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Previous studies have shown that pro-inflammatory cytokines were involved in the genesis and 
persistence of neuropathic pain. Nuclear factor kappa B (NF-κB) plays a crucial role in regulating pro-
inflammatory cytokine gene expression. In this study, we examined the hypothesis that NF-κB would 
regulate the expression of spinal tumor necrosis factor α (TNF-α) and inducible nitric oxide synthase 
(iNOS) following chronic constriction nerve injury (CCI) in rats. CCI induced a significant upregulation 
of NF-κB in the ipsilateral spinal cord on postoperative Day 7 as revealed by Western blot, 
immunohistochemistry and real time polymerase chain reaction (real time-PCR). Moreover, TNF-α 
mRNA expression was markedly upregulated by CCI, whereas only a low level of iNOS mRNA was 
detected in the ipsilateral spinal cord. The immunohistochemical data indicated a pattern of 
colocalization between NF-κB and TNF-α within spinal cord dorsal horn. These results show that NF-κB 
activation is correlated with TNF-α expression, but not iNOS expression, in the spinal cord after 
peripheral nerve injury. 
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INTRODUCTION 
 
Neuropathic pain developing after peripheral nerve injury 
is associated with a complex network of molecules in the 
peripheral and central nervous systems. Numerous pro-
inflammatory factors have been implicated in the 
pathophysiology of neuropathic pain, including tumor 
necrosis factor α (TNF-α) and inducible nitric oxide 
synthase (iNOS), contributing  to  hyperalgesia,  allodynia  
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Abbreviations: CCI, Chronic constriction nerve injury; L5, 5th 
lumbar nerve; L6, 6th lumbar nerve; IASP, international 
association for the study of pain ; SNL, L5/L6 spinal nerve 
ligation;  ODN, oligodeoxynucleotides; NF-kB, nuclear factor 
kappa B; iNOS, inducible niyric oxide synthase; TNF-α, tumor 
necrosis factor α. 

and spontaneous pain (Zelenka et al., 2005; Sweitzer et 
al., 2001; De Alba et al., 2 006). Nuclear  factor  kappa  B 
(NF-κB) is a critical transcription factor for maximal 
expressions of many cytokines, including TNF-α and 
iNOS. Nerve injury such as partial ligation, complete 
transection or spinal cord compression triggers NF-kB 
activation (Sakaue et al., 2001; Pollock et al., 2005). 
Moreover, our previous studies have demonstrated intra-
thecal administration of antisense oligodeoxynucleotides 
(ODN) may alleviate allodynia and hyperalgesia through 
the NF-κB pathway (Sun et al., 2006).

 
Therefore, it is 

believed that NF-κB contributes to the pathogenesis of 
neuropathic pain. 

TNF-α, an important pro-inflammatory cytokine, plays a 
crucial role in neuropathic pain. Experimental studies 
have revealed that spinal application TNF-α induced 
long-term potentiation of C-fiber evoked field potentials in 
spinal dorsal horn, which is relevant to pathological pain 
(Liu et al., 2007).

 
Topical application of TNF-α induces 

ectopic activity in nociceptive Aδ and C fibers (MacEwan,  



 
 
 
 
2002).

 
In addition, blocking the action of TNF-α can 

attenuate bilateral mechanical  allodynia  (Milligan  et  al., 
2003). 

The iNOS gene promoter includes binding sites for NF-
κB which mediate iNOS transcription (Seo et al., 2009, 
Xie et al., 1994). Recent studies have suggested both a 
spinal and peripheral contribution of iNOS to mechanical 
hypersensitivity after L5 spinal nerve ligation (LaBuda et 
al., 2006). 

While previous studies have shown the involvement of 
both TNF-α and iNOS in neuropathic pain, the relation-
ship between the expression of spinal NF-κB and TNF-
α/iNOS remains unknown. This study was devoted to 
elucidate the linkage between NF-κB and inflammatory 
factors TNF-α and iNOS. We examined the hypotheses 
that spinal NF-κB would regulate the expression of TNF-α 
and iNOS after chronic constriction nerve injury (CCI) and 
that the NF-κB pathway might play a role in the proces-
sion of neuropathic pain. 
 
