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The nutrient dynamics in decomposing litter has proved to play a crucial role in regulating the nutrient 
status of ecosystems and vegetation productivity. Little is known, however, about the effect mechanism 
of decomposer and its environment on the nitrogen (N) mineralisation of litter along an elevation 
gradient in such sites. We investigated the effects of soil mesofauna using litter bags on N dynamics in 
decomposing Castanopsis carlesii litter along an elevation gradient across four types of ecosystems in 
southeastern China: evergreen broadleaf forest (EVB), coniferous forest (COF), dwarf forest (DWF) and 
alpine meadow (ALM). The mean contribution of soil mesofauna to N concentration was 12.6% at EVB, 
10.6% at COF, 5.4% at DWF, and 3.1% at ALM. The N concentration of litter with mesofauna was 
significantly related to H′ (Shannon-Wiener) and GN (group number) across the four sites. The effects of 
soil mesofauna on N concentration of litter were significantly linked to some special faunal groups, 
including Oribatida, Mesostigmata and Collembola. The N concentration in litter bags were positively 
related with mean annual air temperature, soil temperature and litter moisture along the elevation 
gradient. We concluded that the rapid accumulation of N in lower elevation sites during the first few 
months can result in the retention of mobile N in soils and the effects of soil mesofauna on N dynamics 
may be intimately associated with microclimate (warm and humid) and faunal diversity along the 
elevation gradient.   
 
Key words: Nitrogen concentration, mesofauna, faunal diversity, elevation gradient, Wuyi National Nature 
Reserve, China. 

 
 
INTRODUCTION 
 
The process of litter decomposition plays a vital role in 
regulating ecosystem carbon storage and nutrient cycling 
(Wardle, 2002; Santiago, 2007). The nutrient dynamics of 
litter related to the decomposition rates directly determine 
the nutrient status of an ecosystem, thereby exerting 
crucial control on vegetation productivity (Moretto and 
Diste, 2003; Knorr et al., 2005; Van Der Heijden et al., 
2008). Decomposition and nutrient dynamics are known 
to be regulated by the decomposer activities (Heneghan 
et al., 1999; Wang et al.,  2003;  Strickland  et  al.,  2009),  
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which depend on physical and chemical environmental 
factors such as temperature, humidity and litter 
biochemical quality (Vitousek et al., 1994; Lee and 
Bukaveckas, 2002; Ross et al., 2002; Trinder et al., 
2008). It is shown that, the biochemical quality of litter 
especially nitrogen (N) concentrations as a demand for 
decomposers, is believed to be related to the rate of litter 
decomposition (Enríquez et al., 1993; Vivanco and 
Austin, 2008). The slow litter decay with poor N quality 
may be a result of decomposer activities that are limited 
due to a lack of nutrients. Soil biology can cause N 
immobilization from outside when N concentration in the 
substrate is low, so the N content in the litter tends to 
increase, to meet microbial demand (Wang and Huang, 
2001; Baker et al., 2001).  



 
 
 
 

Studies on the N cycling across ecosystem types 
revealed that, increase in the environmental temperature 
and moisture generally results in greater rates of 
microbial activity (Strickland et al., 2009), thereby 
increasing the rate of decomposition and N mineralization 
from plant litter. Vitousek et al. (1994) suggested that, 
decomposition rates decrease exponentially as 
temperature falls along elevation gradients. The climatic 
variability in warm humid zones means that the 
interactions between decomposer and its environment 
may be the strongest determinants of decomposition 
dynamics and N mineralization (Lavelle et al., 1993; 
Turetsky et al., 2008). Forest soils at warm humid zones 
also support a highly diverse microbial community (Lodge 
et al., 1996; Lan et al., 2010) and the microbial 
production also contributes to the retention of N. 
However, because of this potential for high N 
immobilization by microbes, microbes may compete with 
plants for nutrients in N-limiting conditions (Zak et al., 
1990).  

The contribution of soil mesofauna community to N 
dynamics can be expected because soil mesofauna can 
stimulate or inhibit microbial production by grazing some 
microbes (Lussenhop, 1992). It was found that, in general 
models of belowground food web and ecosystem 
process, the faunal effect on decomposition was often 
determined by the interaction of soil animals and 
microbial populations (Zheng et al., 1997; Scheu and 
Falca, 2000; Scheu and Folger, 2004). Whether microbial 
production increases or decreases in response to grazing 
appearances depends on the grazing intensity of soil 
fauna (Hanlon and Anderson, 1979). A faunal influence 
on microbial N accumulation would therefore, result in 
greater or lower N concentration for a given mass of litter 
remaining, depending on the abundance of grazers in the 
system.   

