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DNA methylation plays an important role in regulating gene expression during plant development. We 
studied the effects of different light quality on DNA methylation patterns of brown cotton (Gossypium 
hirstum) by using the methylation sensitive amplified polymorphism (MSAP). We selected 66 pairs of 
MSAP selective amplification primers to assess the status of cytosine methylation, with diverse patterns 
and percentages of DNA methylation under different light quality. When the brown cotton was treated 
with blue, white + ultraviolet-B, red, white and yellow lights, respectively, frequency of total and full 
methylation were 24.15/13.64, 25.68/15.23, 27.09/16.35, 19.29/7.58 and 21.92/11.08%, respectively. In 
addition, 4 monomorphic fragments and 1 polymorphic fragment that appeared in the 
electrophoretogram were sequenced and analyzed. The sequences alignment revealed that both coding 
and non-coding regions could be methylated or demethylated by differing light quality, suggesting an 
epigenetic response of plants to light. 
 
Key words: DNA methylation, methylation sensitive amplified polymorphism (MSAP), light response, light 
quality, cotton.  

 
 
INTRODUCTION 
 
Light is the main source of energy for plant growth and 
has profound impacts on plant development. It induces 
complicated gene-expression networks leading to 
physiological and biochemical responses including photo- 
tropism, photomorphogenesis, chloroplast  differentiation, 
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germination,  flowering   and   fructification   (Jiao   et  al., 
2007). In order to respond to light, plants have adapted 
their abilities to sense complex parameters of light signals, 
including light period, light direction, light quality and 
quantity. They have also evolved complicated and sophi-
sticated systems for responding to a broad spectrum of 
light, ranging from far-red light to ultraviolet B (UV-B), 
possessing distinct photoreceptors sensing UV-B, ultra-
violet A (UV-A), blue, green, red and far-red (Chen et al., 
2004; Jiao et al., 2007; Hu and Desai, 2008; Castillon et 
al., 2009). Four distinct families of photoreceptors are 
known: Phytochromes, cytochromes, phototropins and 
unidentified ultraviolet B photoreceptors. The phytochromes 
are dimeric chromoproteins and they predominately 
absorb the far-red and red lights. The cyptochromes and 
phototropins absorb blue light and UV-A and the 
unidentified photoreceptors absorb UV-B. 

Light response is an intricate process for plants, involving 
many genes and regulating pathways of plant metabolism 
systems. In recent years, extensive progress has been 
made towards characterizing the organization of light-
regulated transcriptional networks and various regulators 
downstream of photoreceptors have been identified  (Jiao  



 
 
 
 
et  al.,  2007;  Hu and Desai, 2008; Castillon et al., 2009).  
Many of them encode transcription factors, phosphatases 
and kinases, such as common plant regulatory factor 1 
(CPRF1), common plant regulatory factor 2 (CPRF2), 
long after far-red light 1 (LAF1), basic helix-loop-helix 
protein (bHLH) and others. CPRF1 and CPRF2 are G-
box-binding transcription factors (GBFs). LAF1 functions 
as a positive regulator of gene expression downstream of 
far-red light. However, a bHLH transcription factor is a 
repressor of seedling de-etiolation which was mediated 
by blue and far-red light (Jiao et al., 2007). Some of these 
genes are specifically expressed, others as regulators of 
signal transduction networks in response to different 
kinds of light signals. Large number of gene transcripts is 
reprogrammed to express activated proteins when induced 
by light. Light effects are so profound and perplexing that 
most of the biochemical pathways are involved and 
coordinately regulated.  

DNA methylation has been hypothesized as an 
underlying mechanism of temporary changes in the 
phenotype (Suzuki et al., 2008). It is associated with 
regulation of gene expression, cell differentiation, gen-
omic imprinting and so on. It plays a fundamental role in 
epigenetic regulation in the whole process of plant 
development (Jaligot et al., 2008). For instance, it is 
closely correlated with the response mechanism when 
plants suffer various environmental changes such as salt 
stress, drought menace and virus infection (Zhong et al., 
2009; Dalakouras et al., 2010; Pan et al., 2009; Mason et 
al., 2008). However, reports on relationships between 
DNA methylation and light response mechanism for plant 
are few. Stellaria longipes treated with low R/FR light 
ratios showed a lower level of methylation which was a 
crucial factor in controlling the stem elongation response 
(Tatra et al., 2000). 