 
MATERIALS AND METHODS 

 
Animals 
 
A total of 104 male Sprague-Dawley rats weighing 220 to 280 g 
were used. The rats were housed in separated cages at constant 
temperature (22±2°C), with a 12:12 h light/dark cycle, and free 
access to food and water. Following the IASP guidelines

 
for pain 

research in animals (Zimmermann, 1983), all experiment 
procedures were approved

 
by the Animal Care and Use Committee 

at the Shandong University
 
and in accordance with the University's 

guidelines for
 
the care and use of laboratory animals. Rats were 

randomly divided into two groups (n=52): the sham group and CCI 
group. 

 
 
Chronic constriction injury of the sciatic nerve model 
 
Peripheral neuropathy was induced by chronic constriction injury of 
the sciatic nerve in the right hind paw, according to Bennett and Xie 
(1988).

 
Briefly, the rats were anesthetized with chloral hydrate 

anesthesia (300 mg kg
–1

 i.p.).The right sciatic
 
nerve was exposed at 

the mid-thigh level, 4 ligatures were loosely tied with about 1 mm 
spacing (4-0 chromic gut) proximally to the trifurcation. Sham 
surgery was performed

 
by exposing the right sciatic nerve without 

ligation. The incision
 
site was closed in layers and penicillin was 

administered i.m.
 
 

 
 
Behavioral test 

 
Rats were transferred to a plastic chamber (20 × 25 × 15 cm) and 
allowed to acclimatize for 30 min before testing. Mechanical 
allodynia was assessed using a series of von Frey filaments as 
described previously (Chaplan et al., 1994). Each filament

 
was 

applied perpendicularly 5 times to the plantar surface of the hind 
paw

 
pads (the ipsilateral/contralateral side of the nerve–ligated rats 

and the ipsilateral side of the sham-operated rats). Quick withdraw 
or licking of the paw in response to the stimulus was considered a 
positive response. The paw withdrawal threshold (PWT) was 
determined by sequentially increasing and decreasing the stimulus 
strength  (the up-and-down   method), and the  data were  analysed  
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using the nonparametric method of Dixon (1980),

 
and the smallest  

filament that evoked positive responses on three of five was taken  
as mechanical withdraw threshold. Thermal hyperalgesia was 
assessed using the paw withdrawal latency

 
(PWL) to radiant heat 

according to the protocol of Hargreaves et al. (1988).
 
A high  

intensity light beam was focused
 
onto the plantar surface of the hind 

paw pads through the glass plate.
 

The time when positive 
responses appeared was considered the PWL. Cut-off was set at 
30 s. Intervals were 5 min between trials. Tests were performed

 
at 1 

day before and 1, 4, 7, 14 and 21 days after surgery.
 
 

 
 
Western blot 

 
Rats (n=4 for each time point) were decapitated under chloral 
hydrate anesthesia at 1 day before and 1, 4, 7, 14 and 21 days 
after surgery, and the lumbar spinal enlargement (L4-L6) was 
removed. Each segment was separated into the ipsilateral and 
contralateral side and homogenized in SDS sample buffer 
containing a protease inhibitor cocktail (Sigma, USA). Protein 
samples were separated on an 8% SDS-polyacrylamide gel and 
transferred onto NC membrane (Millipore, Bedford, MA). After 
blocking with TBS containing 5% skim milk and 0.1% Tween 20 for 
2 h at room temperature, membranes were incubated overnight at 
4°C with primary rabbit monoclonal anti-NF-κB-p65 (1:1000, Cell 
Signaling Technology, USA). Membranes were then washed and 
incubated with secondary antibody (1:5000, Santa Cruz 
Biotechnology, CA, USA) for 1 h. After extensively washing, the 
protein bands were visualized by an enhanced chemiluminesence 
assay (Millipore, Bedford, MA) following the manufacturer’s 
instructions. 
 
 
Real-time quantitative PCR 
 
At the same time points, total RNA was extracted using Total RNA 
Isolation Reagent (Invitrogen, CA, USA) and 2 µg of RNA was 
reverse-transcribed in a 10 µl reaction using random primers and 
Transcriptor First Strand Synthesis Kit (Takara, Japan), both in 
accordance with the manufacturer’s instructions. Amplification 
mixture (20 µl) contained 4 µl of cDNA, 5 µl of primers and 11 µl of 
Ex Taq SYBER Premix (Takara, Japan). Amplification was 95°C for 
2 min, followed by a 40 cycles of 95°C for 30 s, 60°C for 1 min. All 
real time-PCR were performed in triplicate to ensure quantitative 
accuracy. PCR was performed on ABI 7500HT instrument and data 

were analyzed based on the 2
-△△CT 

method with normalization 

software. The primers are listed in Table 1. 
 
