |
|               |     |    |     |     | •   |     |      | •            |       |     |      |      |              |     |     |     |     |     |     |     |              |
| E.hirae       | 301 |    | TAT |     | ATA | A   |      |              |       |     |      |      |              |     |     |     |     |     |     |     |              |
|               | 101 | Ν  | I   | L   | *   |     |      |              |       |     |      |      |              |     |     |     |     |     |     |     |              |
| optimal codon | 301 |    |     |     | GTA | A   |      |              |       |     |      |      |              |     |     |     |     |     |     |     |              |
|               | 101 | Ν  | I   | L   | *   |     |      |              |       |     |      |      |              |     |     |     |     |     |     |     |              |

**Figure 2.** Nucleotide sequences and amino acid sequences of *ntpC*, *ntpD* and *ntpG genes* from *E*. *hirae* and cloned DNA. (a) *ntpC* (P43456), (b) *ntpD* (Arai, unpublished) and (c) *ntpG* (P43455). The nucleotides and amino acids are numbered at the left of the sequence, respectively. The replaced codons are underlined.

materials and methods. First, we tried to express *ntpC*, ntpD and ntpG genes in E. coli BL21(DE3) cells at 30°C. Expression was successful for *ntpC* and *ntpG*, whereas expressed *ntpD* has been precipitated as inclusion bodies at 30 °C. It has been reported that, the expression of *ntpD* alone was unstable and did not give high yield (Arai et al., 2009). Finally, we could express *ntpD* gene *in vivo* by reducing the bacterial culture temperature from 30 to 20°C. First, we tried to express ntpC, ntpD and ntpG genes in E. coli BL21(DE3) cells without IPTG induction and got low level of expression. Next, we tried to express ntpC, ntpD and ntpG genes with IPTG induction and checked the expression level at 2 h intervals started from 0 to 10 h. NtpC and NtpG subunit proteins were expressed at the highest level as soluble proteins after 6 h of IPTG induction. Whereas, NtpD subunit protein was expressed at the highest level as soluble protein after 8 h of IPTG induction. This time variation for the highest level of expression of NtpC, NtpD and NtpG as soluble proteins after IPTG induction may be due to the variation of bacterial culture temperature. NtpC, NtpD and NtpG proteins were expressed separately as His-tagged soluble proteins in *E. coli* BL21(DE3) cells with induction of IPTG. Expressed NtpC, NtpD and NtpG proteins were confirmed as assessed by SDS-PAGE (Figure 3) before purification. Findings of our study indicated that NtpC, NtpD and NtpG subunit proteins are stably expressed in *E. coli* BL21(DE3) cells.

#### Purification of the central stalk subunit proteins

NtpC, NtpD and NtpG proteins were individually purified by using Ni Sepharose 6 fast flow column. Amount of purified NtpC, NtpD and NtpG proteins were 14, 17 and 15 mg/1 liter culture, respectively. Purified NtpC and NtpG proteins were stable at 4 °C for long time and NtpD was not at high concentration. But at low concentration, NtpD was stably maintained at 4 °C for at least one week as checked by analytical gel filtration assay. The molecular weights of these purified proteins were estimated as 38 kDa for NtpC, 27 kDa for NtpD and 11 kDa for NtpG

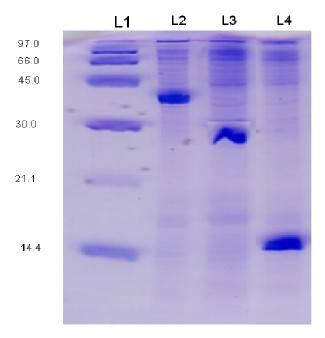
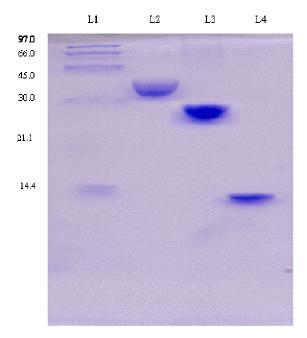




Figure 3. SDS-PAGE profile of expressed NtpC, NtpD, and NtpG subunit proteins. (L1, L2, L3 and L4 indicate LMW marker, expressed NtpC, NtpD and NtpG, respectively).



**Figure 4.** SDS-PAGE profile of purified NtpC, NtpD, and NtpG subunit proteins. (L1, L2, L3 and L4 indicate LMW marker, purified NtpC, NtpD and NtpG, respectively).

(Figure 4), being identical with corresponding subunits of *E. hirae* V-ATPase. From our study it was concluded that, central stalk subunits of Na<sup>+</sup>-translocating V-type ATPase from *E. hirae* can be expressed and purified in *E. coli*.