However, the interaction mechanism of soil mesofauna 
and microbes for litter decomposition and nutrient 
mineralization are poorly understood (Sulkava and Huhta, 
1998). Some mesofauna (Collembola and Oribatida) are 
proved to prefer ectomycorrhizal over saprotrophic fungi 
(Shaw, 1992; Hiol et al., 1994; Ruess et al., 2000). 
Furthermore, many mesofauna can modify the physical 
environments of plant litter decomposers. Each of these 
trophic interactions influence nutrient mineralization, but 
the diversity significance of mesofauna is not well known. 
In this paper, carbon (C) and N dynamics in decomposing 
Castanopsis carlesii litter confined in litterbags along an 
elevation gradient in the Wuyi Mountains was examined. 
Our objectives were to examine: (1) The N dynamics in 
decomposing litter along the elevation gradients; (2) the 
relationships between the composition and diversity of 
the soil mesofauna and their contribution to litter N 
concentration along the elevation gradient; (3) the 
interaction effects of soil mesofauna and its microclimate 
(warm and humid) in regulating N concentration of litter 
across the four sites.   

Wang and Ruan         6733 
 
 
 
MATERIALS AND METHODS 
 
Site descriptions 
 

This study was carried out at the Wuyi National Nature Reserve in 
the northern Fujiang province; a 56,527 ha forested area in the 
southeast of China (117°27′-117°51′E, 27°33′- 27°54′N). The 
vegetations in the Wuyi Mountains are distributed with clear vertical 
zonation along elevational gradients. Four sites with a range of 
elevation from 300 m to 2158 m above sea level were established 
to investigate the relationships between soil mesofauna and N 
dynamics across an altitudinal gradient. The vegetation types of the 
four sites were evergreen broadleaf forest (EVB), coniferous forest 
(COF), dwarf forest (DWF) and alpine meadow (ALM), respectively. 
A brief summary of their characteristics of climate, vegetation and 
soil are given in Table 1. 
 
 
Experimental design and sampling  
 

Recently senesced leaves of C. carlesii, dominate plant species in 
the Wuyi Field Ecological Research Station, were collected in the 
evergreen broadleaf forest at the Wuyi Mountains and 
approximately 4 g of air-dried litter was placed in nylon litter bags 
(10 x 10 cm). The original N content of the litter was 1.47% and the 
initial C concentration was 50.26% (C: N ratio of 34). Leaf litter 
samples were oven-dried at 60°C to establish the relationship 
between air-dry and oven-dry mass. 

Within an environmentally homogeneous part of each site, a total 
of 288 litter bags were placed horizontally on the soil surface in the 
field: 72 in each of the sites (EVB, COF, DWF and ALM). At each 
site, 72 litter bags containing leaf litter of C. carlesii were placed into 
each of three random blocks (50 × 60 m). Each block was spaced 
about 10 m apart. 

Within each block, two 4 × 4 m plots were randomly set up. Two 
treatments were randomly assigned to the two plots within each 
block: control (1.00 mm mesh size) and mesofauna-excluded (0.01 
mm mesh size). 12 litter bags were placed on each plot.   

Every two months for one year, 12 litter bags (six from 
mesofauna-excluded litterbags and six from control ones) were 
collected at random from each site and six litter bags (two from 
each block) per treatment per site were taken to the laboratory for 
analyses. All collected litter bags were subjected to faunal 
extraction (see further) and then, oven-dried at 60°C and weighed 
to determine the remaining litter mass.  Litter moisture within litter 
bags at the four sites was surveyed and calculated as the difference 
between litter wet and dry weights divided by the dry weight and 
expressed as a percent [(wet weight - dry weight)/dry weight) × 100].  

Four sets of HOBO onset microclimatic recorders (U23-002) were 
used to measure the air temperature at 15 min intervals at each of 
the four sites. Soil temperature in plots was measured hourly with 
data loggers (Onset Computer Corporation, Pocasset, MA, USA) 
placed in the center of each plot 5 cm below the soil surface. Soil 
moisture was calculated as: soil moisture (%) = 100 (wet weight-
dried weight)/dried weight. Soil pH in the site floor was measured in 
10:1 slurry of deionized water and 2.0 g of sample. Total C and total 
N of the soil and litter were analyzed by combustion, using a Carlo 
Erba C/N analyzer (Carlo Erba, Milan).   