 
Immunohistochemistry 

 
At 7 days after surgery, 8 rats were perfused transcardially with 200 
ml phosphate-buffer saline (PBS,0.1 M, pH 7.4) followed by 500 ml 
4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4). The 
lumbar spinal enlargement (L4-L6) was removed and postfixed in the 
same fixative for 4 h and then replaced with 30% sucrose until they 
sank. Transverse spinal sections (20 µm) were cut and stored at -
20°C until processed for immunofluorescence. All sections were 
blocked with 15% goat serum in 0.3% Triton X-100 for 2 h at room 
temperature and incubated with a mixture of rabbit monoclonal anti-
NFκB-p65 (1:25, Cell Signaling Technology, USA) and mouse 
polyclonal anti-TNFα (1:50, Santa Cruz Biotechnology, CA, 
USA)/mouse monoclonal anti-iNOS (1:50, Abcam Inc, UK) 
overnight at 4°C. Sections were rinsed and incubated for 1 h at 
room temperature in mixture secondary antibodies: goat anti-rabbit 
TRITC (1:100, Santa Cruz Biotechnology, CA, USA) and goat anti-
mouse FITC (1:100, Santa  Cruz  Biotechnology, CA, USA). Images  
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Table 1. The prime sequence for RT-PCR. 
 

Name Prime Sequence Size of amplified DNA Accession number 

NF-κB p65 Upstream 5’-GTGCAGAAAGAAGACATTGAGGTG-3’ 131bp NM199267 

 Downstream 5’-AGGCTAGGGTCAGCGTATGG-3’   

     

TNFα Upstream 5’-TGTCTGTGCCTCAGCCTCTTC-3’ 110bp NM012675 

 Downstream 5’-TTTGGGAACTTCTCCTCCTTGT-3’   

     

iNOS Upstream 5’-CTTGGAAGAGGAACAACTACTGCT-3’ 139bp NM012611 

 Downstream 5’-GCCAAATACCGCATACCTGAA-3’   

     

GAPDH Upstream 5’-TGGAGAAACCTGCCAAGTATGA-3’ 135bp NM017008 

 Downstream 5’-TGGAAGAATGGGAGTTGCTGT-3’   
 
 
 
were obtained under a fluorescence microscope (Leica DMRE, 
Heidelberg,   Germany)   and  processed  using  Adobe  Photoshop 
8.0.3 (Adobe, San Jose, CA,USA). 
 
 
Statistical analysis 
 

All data are shown as means ± SEM, and comparisons between 
groups were carried out by one way ANOVA. Differences with 

p＜0.05 were considered statistically significant. 

 
 
RESULTS 
 
Behavioral studies 
 
Neuropathic rats experienced significant mechanical 

allodynia and thermal hyperalgesia (p＜0.05) in the 
ipsilateral, nerve-ligated side. The allodynia peaked at 

Day 7 with paw withdrawal thresholds (PWT)＜7 g, when 

compared to the contralateral side or the ipsilateral side 

of sham-operated rats (PWT＞22 g). The hyperalgesia 
peaked at Day 4 with paw withdrawal thresholds 

(PWL)＜8 s, while in the contralateral side or in sham-

operated rats (PWL＞16 s). The attenuation of allodynia 
and hyperalgesia persisted through the observation 
period of 21 days. There was a significant difference in 
terms of PWT and PWL between the nerve-ligated side 
and sham-operated side (p<0.05), but not between the 

contralateral side and sham-operated side (p＞0.05) 
(Figure 1). 
 
 
Western blot of NF-κB protein expression 
 
Our studies showed that CCI induced a significant 
upregulation of NF-κB in the spinal cord ipsilateral but not 
contralateral to CCI, which occurred 4 to 7 days after CCI 
and correlated with the development of neuropathic pain 
behaviors in CCI rats. There was no significant difference 
in NF-κB  expression  between  the  contralateral  side  of  

CCI rats and the  ipsilateral  side  of  sham-operated  rats  
(Figure 2). 
 