#### ACKNOWLEDGEMENTS

This work was supported kindly by Targeted Protein Research Program (T. M.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) and Chiba University Young Research-Oriented Faculty Member Development Program in Natural Science Areas (T. M.) from MEXT. Previous Japanese agencies are highly acknowledged

#### REFERENCES

- Arai S, Yamato I, Shiokawa A, Saijo S, Kakinuma Y, Ishizuka-Katsura Y, Toyama M, Terada T, Shirouzu M, Yokoyama S, Iwata S, Murata T (2009). Reconstitution *in vitro* of the catalytic portion (NtpA<sub>3</sub>-B<sub>3</sub>-D-G complex) of *Enterococcus hirae* V-type Na<sup>+</sup>-ATPase. Biochem. Biophy. Res. Commun. 390: 698-702.
- Forgac M (2007). Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 8: 917-929.
- Heefner DL, Harold FM (1982). ATP-driven sodium pump in Streptococcus faecalis. Proc. Natl. Acad. Sci. USA, 9: 2798-2802.
- Hosaka T, Takase K, Murata T, Kakinuma Y, Yamato I (2006). Deletion analysis of the subunit genes of V-type Na<sup>+</sup>-ATPase from *Enterococcus hirae*. J. Biochem. 139: 1045-1052.
- Imamura H, Ikeda C, Yoshida M, Yokoyama K (2004). The F subunit of *Thermus thermophilus* V<sub>1</sub>-ATPase promotes ATPase activitry but is not necessary for rotation. J. Biol. Chem. 279: 18085-18090.
- Iwata M, Imamura H, Stambouli E, Ikeda C, Tamakoshi M, Nagata K, Makyio H, Hankamer B, Barber J, Yoshida M, Yokoyama K, Iwata S (2004). Crystal structure of a central stalk subunit C and reversible association/dissociation of vacuole-type ATPase. Proc. Natl. Acad. Sci. USA, 101: 59-64.
- Laemmli UK (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685.
- Li S, Schmitz K, Jeffrey P, Wiltzius J, Kussie P, Ferguson K (2008). Structural basis for inhibition of epidermal growth factor receptor by cetuximab. Cancer Cell, 7: 301-311.
- Lolkema JS, Chaban Y, Boekema EJ (2003). Subunit composition, structure, and distribution of bacterial V-type ATPases. J. Bioenerg. Biomembr. 35: 323-335.
- Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951). Protein measurement with theFolin phenol reagent. J. Biol. Chem. 193: 265-275.
- Mogi T, Anraku Y (1984). Mechanism of proline transport in *Escherichia coli* K12. II. Effect of alkaline cations on binding of proline to a H<sup>+</sup>/proline symport carrier in cytoplasmic membrane vesicles. J. Biol. Chem. 259: 7797-7801.
- Murata T, Takase K, Yamato I, Igarashi K, Kakinuma Y (1997). Purification and reconstitution of Na<sup>+</sup>-translocating vacuolar ATPase from *Enterococcus hirae*. J. Biol. Chem. 272: 24885-248890.
- Murata T, Takase K, Yamato I, Igarashi K, Kakinuma Y (1999). Properties of the  $V_oV_1$  Na<sup>+</sup>-ATPase from *Enterococcus hirae* and its  $V_o$  moiety. J. Biochem. 125: 414-421.
- Murata T, Yamato I, Kakinuma Y (2005a). Structure and mechanism of vacuolar Na<sup>+</sup>-translocating ATPase from *Enterococcus hirae*. J. Bioenerg. Biomembr. 37: 411-413.
- Murata T, Yamato I, Kakinuma Y, Leslie AG, Walker JE (2005b). Structure of the rotor of the V-type Na<sup>+</sup>-ATPase from *Enterococcus hirae*. Science, 308: 654-659.
- Murata T, Yamato I, Kakinuma Y, Shirouzu M, Walker JE, Yokoyama S, Iwata S (2008). Ion binding and selectivity of the rotor ring of the Na<sup>+</sup>transporting V-ATPase. Proc. Natl. Acad. Sci. USA, 105: 8607-8612.
- Sambrook J, Russell D (2001). Molecular cloning: A laboratory manual. 3<sup>rd</sup> edition, Cold Spring Harbor Laboratory Press, New York, USA.
- Takase K, Kakinuma S, Yamato I, Kanishi K, Igarashi K, Kakinuma Y (1994). Sequencing and characterization of the *ntp* gene cluster for vacuolar-type Na<sup>+</sup>-translocating ATPase of *Enterococcus hirae*. J. Biol. Chem. 269: 11037-11044.

- Thomson JD, Higgins DG, Gibson TJ (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res. 22: 4673-4680.
- Tsutsumi S, Denda K, Yokoyama K, Oshima T, Date T, Yoshida M (1991). Molecular cloning of genes encoding major two subunits of a eubacterial V-type ATPase from *Thermus thermophilus*. Biochem. Biophys. Acta, 1098: 13-20.
- Yokoyama K, Akabane Y, Ishii N, Yoshida M (1994). Isolation of prokaryotic V<sub>0</sub>V<sub>1</sub>-ATPase from a thermophilic eubacterium *Thermus thermophilus*. J. Biol. Chem. 269: 12248-12253.
- Yokoyama K, Ohkuma S, Taguchi H, Yasunaga T, Wakabayashi T, Yoshida M (2000). V-Type H<sup>+</sup>-ATPase/synthase from a thermophilic eubacterium, *Thermus thermophilus*. J. Biol. Chem. 275: 13955-13961.
- Yokoyama K, Nakano M, Imamura H, Yoshida M, Tamakoshi M (2003). Rotation of the proteolipid ring in the V-*ATPase.* J. Biol. Chem. 278: 24255-24258.
- Yokoyama K, Imamura H (2005). Rotation, structure, and classification of prokaryotic V-ATPase. J. Bioenerg. Biomembr. 37: 405-410.