 
 
Calculations and statistical analysis 

 
The N concentration contributed by mesofauna (NCCM) was 
calculated as NCCM = (control litter bags-mesofauna-excluded litter 
bags) / mesofauna-excluded litter bags. In the laboratory of the 
Wuyi Field Ecological Research Station, collected litter bags were 
immediately placed in  modified  Tullgren  extractors to  remove  the  
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Table 1. Characteristic of vegetation and soil along the elevation gradients. 
 

Elevation (m) 
EVB COF DWF ALM 

500 1150 1750
 

2100 

Dominant tree  
species 

C. 
carlesii 

Pinus tanwanensis Symplocos 
paniculataandStewartia 
sinensis 

For example,Calamagrostis 
brachytricha, Miscanthus 
sinensis,andLycopodium clavatu 

Mean annual 
temperature 
(°C) 

17-19 

(He et al. 
1994) 

Approximately 14.5 
(Zheng and Fang, 
2004)

 

11.2 (He et al., 1994; Zheng 
and Fang, 2004)

 
Nearly 9.7 (He et al., 1994; Zheng and 
Fang, 2004)

 

Annual mean 
rainfall (mm) 

1700 2000 2200
 

3100
 

Height  (m) 14.7 11.4 4.5 0.25 

Soil depth  (cm) ≥80 35 ≥70 25 

Soil temperature 
(°C) 

16.86
a
 13.99

b
 11.78

c
 9.38

d
 

Soil moisture  
(%) 

21.94
a
 32.96

b
 44.75

c
 48.47

d
 

Total C (g kg 
- 1

) 33.09
a
 36.85

a
 66.44

b
 95.93

c
 

Total N (g kg 
- 1

) 4.96
a
 5.10

b
 6.41

c
 8.12

d
 

C:N 6.59
a
 7.36

b
 10.10

c 
11.35

d 

pH 4.88
a
 4.55

a
 4.85

a
 5.03

b
 

 

Same lowercase letters within a column indicate no significant difference between sites. EVB, evergreen broadleaf forest; COF, coniferous forest; 
DWF, dwarf forest; ALM, alpine meadow. 

 
 
 

litter invertebrates (Wallwork, 1976). All extracted faunal samples 
were preserved in 75% ethanol and then, sorted under a dissecting 
microscope (Leica MZ 125) into broad taxonomic groups (Oribatid, 
Mesostigmatid and Prostigmatid mites, Collembola and 
Hymenoptera). Diversity, abundance and group number were calcu-
lated for mesofauna communities in the 60-day interval of 12 
months of decomposition in the four sites. Group number (GN) and 
abundance (A) were expressed as the number of dw litter. Diversity 
was measured with the Shannon-Wiener Index (H'): H'=–∑ ni/N × ln 
(ni/N) where ni are individuals of group i and N totals of the groups 
in community (Whittaker, 1972). 

The N concentration on each sampling date at each site was 
examined with repeated measures analysis of variance. Preplanned 
contrasts of N concentration in the control and mesofauna-excluded 
litterbags were performed with repeated measures analysis of 
variance. The difference in the percentage of litter N content in the 
litter was contrasted, using measured analysis of variance. Pear-
son’s correlation coefficients were used to express the relationships 
of the N concentration with the litter mesofauna abundance, 
Shannon index and group number. Statistical analyses were 
performed using the SPSS Program (SPSS, 2004). Differences at 
the p < 0.05 level were reported as significant. 
 