Methylation-sensitive amplified polymorphism (MSAP) 
technique is a powerful tool for the analysis of genome 
methylation status (Reyna et al., 1997; Jaligot et al., 
2004). It has been successfully applied to study epi-
genetic variation in many plants, such as the effect of 
short day photoperiod on DNA methylation in rice, the 
DNA-methylaiton changes in wheat induced by salt stress 
and variations of DNA methylation during tomato fruit 
development and ripening (Zhong et al., 2009; Thanananta 
et al., 2006; Teyssier et al., 2008). Light response is a 
complex process for plants. To our knowledge, research 
reports on the changes of DNA methylation status of 
plants under different light quality are few. In this study, 
the MSAP technique was used to test the effect of light 
quality on the pattern and extent of cytosine methylation 
in cotton cultivar. 
 
 
MATERIALS AND METHODS 
 
Plant materials and treatment conditions 

 
The experimental cotton cultivar (Gossypium hirstum) was 
ZONGCAIXUAN No.1, bred by  Life  Science  Department of  Anhui 
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Agricultural  University,  People’s  Republic  of  China.  Seeds  were  
germinated on a filter paper soaked in water at 28°C in the dark for 
5 days. 15-day-old seedlings were cultivated in Hoagland solution 
in a growth chamber and separately supplied with white (W), white 
+ UV-B (C), red (R), yellow (Y) and blue (B) with a photosynthetic 
photon flux density of 200 µmol·m

-2
·s

-1
 by LED light source for 7 

days with time period 10/14 (day/night), the treating temperature 
30/25°C (day/night) and relative humidity 65 to 67%. The plants 
under treatment of white + UV-B were selected as controls, which 
were additionally illuminated with UV-B with 600 µW·cm

-2
 intensity 

for 15 min everyday.  
 
 
DNA extraction 

 
Genomic DNA was extracted from cotton leaves which were 
collected from the second leaf from top using a modified cetyl 
trimethyl ammonium bromide (CTAB) method as described by 
Murray and Thompson (1980).  
 
 
Methylation-sensitive amplified polymorphism (MSAP) analysis 
 
To detect MSAP, 200 ng of cotton genomic DNA was double-
digested with two combinations of restriction enzymes concurrently. 
In the first reaction, the DNA was digested with 20 units EcoRI 
(Takara, People’s Republic of China) and 20 units HpaII (Takara, 
People’s Republic of China) in 20 µl of reaction mixture at 37°C for 
2 h. The second digestion reaction was carried out in the same 
way, except that MspI (Takara, People’s Republic of China) was 
used instead of HpaII. The reaction was terminated by incubation at 
65°C for 10 min. Subsequently, the ligation reaction was carried out 
for additional 6 h at 20°C in a final volume of 40 µl, which contains 1 
unit T4 DNA ligase, 0.2 mM ATP, 5 pM EcoRI adapters (5′-
CTCGTAGACTGCGTACC-3′, 5′-AATTGGTACGCAGTC-3′)and 50 
pM HpaII/MspI adapters (5′-GATCATGAGTCCTGCT-3′, 5′-
CGAGCAGGACTCATGA-3′). 

The pre-amplification was performed by using the ligation mixture 
as template DNA with E+A primer (5′-GACTGCGTACCAATTC+A-
3′) and HM+T primer (5′-ATCATGAGTCCTGCTCGG+T-3′). The 
polymerase chain reaction (PCR) reaction was performed in a 25 µl 
of a reaction mixture with 1 µl of ligation reaction mixture, 50 ng of 
E+A, 50 ng of HM +T, 0.5 unit Taq DNA polymerase (Biocentury 
transgene, People’s Republic of China), 0.2 mM dNTP (Biocentury 
transgene, People’s Republic of China) and 2.5 µl of 10 × 
polymerase buffer (Biocentury transgene, People’s Republic of 
China) for 21 cycles with denaturation at 94°C for 1 min, annealing 
at 56°C for 1 min and extension at 72°C for 1 min.  