 
Real-time PCR of NF-κB, TNF-α and iNOS mRNA 
 
CCI markedly activated NF-κB in the ipsilateral spinal 
cord compared to sham rats. The expression of NF-κB 

mRNA began to increase at 1 day (p＞0.05) after 

operation, increased significantly at 4 day (p＜0.05) and 

reached a peak at 7 day (p＜0.01), but remained 
elevated for the remainder of the experiment (Figure 
3A).The expression of TNF-α mRNA began to increase at 

4 day (p＜0.05) and reached a peak at 7 day (p＜0.01) , 
this was followed by a gradual decrease, returning to the 
same level compared to the sham group at 21 day 
(Figure 3B). The expression of NF-κB and TNF-α mRNA 
increased significantly in the ipsilateral spinal cord, 

compared with the contralateral side (p＜0.05) and the 

sham group (p＜0.05), while no such alterations on iNOS 
expression could be seen in the ipsilateral spinal cord 
(Figure 3C). 
 
 
Double-immunofluorescence histochemical staining 
of TNF-α , iNOS and NF-κB 
 
Rats were decapitated at 7 day postoperatively and the 
L4-L6 spinal cords were removed for double-immuno-
fluorescence histochemical staining. The distribution of 
NF-κB and TNF-α immunoreactivity indicated an 
increased expression in the spinal cord ipsilateral to CCI 
(Figure 4). Within the superficial laminae of ipsilateral 
spinal cord dorsal horn, a significant pattern of 
colocalization was detected between NF-κB and TNF-α 
and lots of NF-κB and TNF-α positive cells could be 
seen(Figure 4A-C), compared with sham-operated 
(Figure 4D-F) spinal cord dorsal horn. We found 
significant numbers of NF-κB positive cells in the spinal 
cord ipsilateral to CCI (Figure 5B), while no iNOS positive  
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Figure 1. The paw withdrawal threshold (PWT) and the paw withdrawal latency (PWL) in CCI model of rat. (A) Paw 

withdrawal thresholds (PWT) to stimulation with Von Frey hair filaments of nerve-ligated (lig) hind paws, at 1 day before 
operation up to 21 day post-operation. Withdrawal threshold to mechanical stimuli decreased in the ipsilateral side of the 

nerve-ligated rats, PWT＜7 g at 7 day post-operation, but not in the contralateral side or in sham-operated rats PWT＞22 g. 

Data are presented as mean ± SEM. (▲p＜0.05 vs. the sham side; +p＜0.05 vs. the ligated-control side.) (B) Paw 

withdrawal latency (PWL) to radiant heat stimulation of nerve-ligated (lig) hind paws. Withdrawal threshold to heat stimuli 

decreased in the ipsilateral side of the nerve-ligated rats, PWL＜8 s at 4 day post-operation, while in the contralateral side or 

in sham-operated rats PWL＞16 s. Data are presented as mean ± SEM. (▲p＜0.05 vs. the sham side; ＋p＜0.05 vs. the 

ligated-control side). 
 
 
 

cells could be detected in the superficial laminae of 
ipsilateral spinal cord dorsal hornin both CCI group and 
sham-operated group (Figure 5A and D).  

DISCUSSION   
 
The present data demonstrated that  chronic  constriction  
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Figure 2. The changes of NF-κB expressions in spinal cord of CCI and sham-operated rats. The changes of NF-κB 
expressions in spinal cord of CCI and sham-operated rats. Western blot showed a significant increase of NF-κB 
protein expression in the ipsilateral side, which peaked at Day 7. The contralateral side and sham-operated side 
exhibited lower levels of protein expression than the ipsilateral side (n=4). Data are presented as mean ± SEM. 

(＃p＜0.05, ##p＜0.01 vs. baseline (protein expression at 1 day before operation; *p＜0.05, **p＜0.01 vs. the 

ligated-control side; ＋p＜0.05, ＋＋p＜0.01 vs. the sham side). 