 

RESULTS 
 

N dynamics across the elevation gradient 
 

The N concentration of litter and C/N ratio in the litter 
bags, as decomposition proceeded, decreased signify-
cantly along an elevation gradient (p < 0.05; Figure 1). 
The N concentration of litter (mean value of six sampling) 
in the control and mesofauna-excluded litter bags were 
2.26 ± 0.64 and 1.99 ± 0.57%, respectively,  in  EVB  was 

2.08 ± 0.44, was 1.88 ± 0.48% in COF, 1.87 ± 0.34 and 
1.75 ± 0.28% in DWF and was 1.79 ± 0.45 and 1.71 ± 
0.47% in ALM. The N concentration increased up to a 
mass loss of 30 to 40% at EVB, COF and DWF, where it 
increased at a slow rate (Figure 1a, b, c). The N 
concentration at ALM went up to a mass loss of 20 to 
30% from which point it decreased and then, increased to 
a maximum in the end (a mass loss of nearly 30 to 40%) 
(Figure 1d). The C: N ratio of the litter decreased until it 
reached a mass loss of 30 to 40% but then increased 
slightly from approximately 30 to nearly 50% (Figure 1). 
Strong initial N immobilization across the four sites 
resulted in a rise in the concentration of N in the litterbags 
for the first two months of the experiment (Figure 2). It 
was the greatest at EVB, where the amount of N 
increased to 148.7% of the original amount in the 
litterbags with animals. The maximum of N immobilization 
in the control litterbags at EVB, COF and DWF was found 
at 180 days, while that at ALM was at 360 days (Figure 
2).   
 
 
Effects of soil mesofauna and its diversity on the N 
mineralisation of litter  
 
Litter N content compared with initial N was significantly 
influenced by mesofauna at EVB, COF and DWF, while 
fauna had little influence on litter N content at ALM 
(Figure 2). Litter N content at EVB was strongly affected 
by   the   presence  of  mesofauna  (Figure  2a).  After  six  
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Figure 1. N concentrations (+ SD) in the control (C-NC) and mesofauna-excluded litter bags (M-
NC), and C/N in control (C-C/N) and mesofauna-excluded litterbags (M- C/N) in relation to mass 
remaining in the leaf litter of C. carlesii at. (A), Evergreen broadleaf forest (EVB); (B), coniferous 
forest (COF); (C), dwarf forest (DWF); (D), alpine meadow (ALM).  
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Figure 2. Change in litter N content (%) (+ SD) compared with initial N during the 
decomposition process. (A), Evergreen broadleaf forest (EVB); (B), coniferous forest 
(COF); (C), dwarf forest (DWF); (D), alpine meadow (ALM). 

 
 
 

months, 70% of N in the litter bags compared with the 
initial N had been fixed when the contribution of the 
mesofauna was 14% (Figure 2a; Figure 3). After 180 
days in the field, the litter N content in the litter bags from 
the control sites was 60% at COF and 40% at DWF and 
the mesofauna contribution to the N concentration of litter 
was 11% at COF and 8% at DWF, respectively (Figures 
2b, c and 3). Litter N content compared with the initial N 
at ALM, however, increased slowly to maximum (only 
30%) in the end, while the mesofauna contribution to the 
N concentration of litter was less than 3% (Figures 2d 
and 3). The mean contribution of soil mesofauna to the N 
concentration of litter was 12.6% at EVB, 10.6% at COF, 
5.4% at DWF and 3.1% at ALM (Figure 3).   

The abundance, Shannon index and group number 
were surveyed at the four sites and the effects of 
mesofauna diversity on the N concentrations were 

examined in the litter bags from the control plots (Figure 
4). The N concentration in the C. carlesii leaf litter from 
the control plots was found to be significantly correlated 
with the abundance of Mesostigmata mites in one year of 
decomposition at the four sites (Table 2).  However, it 
was only in the coniferous forest that N concentrations 
significantly related to the total of all mites, while total 
mesofauna only related to that in the Alpine Meadow. The 
abundance of Oribatids significantly contributed to the N 
concentration only in the forest sites (EVB, COF and 
DWF). The dynamics of the N concentration was signifi-
cantly related to an abundance of Collembolans in the 
evergreen broadleaf forest and dwarf forests. Further-
more, the abundance of Prostigmata and Astigmata mites 
were not significantly correlated with the N concentration 
in the litterbags from the control plots.   

There were distinctively difference in the total abundance  
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Figure 3. Contribution of soil mesofauna (+ SD) to the N concentration of litter at the 

four sites.   
 
 
 

Table 2. Correlations between N concentrations of litter 
and the abundance of litter mesofauna in the control 
treatment litter bags (1 mm) at the four sites. Values are 
Pearson’s correlation coefficients (n = 6); *P < 0.05, **P 
< 0.001. 
 