For selective amplification, the product of pre-amplification was 
selected as DNA template and six EcoRI primers in combination 
with eleven HpaII/MspI primers were synthesized based on the 
principles that its sequence was identical to the pre-amplification 
primers in addition to two nucleotides at the 3′ terminus: E+A+NN 
primer (5′-GACTGCGTACCAATTC+A+NN-3′) and HM+T+NN 
primer (5′-ATCATGAGTCCTGCTCGG+T+NN-3′). The PCR 
reactions were performed in volumes of 25 µl, containing 0.3 µl of 
pre-amplification product, 50 ng of EcoRI primer, 50 ng of 
HpaII/MspI primer, 1 unit Taq polymerase, 0.5 mM dNTP and 2.5 µl 
of 10×PCR buffer. The PCR procedure was carried out according to 
the standard amplified fragment polymorphism touchdown protocol 
(Vos et al., 1995). The adapters, the pre-amplified primers and the 
selective primers of EcoRI and HpaII/MspI are listed in Table 1. 

The samples of selective amplification were mixed with 8 µl of 
denaturating buffer (98% formamide, 10 mM ethylenediamine-
tetraacetic acid (EDTA), 0.1% bromphenol blue and 0.1% xylene 
cyanol) (Sangon, People’s Republic of China), then denatured at 
95°C for 5 min and separated on 6% polyacrylamide gel (6% 
polyacrylamide, 8 M urea) (Sangon, People’s Republic of China), in  
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Table 1. Adaptors and primers used for MSAP analysis. 
 

Adaptor/primer 
Enzyme 

EcoRI(E) (5′ to 3′ ) HpaII/MspI(H/M) (5′ to 3′ ) 

Adaptors 
CTCGTAGACTGCGTACC GATCATGAGTCCTGCT 

AATTGGTACGCAGTC CGAGCAGGACTCATGA 

   

Pre-amplification primers GACTGCGTACCAATTCA ATCATGAGTCCTGCTCGGT 

   

Selective amplification primers 

GACTGCGTACCAATTCAAC(E1) ATCATGAGTCCTGCTCGGTCG(H1) 

GACTGCGTACCAATTCAAG(E2) ATCATGAGTCCTGCTCGGTGC(H2) 

GACTGCGTACCAATTCACT(E3) ATCATGAGTCCTGCTCGGTGA(H3) 

GACTGCGTACCAATTCATC(E4) ATCATGAGTCCTGCTCGGTAG(H4) 

GACTGCGTACCAATTCACC(E5) ATCATGAGTCCTGCTCGGTCT(H5) 

GACTGCGTACCAATTCACG(E6) ATCATGAGTCCTGCTCGGTTC(H6) 

GACTGCGTACCAATTCAGG(E7)  

GACTGCGTACCAATTCAGA(E8)  

GACTGCGTACCAATTCAGT(E9)  

GACTGCGTACCAATTCAGC(E10)  

GACTGCGTACCAATTCACA(E11)  
 
 
 

Table 2. DNA methylation patterns of enzymes sites of HpaII and MspI. 
 

Enzyme 
Sites cut Sites not cut 

Type I Type II Type III Type IV 

HpaII  CCGG  C
m

CGG 

GGCC  G
 
GCC 

m
CCGG 

GGCC 

- 
m

C
m

C G G   
m

CCGG 

G G
m

C
m

C    GGCC
m
 

MspI CCGG  C
m

CGG 

GGCC  G
 
GCC 

- C
m

CGG 

GG
m

CC 

m
C

m
C G G   

m
CCGG 

G G
m

C
m

C    GGCC
m
 

 
 
 
1×TBE  buffer  at  80  watts  for 1 h. Gels were stained according to 
the silver staining method (Bassam et al., 1991).  
 
 
Analysis of electrophoretogram 
 
After staining, the bands appeared in the electrophoretogram were 
detected and counted by using Genescope software of gel imaging 
system Biosens SC645 (Biotop, People’s Republic of China). The 
scored MSAP bands were transformed into a binary character 
matrix, using “0” to define the absence of a band and “1” to define 
the presence of a band, respectively.  
 