 
 
 

injury accompanied by mechanical allodynia and thermal 
hyperalgesia causes profound alterations of NF-κB and 
TNF-α in the lumbar dorsal horn 7 days after CCI. A 
significant increase of NF-κB expression occurred in the 
L4-L6 spinal cord, ipsilateral to the ligated side. There 
was a pattern of colocalization between NF-κB and TNF-
α in the same spinal region and the changes of TNF-α 
expression likewise correlated with NF-κB distribution 
detected by immunohischemistry. No alteration in iNOS 
expression was detected in the L4-L6 spinal cord. These 
findings suggested NF-κB may be correlated with the 
expression of TNF-α, but not iNOS in the spinal cord 
following sciatic nerve ligation. NF-κB is a critical 

transcription factor for maximal expression of many cyto-
kines. CCI triggers the activation of NF-κB, which 
regulates the expression of the downstream inflammatory 
factor TNF-α. This implies that NF-κB pathway might play 
a role in the procession of neuropathic pain. 

The role of NF-κB signaling pathway in neuropathic 
pain has been studied in several experimental rodent 
models, such as chronic constriction injury (LaBuda et al., 
2006),

 
partial lesion of sciatic nerve or its root (Park et al., 

2002, Pérez et al., 2004; Shir and Seltzer, 2001; Seltzer 
et al., 1990; Kim and Chung, 1992).

 
For example, Ma and 

Bisby (1998) have demonstrated that NF-κB expression 
and activity is upregulated in  DRG  neurons  after  partial  
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Postoperative day (d) 

 
 
Figure 3. The mRNA expressions of NF-κB, TNF-α, iNOS in CCI rats. 
Quantitative evaluation of NF-κB (A), TNF-α (B), iNOS (C) expressions in the 
spinal cord from the contralateral, ipsilateral sides of nerve-ligated rats and 

sham-operated rats (n=4). Data are presented as mean ± SEM. (*p＜0.05, 

**p＜0.01 vs. baseline (gene expression at 1 day before operation; #p＜0.05, 

##p＜0.01 vs. the ligated-control side; ++p＜0.05, ++p＜0.01 vs. the sham 

side). 
 
 
 

sciatic nerve injury. These authors report a progressive 
and significant increase in NF-κB in the ipsilateral lumbar 
dorsal horn after spinal nerve ligation (SNL), and the 
spinal pro-inflammatory factors generated in the affected 
spinal cord from onset of nerve injury facilitates this 

process (O'Rielly and Loomis, 2008). Moreover, NF-κB 
inhibitors can attenuate pain-related behaviors. Pretreat-
ment with NF-κB decoy ODN significantly reduced 
mechanical allodynia and thermal hyperalgesia in CFA-
induced pain model (Lee  et  al.,  2004).

  
Together,  spinal  
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Figure 4. Colocalization of NF-κB and TNF-α (A-F). Displayed panels are representative immunohistochemical images 
from CCI and sham-operated rats at 7 day post-operation showing the distribution of NF-κB (red; Panel B, ipsilateral; 
Panel E, sham) and TNF-α (green; Panel A, ipsilateral; Panel D, sham) in the spinal cord dorsal horn. Images between 
Panels A and B, D and E were merged in Panels C and F. Arrows indicate the immunoreactive positive cells. Note that a 
majority of NF-κB positive cell profiles were also TNF-α positive as shown in the merged images (Panel C). Scale bar: 100 
µm. 

 
 
 

cord NF-κB plays a critical role in the procession of 
neuropathic pain.  

Numerous studies have shown that TNF-α plays a 
critical role in central sensitization (Watkins et al., 2001), 
contributing to the development of neuropathic pain 
(Wieseler-Frank et al., 2005; Sommer and Kress, 2004). 
Peripheral nerve injury leads to the upregulation of TNF-α 
and TNFR1 in DRG and in spinal cord (Ohtori et al., 
2004; Xu et al., 2006). Intrathecal administration of TNF-α 
antagonists markedly attenuates pain behaviors caused 
by spinal nerve transaction (Ma and Bisby, 1998) and 
sciatic inflammatory neuropathy (Milligan et al., 2003).