Parameter EVB COF DWF ALM 

Acari 0.447 0.871* 0.559 0.638 

Oribatids 0.784* 0.822* 0.805* 0.575 

Prostigmata 0.635 0.702 0.148 0.472 

Mesostigmata 0.856* 0.778* 0.840* 0.884* 

Astigmata 0.353 0.225 0.447 0.156 

Collembola 0.884** 0.624 0.863* 0.546 

Others 0.851* 0.527 -0.375 0.832* 

Total 0.668 0.104 0.653 0.812* 

 
 
 

of mesofauna with elevation (F=46.647, p < 0.002) but 
not was significantly related to the N concentrations along 
the elevation gradients. The Shannon index (F=5.455, p = 
0.043) and group number (F=5.830, p = 0.046) both 
decreased with elevation and the N concentrations in the 
litter bags with mesofauna were significantly related to H′ 
(r

2
=0.867, p = 0.032) and GN (r

2
=0.853, p=0.038) across 

the four sites (Figure 4). 
 
 
Microclimate effects on N dynamics across the 
elevation gradient 
 
The mean N concentration along the elevation gradient 
was found to be positively associated with mean annual 
air temperature and soil temperature (Figure 5, p < 0.05). 

There was no difference in the litter moisture between the 
control litterbags and mesofuana-excluded litter bags at 
the four sites (P > 0.05). Litter moisture which was 
decreased along the elevation gradient, had a significant 
influence on the change of N concentration across the 
four sites (Figure 5, P < 0.05). The litter moisture and soil 
temperature at EVB with the highest group number, 
abundance and Shannon index of soil mesofauna, were 
higher than those at the other three sites, suggesting that 
the microclimate (moisture and temperature ) affected N 
dynamics via its effect on the composition and diversity of 
soil mesofauna (Figures 4 and 5) .   
 
 

DISCUSSION 
 

N concentrations in the litter bags across an 
elevation gradient 
 

The N concentration of litter or C to N ratio has been 
shown to be a useful predictor of N mineralization from 
plant litter (Aber and Melillo, 1980; Högberg et al., 2007). 
This study illustrated that, N concentrations in decom-
posing litter are as a function of litter mass remaining. 
The changes in the N contents closely followed the mass 
loss dynamics of the decomposing litter. The N concen-
tration of the litter increased with litter decomposition, as 
has been commonly observed in other research studies 
(Titus and Malcolm, 1999; Hyvönen and Olsson, 2000; 
Pandey et al., 2007), but the extent and emergence 
period of the maximum value of N concentration was 
different at the four sites in our study. N concentration of 
litter at EVB which was the highest among the four sites, 
increased quickly to maximum at six months when 70% 
of N in the  litter  bags  compared  with  the  initial  N  had  
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Figure 4. Effects of the Shannon index (H′), the group number (GN) and abundance (A) on the N 

concentration (NC) in C. carlesii leaf litter in the control litterbags at the four sites. Values are means + 
SD of the three replicates of each. 
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Figure 5. Effects of soil temperature (ST, °C), mean annual air temperature (MAT, °C) and litter moisture (LM) on the 

N concentration (NC) along the elevation gradient. Values are means + SD of the three replicates of each. 
 
 
 

been fixed. The rapid N accumulation in lower elevation 
sites during the first few months could have resulted in 
the retention of mobile N in soils. N retained in the soil 
can be significant at a time when leaf flush creates a 

demand for nutrients (Heneghan et al., 1999).   
Decomposer immobilization, initial C: N ratios and the 

N availability in soils may be responsible for the N 
accumulation     in    litter.   N   concentrations   tended  to  
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increase in the decomposing leaf litter, which was 
considered to be related to external biological immo-
bilization (Gessner, 2000; Liu et al., 2000; Aerts, 2006). 
Biological immobilization was an important process that 
controlled the nutrient dynamics of litter during 
decomposition (Gessner, 2000; Parton et al., 2007). In 
our study, there were significant difference between the N 
concentration of litter in the control and the mesofauna-
excluded litter bags, indicating that mesofauna 
immobilization can also be expected. As a result, the 
nutrient concentrations and even the contents in the litter 
tended to increase. Also, it was found that this process 
was regulated by the initial C: N ratio of the litter and the 
N availability in the various environments (Köchy and 
Wilson, 1997). In this study, because of initially higher C: 
N ratio, the decomposer took available N from the 
surroundings to maintain its activities, indicating that the 
initial C: N ratio was an important index in indicating the 
intensity of N accumulation or release. The mesofaunas 
were likely to immobilize N in the litter with low N % 
during decomposition (Baker et al., 2001). 