 
Cloning and sequencing of MSAP fragments 

 
The differential bands were excised from gels and eluted with TE 
buffer (pH 8.0), then boiled in water for 5 min. For re-amplification of 
fragments, 2 µl of eluted solution was used as template. The same 
primers were selected for PCR by using the selective PCR 
procedure in total 25 µl of reaction volume. The PCR products were 
verified by 0.1% agarose gel and purified with the SanPrep gel 
extraction kit (Sangon, People’s Republic of China). The fragments 
were cloned and sequenced at Sangon (People’s Republic of 
China). The homology of sequences was analyzed by using the 
Basic Local Alignment Search Tool (BLAST) at the public database 
National Center  for Biotechnology Information (NCBI) (http://www.  

ncbi.nlm.nih.gov). 

 
 
RESULTS 
 
DNA methylation patterns of cotton under different 
quality of light 
 
Methylation-sensitive amplified polymorphism (MSAP) 
introduces two isoschizomers HpaII and MspI to 
recognize the 5′-CCGG-3′ sequence and cut unmethy-
lated or methylated sites of cytosine. However, two 
isoschizomers have different sensitivity to methylation. 
HpaII cleaves hemimethylated sequence, whereas MspI 
cuts methylated sites at the internal cytosine C

m
CGG. 

Thus, the methylation status of the plant genome can be 
understood through digesting genome with HpaII and MspI. 

Based on the absence or presence of a band in the 
MSAP experiment, DNA methylation patterns could be 
classified into four types (Table 2, Figure 1). Type I was 
identified when both enzymes HpaII and MspI were used. 
Type II was identified according to the presence of a 
band produced by MspI, but its absence when HpaII were  
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Figure 1. DNA methylation patterns of enzymes sites of HpaII and MspI. 
Note: The result of MSAP which amplified using primer H6/E10. Labels: B, 
C, R, W, Y were the abbreviation of blue light, control (white light+UV), red 
light, white light and yellow light. The letter M showed that, the enzyme 
sites were cleaved with EcoRI and MspI, H indicated the sites cut with 
EcoRI and HpaII.  

 
 
 

Table 3. Bands of different patterns obtained by MASP. 
 

Light 
quality 

Numbers of bands Total number of 
bands Type I Type II Type III 

B 895 124 161 1180 

C 851 103 191 1145 

R 880 122 205 1207 

W 887 117 95 1099 

Y 887 110 139 1136 
 

Labels of light quality in Table B, C, R, W, Y are the abbreviations for blue light, control (white 
light+UV), red light, white light and yellow light.  

 
 
 

used. Type III was recognized when the inverse pattern 
of type II  was  observed. Type IV was  identified by  the 
absence  of  bands  when  both  enzymes HpaII and MspI 
could not cut the methylated sites because of fully 
methylated or hyper-methylated of the outside cytosine. 

In the present study, 66 pairs of MSAP selective 
amplification primers were used. For each lane, 13 to 33 
fragments were obtained. Total amounts of bands from 
cotton under different light quality were different from 
each other (Table 3, Figure 2). As shown in Table 3, the 
total bands numbers of type I and II from cotton under 

blue, red, white and yellow lights were more than that in 
the  control  group, but the total bands numbers of type III 
under blue, white and yellow lights were relatively less 
than that in the control group. The summed bands of type 
III under red light were larger than that in the control group. 
 
 

Levels of DNA methylation for cotton under different 
quality of light 
 

As shown in Table 4, there are obvious differences of the 
status and percentage of DNA methylation among all light  
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Figure 2. The result of MSAP using primers H6-E8 (A) and primers 
H4-E8 (B). Note: The bands pointed with arrows were monomorphic 
or polymorphic fragments. Polymorphic bands are variable across 
treatments with different quality light. 

 
 
 
 
quality treatments. Compared with control group, the 
percentage of total methylation was increased when the 
cotton was illuminated with red light but decreased when 
the cotton was treated with blue, white and yellow lights. 
The percentage of hemi-methylation was increased when 
the cotton was set under blue, red, white and yellow 
lights. In contrast, the internal full methylation of cotton 
under blue, white and yellow lights were reduced if 
compared with control.  
 