 

Our research demonstrates that expression of TNF-α 
increases after surgery, coinciding with the development 
of mechanical and thermal hyperalgesia, in agreement 
with previous studies showing that spinal inflammatory 
cytokines can mediate the development of neuropathic 
pain. NF-κB activation may amplify/perpetuate the inflam-
matory response. Activated NF-κB translocates into the 
nucleus and leads to transcription of a wide variety of 
relevant effected genes, such as IL-1β, IL-6, TGF-β 
(Karin and Ben-Neriah, 2000; Tergaonkar, 2006).

 
Pre-

treatment with NF-κB inhibitor, PDTC, prevented 
allodynia and attenuated the upregulation of TNF-α and 
TNFR1 induced by peri-sciatic administration of rrTNF 
(Wei et al., 2007). Repeated administration of mirta-
zapine induced a robust suppression of TNF-α and IL-1β 
by inhibiting NF-κB activation (Zhu et al., 2008). TNF-α 
administrated locally or generated at the site of injury was 

transported retrogradely, leading to NF-κB activation 
through binding with TNFR1 expressed in DRGs and in 
spinal dorsal horn, which in turn induced transcription of 
genes encoding proinflammatory cytokines and other 
mediators, such as TNF-α, IL-6, COX-2, and so on 
(O'Neill and Kaltschmidt, 1997; Holmes et al., 2004; Baud 
and Karin, 2001; Ledeboer et al., 2005). Endogenous 
TNF-α might be continuously produced via activated NF-
κB pathway, which contributed to pain-related behavior 
changes. These findings supported our results that NF-
κB pathway was correlated with the expression of TNF-α 
in the spinal cord after sciatic nerve injury. 

In our experiments, we speculated that the expression 
of TNF-α mRNA decreased significantly at 14 day post-
operation up to 21 day, while NF-κB remained elevated 
throughout the experiment. The mechanism behind the 
changes still remains unclear. One hypothesis is that a 
concentration-related negative feedback or interplay with 
TNF receptors, which regulate a number of signalling 
processes including kinase or phosphatase activation, 
lipase stimulation, and protease induction and attenuate 
the pain hypersensitive response (MacEwan, 2002).    

Peripheral nerve injury may result in hyperexcitability of 
spinal dorsal horn neurons (central sensitzation) through 
on-going afferent discharges, leading to NO production 
(Pitcher and Henry, 2002). Previous studies have 
focused on iNOS expression in the injured peripheral 
nerve. For instance, CCI induced local iNOS expression 
in both macrophages and Schwann cells within and distal 



Zhang et al.         6379 
 
 
 

 
 
Figure 5. Colocalization of NF-κB and iNOS (A-F). Displayed panels are representative immunohistochemical images from 

CCI and sham-operated rats at 7 day postoperatively showing the distribution of NF-κB (red; Panel B, ipsilateral; Panel E, 
sham] and iNOS (green; Panel A, ipsilateral; Panel D, sham) in the spinal cord dorsal horn. Images between Panels A and 
B, D and E were merged in Panels C and F. Arrows indicate the NF-κB positive cells. Note that iNOS positive cells could be 
seldom detected. Scale bar: 100 µm. 

 
 
 

to the injury site (Levy and Zochodne, 1998), which play 
a significant role in Wallerian degeneration and sub-
sequent nerve regeneration processes (Ramer et al., 
1997).Only peripherally-expressed iNOS was involved in 
the development of neuropathic pain in CCI model of rats 
(De Alba et al., 2006). iNOS expressed by glia was 
thought to be involved in mechanisms of hyperalgesia in 
models of spinal cord injury (Sakaue et al., 2001). In our 
study, we detected iNOS mRNA expression in the spinal 
cord to observe the relationship between spinal NF-κB 
and iNOS. Our data showed no significant difference at 
observation time points. These results indicated that the 
activation of spinal NF-κB is not correlated with iNOS 
expression in CCI model of rats. The mechanism is 
unclear and the difference of iNOS expressions between 
peripheral nervous system and central nervous system 
needs to be further studied. 
 
 
Conclusion 
 
These findings suggest that spinal NF-κB is involved in 
the process of neuropathic pain induced by peripheral 
nerve injury. NF-κB activation is correlated with TNF- α 
expression, but not iNOS expression in the spinal cord 
after chronic sciatic nerve injury. Further understanding of 
this relationship may provide insights for the development 
of novel therapeutic strategies for the treatment of 
neuropathic pain. 
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