In the study, the total mass loss and N concentration 
decreased along the elevation gradient, while all the sites 
had N immobilization in the decomposition process. The 
Wuyi Mountains are located in the humid and warm 
subtropics of southeast China with a strong climatic 
variation along the elevation gradients. The climatic 
variability in warm and humid zones means that the 
interactions between decomposer and its environment 
may be the strongest determinants of decomposition 
dynamics and N mineralization (Lavelle et al., 1993; Ross 
et al., 2002). In this study, soil temperature and annual air 
temperature decreased and soil C: N increased along an 
elevation gradient. An increase in soil temperature, 
annual air temperature and decrease of soil C/N ratio 
generally results in greater rates of decomposer activity, 
thus, increasing the rates of mass loss and N minera-
lization of the plant litter (van Cleve et al., 1990; Sharifi et 
al., 2007).   
 
 
Effects of mesofauna and microclimate on 
immobilization of N in the sites 
 
Abundance and diversity of soil mesofauna are known to 
play a vital role in the nutrient mineralization processes 
through the direct effect of their own metabolism (Verhoef 
and Brussaard, 1990; De Ruiter et al., 1993) and the 
indirect modifications of the structure and activity of the 
microbial community (Coleman and Cole, 1983; 
Anderson, 1987; Wolters, 1991). The especially compli-
cated makeup of faunal decomposers stimulated the 
decomposition and nutrient mineralization process 
through their effect on microorganisms (Mikola et al., 
2002; Adeduntan, 2009). 

This study has illustrated that the N accumulation in the 
litterbags  can  be  accelerated  by  soil  mesofauna.  Soil  

 
 
 
 
mesofauna had a significant influence on the dynamics of 
litter N content at EVB, COF and DWF, but no statistic 
difference at ALM. The mean contribution of soil 
mesofauna to litter N content ranked EVB, COF, DWF 
and ALM. The presence of high-diversity mesofauna in 
the sites can cause a greater initial immobilization of 
nitrogen, while some faunal activities may enhance 
nutrient mobilization (Tian et al., 1992; Verhoef, 1996; 
Adeduntan, 2009). In our study, the Shannon index and 
group number were found to be decreased along the 
elevation gradient, which resulted in the highest N 
concentration in the evergreen broadleaf forest. The 
effect of soil mesofauna at ALM was only marginally 
significant where there was the lowest faunal diversity. 
Hence, distinctive abundance and diversity of soil 
mesofauna among sites resulted in the different effect of 
soil mesofauna on N dynamics. 

Different faunal groups can exhibit different effects on 
soil processes. Fungivores, for example, Oribatida and 
Collembola, which are highly abundant and usually domi-
nate soil communities, feed on both mycorrhizal and 
saprotrophic fungi to accelerate nutrient transfers 
between plant litter, mineral soil and plant roots (Tiunov 
and Scheu, 2005). Selective grazing affects fungal 
biomass and activity, regulating the fungal succession 
and nutrient transfer in decomposing litter (Parkinson et 
al., 1979; Lussenhop, 1992). In the experiment, it was 
found that the abundance of Mesostigmata mites 
significantly correlated with the N concentration in C. 
carlesii leaf litter at the four sites, while the abundance of 
Oribatids significantly contributed to N concentration in 
the forest sites (EVB, COF and DWF). However, it was 
only at COF that N concentrations was significantly 
related to the total Acari as well as the abundance of 
Collembolans at EVB and DWF. The results indicated 
that, some special groups of soil mesofauna had a 
significant contribution to N concentrations but the effect 
varied across the environmental gradients. 

Decomposer effect on nutrient dynamics was often 
considered to depend on the environmental factors of 
decomposition (Vitousek et al., 1994; Lee and 
Bukaveckas, 2002; Ross et al., 2002). In the study, N 
concentration along the elevation gradient was found to 
be positively associated with mean annual air tempe-
rature, soil temperature and litter moisture, indicating that 
the microclimate had significant effects on N dynamics of 
litter. The litter moisture and soil temperature at low 
elevation sites with the highest diversity of mesofauna 
were higher than in the high one, suggesting that the 
microclimate (moisture and temperature) may have 
favored the activity of soil fauna, thus, affected the N 
mineralization of litter.  
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