 
Cloning and sequencing of differential MSAP 
fragments 
 
In order to make clear the effects of cotton under different 
light quality on DNA methylation in the present study, 4 
monomorphic fragments and 1 polymorphic fragment 
appeared in the electrophoretogram were selected and 
excised from the gel, then re-amplified and sequenced 
after purification (Figure 2). After blasted at the website 
NCBI, the homologies of sequences were analyzed. The 
sequences were uploaded to the public database at NCBI 
website (Table 5). Among these sequences, Sequence 1 
was demethylated by blue light appeared to be identical 
to the pyruvate kinase, Sequence 2, demethylated by red 
light had higher homology with shotgun sequence of Vitis 
vinifera, Sequence 3 showed higher identity to Gossypium 
arboreum clone bacterial artificial chromosome (BAC), 
Sequence 4 shared homology with aquaporin form major 
intrinsic proteins (MIP) family/ tonoplast intrinsic protein 
(TIP) subfamily, and Sequence 5 showed higher similarity 
to simple sequence repeat (SSR) marker for Gossypium 
hirsutum. Light with white, white+UV-B, red, yellow and 
blue quality has different effects on methylated or 
demethylated at the cytosine nucleotide, respectively. 
Both coding and non-coding regions could be methylated 
or demethylated at the cytosine nucleotide induced by 
different light quality. 
 
 

DISCUSSION 
 
Previously, in order to explain light response reaction 
mechanism, many functional genes and transcription 
factors were cloned and identified to be correlated with 
the light response. For instance, proteolysis-inducing 
factors (PIFs) are nuclear bHLH transcription factors 
which function as negative regulators of photomorpho-
genesis both in the dark and light in Arabidopsis. Under 
continuous blue light, PIF1 interacted with phytochrome A 
(phyA) and B (phyB) which negatively regulate photomor-
phogenesis. In response to both red and far-red light, the 
rapid phosphorylation and degradation of PIFs are 
induced by the phy family of photoreceptors to promote 
photomorphogenesis. Based on the genetic and genono-
mic studies, a growing list of light-controlled genes and 
transcription factors have been identified, which offer a 
general   understanding    of   basic   framework   of  light- 
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Table 4. Percentage of different methylation profiles. 
 

Light quality 
Percentage of hemi-

methylation (%) 
Percentage of internal full 

methylaion (%) 
Percentage of total 

methylation (%) 

B 10.51 13.64 24.15 

C 8.21 15.23 25.68 

R 9.73 16.35 27.09 

W 9.33 7.58 19.29 

Y 8.77 11.08 21.92 

 
 
 

regulated signal networks for photomor-phogenesis 
(Chen et al., 2004; Jiao et al., 2007; Hu and Desai, 2008; 
Castillon et al., 2009). However, it is still unclear how 
plants distinguish different light quality. 

Methylation of DNA, which has been proposed as an 
essential mechanism for temporary changes in plant 
phenotype, is correlated with cell differentiation (Chen et 
al., 2009), response to short day photoperiod (Thanananta  
et al., 2006), control of plant development (Teyssier et al., 
2008), answer to salt stress (Zhong et al., 2009) and so 
on. Methylation of DNA is verified to be an important role 
in epigenetic regulation in the whole process of plant 
development. In the present study, effects of light quality 
on DNA methylation patterns and levels for cotton were 
detected by MSAP technique. As a result, different light 
quality showed variously specific impact on cytosine 
methylation patterns and methylation extent. Based on 
the presence or absence of a band, the methylation 
patterns could be divided into four types: Demethylation 
(type I), hemi-methylation (type II), internal full methylation 
(type III) and outside fully methylated or hyper-methylated 
(type IV). The frequencies of total methylation, internally 
full methylation and hemi-methylation were changed 
when cotton were illuminated with different quality light. 
Under blue, white+UV-B, red, white and yellow light, the 
frequencies of total methylation accounted respectively 
for 24.15, 25.68, 27.09, 19.29 and 21.92%; the ratios of 
internally full methylation reached respectively to 13.64, 
15.32, 16.35, 7.58 and 11.08%; the proportions of hemi-
methylation were separately up to 10.51, 8.21, 9.73, 9.33 
and 8.77%. It is well known that, the status of DNA 
methylation for plant is sensitive to the environmental 
conditions. NaCl treatment may induce some CCGG sites 
demethylation and some hypermethylation in wheat 
(Zhong et al., 2009). Under short day period, differences 
in DNA methylation pattern were found during the 
transition from vegetative to reproductive phase in rice 
(Thanananta et al., 2006). In this article, different effects 
of blue, white+UV-B, red, white and yellow light quality on 
DNA methylation level were detected. Red light enhanced 
DNA internally, full methylation and hemi-methylation. 
Blue, white and yellow lights reduced DNA internally full 
methylation, but increased percentage of DNA hemi-
methylation. These results might suggest an epigenetic 
mechanism of plants’ response to light quality. 

Although, many phenotype changes are found to be 
closely related to the cytosine methylation (Suzuki et al., 
2008), the underlying mechanism of DNA methylation in 
plant are still unknown. Previously, many candidate 
genes were found similar to functional genes and 
transcription factors which were involved with gene 
regulation and expression by the MSAP technique 
(Suzuki et al., 2008; Inagaki and Kakutani, 2010; Hanai et 
al., 2010). In the present study, 4 monomorphic frag-
ments and 1 polymorphic fragment were purified and 
sequenced to study the response mechanism to light 
quality for cotton. By alignment at the NCBI database, the 
Sequence 2, 3 and 5 were found to show higher similarity 
to non-coding regions of some plants; Sequence 1 was 
identical to the pyruvate kinase of Ricinus communis, 
Sequence 4 shared homology with aquaporin form MIP 
family/TIP subfamily. Pyruvate kinase is an important 
enzyme of glycolytic pathway, which accompanies 
phosphoenolpryuvate phosphatase. It catalyzes the 
transfer of a phosphate group from phosphoenolpyruvate 
(PEP) to ADP and yields one molecule of pyruvate and 
one molecule of ATP. It is related to the regulation of 
downstream of carbohydrate metabolism. Aquaporins are 
proteins embedded in the cell membrane that regulate 
the flow of water. Some transport other small uncharged 
solutes, such as glycerol, CO2, ammonia and so on. 
Taken together, these may imply that response 
mechanisms to light quality for cotton are correlated with 
carbohydrate metabolism and photosynthetic reaction. 

In conclusion, different light qualities had diverse 
impacts on DNA methylation patterns and levels. In the 
response process to light quality, dramatic methylation 
status changed in both coding and non-coding regions for 
cotton were detected. These variations were also accom-
panied by changes in gene expression, which were 
possibly controlled by regulation of methylation status in 
promoter region or coding region of genes. These may 
suggest an epigenetic mechanism for light response of 
brown cotton.  
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Table 5. Homology analysis of 5 fragments by blasting in Genebank database. 
 

Fragment Primers 
Accession 

number 
Homology E value 

Methylation pattern 

B C R W Y 

H M H M H M H M H M 

Seq1 H6/E11 HQ008720 R. communis pyruvate kinase, putative (XM_002523350) 9.00E-19 1 1 0 1 0 1 0 1 1 1 

               

Seq2 H4/E8 HQ008721 V. vinifera contig VV78X181060.3, whole genome shotgun sequence (AM425991) 3.00E-17 0 1 0 1 1 1 0 1 0 1 

               

Seq3 H4/E8 HQ008722 G. arboreum clone BAC 271C22, complete sequence (EU626444) 2.00E-40 1 1 1 1 1 0 1 0 1 0 

               

Seq4 H3/E7 HQ008723 P. trichocarpa aquaporin, MIP family, TIP subfamily (XM_002326421) 5.00E-17 1 1 1 0 0 0 0 0 0 0 

               

Seq5 H4/E11 HQ008724 
G. hirsutum cultivar Deltapine 33 B clone MONCS1193 SSR marker CGR6783 
genomic sequence (GQ394228) 

2.00E-61 0 1 0 1 1 1 0 1 0 1 

 

Note: Accession numbers were provided by the GenBank submissions staff for the uploaded sequences (Seq1, Seq2, Seq3, Seq4 and Seq5). E value according to information from BLASTX search of 
the non-redundant database at NCBI. The number “0” was defined as the band is absent and “1” was defined as the band appeared. 
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