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Two DNA-based fingerprinting techniques, simple sequence repeats (SSR) and random amplified 
polymorphic DNA (RAPD) analyses, were applied in sorghum germplasm analysis to compare 
suitability for quantifying genetic diversity. Twenty-two sorghum genotypes, representing an array of 
germplasm sources with important agronomic traits, were assayed for polymorphism using 32 RAPD 
primers and 28 sets of sorghum SSR primers. The results indicated that SSR markers were highly 
polymorphic with an average of 4.5 alleles per primer. The RAPD primers were less polymorphic with 
nearly 40% of the fragments being monomorphic. An analysis of genetic diversity among sorghum lines 
indicated that the genetic distances calculated from SSR data were highly correlated with the distances 
based on the geographic origin and race classifications. Based on the results of these studies, SSR 
markers appear to be particularly useful for the estimation of genetic similarity among diverse 
genotypes of sorghum.  
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INTRODUCTION 
 
Sorghum [Sorghum bicolor (L.) Moench] is ranked the 
fifth most important cereal crop in the world. The United 
States, India, Nigeria, Mexico, Sudan, and China 
currently produce the most grain sorghum. More than half 
the world's sorghum is grown in the semi-arid tropics, 
where it is a staple food for millions of people in India and 
Africa; however, livestock feeding accounts for most of 
the U.S. sorghum usage. 

Many studies have been devoted to assessing patterns 
of sorghum genetic variation based on morphology 
(Appa-Rao et al., 1996; Djè et al., 1998) or pedigree 
(Jordan   et   al.,   1998).    More    recently,    DNA-based  
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techniques have been used successfully in DNA 
fingerprinting of plant genomes (Hongtrakul et al., 1997;  
Cervera et al., 1998) and in genetic diversity studies 
(Paul et al., 1997; Sonnate et al., 1997; Barrett and 
Kidwell, 1998; Chowdari et al., 1998b; Zhu et al., 1998; 
De-Bustos et al., 1999). Among them, random amplified 
polymorphic DNA (RAPD) analysis is quick (Colombo et 
al., 1998; Fahima et al., 1999) and well adapted for 
nonradioactive DNA fingerprinting of genotypes (Cao et 
al., 1999). However, problems with the reproducibility in 
amplification of RAPD markers and with data scoring 
have been reported (Jones et al., 1998). Although major 
bands from RAPD reactions are highly reproducible, 
minor bands can be difficulty to repeat due to the random 
priming nature of this PCR reaction and potential 
confounding effects associated with co-migration with 
other markers (Tessier et al., 1999).  

SSR markers are attractive for DNA fingerprinting 
studies for several reasons. They are codominant and 
highly informative. They generally display high levels of  
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Table 1. Country of origin, race classification, and other distinguishing characteristics for sorghum accessions used in this genetic diversity 
studies. 
 

No Germplasm 
Accession 

GRIN 
Designation 

Origin Region Race Distinguishing 
Characteristics 

1 P954035 (SC 33) PI 534132 Ethiopia 1 D Drought tolerance 
2 B35 (SC 35) PI 534133 Ethiopia 1 D Drought tolerance 
3 SC 1158 PI 597957 Ethiopia 1 D Disease resistance 
4 SC 326 IS 3758C Ethiopia 1 C Disease resistance 
5 SC 414 PI 533831 Sudan 2 C Disease resistance 
6 SC599 PI 534163 Sudan 2 C Drought tolerance 
7 ShanQuiRed - China 7 B Cold tolerance 
8 SanChiSan GRIF 620 China 7 B Cold tolerance 
9 PI 550590 PI 550590 Russia 8 B Cold tolerance 
10 12-26 - Egypt 5 W Wild sorghum 
11 47-121 - Kenya 1 W Wild sorghum 
12 PI 465483 PI 465483 Yemen 1 D Large seed size 
13 PI 559761 PI 559761 Yemen 1 D Large seed size 
14 Dorado - El-Salvador 6 M Elite tropical variety 
15 Malisor - Mali 3 M Elite tropical variety 
16 Sureno - Honduras 6 M Elite tropical variety 
17 Macia - Mozambique 4 M Elite tropical variety 
18 M91051 - USA 6 M Elite tropical variety 
19 TX430 PL-140 USA 6 M Elite U.S. pollinator 
20 TX2737 GP-82 USA 6 M Elite U.S. pollinator 
21 TX2741 GP-86 USA 6 M Elite U.S. pollinator 
22 PL1 - USA 6 M Large seed size 

Region: 1 = East Africa, 2 = Central Africa, 3 = West Africa, 4 = South Africa, 5 = Northern Africa, 6 = North America, 7 
= Asia, 8 = Europe. Race: D = Durra, C = Caudatum, B = Bicolor, W = Wild, M = Breeding. 

 
 
polymorphism (Beckmann and Soller, 1990; Brown et al., 
1996; Senior et al., 1998) and are amenable to 
automated genotyping strategies. They also can be 
amplified by PCR and efficiently detect DNA 
polymorphism (Pejic et al., 1998). Finally, radioisotopes 
are not required in the detection of SSR markers, 
because sequence polymorphism usually can be 
detected by separation in agarose gels (Burr, 1994).  

Although SSRs are well established for human and 
mammalian genetics, these markers have only recently 
become available in plant species. They have been 
identified in many plant genomes including those of 
maize (Senior and Heun, 1993; Shatuck-Eidens et al., 
1990; Taramino and Tingey, 1996); soybean (Akkaya et 
al., 1992; Morgante and Olivieri, 1993); Brassica spp. 
(Poulsen et al., 1993); rice (Wu and Tanksley 1993); 
barley (Saghai-Maroof et al., 1994); pearl millet 
(Chowdari et al., 1998a); Arabidopsis (Depeige et al., 
1995); tomato (Broun and Tanksley, 1996); conifers 
(Tsumura et al., 1997); and sorghum (Brown et al., 1996; 
Taramino et al., 1997; Dean et al., 1999). The results of 
studies using SSR markers in these species suggest that 
they may provide an outstanding new tool for genetic 
analysis of plant species.  

Harlan and DeWet (1972) classified cultivated sorghum 
based on agronomic and morphological characteristics. 
The utilities of isozymes (Morden et al., 1989; Aldrich et 

al., 1992), RFLP (Aldrich and Doebley, 1992), and RAPD 
(de Oliveira et al., 1996; Menkir et al., 1997; Ayana et al., 
2000) markers have been used to study genetic diversity 
in sorghum germplasm. Several efforts have been made 
to utilize SSR markers in plants to study genetic diversity, 
characterize germplasm, and evaluate population 
dynamics (Zhang et al., 1997; Liu and Wu 1998; Senior 
et al., 1998; Struss and Plieske, 1998). A comparison of 
RAPD and SSR marker techniques in sorghum is timely, 
even though the utility of different molecular markers for 
corn (Smith and Helentjaris, 1996), soybeans (Powell et 
al., 1996) and barley (Russell et al., 1997) germplasm 
already has been reported. The objectives of the present 
study were to: (1) compare the application and utility of 
RAPD and SSR marker techniques for analysis of genetic 
diversity among sorghum genotypes, (2) compare genetic 
similarity quantified by molecular markers with regional 
and race information. 
 
 
MATERIALS AND METHODS 
 
Plant Materials 
 
Twenty-two sorghum accessions including landraces, improved 
lines, and wild accessions were evaluated in this study (Table 1). 
Most of these accessions represent landrace varieties and are 
described  in   detail   in   the  USDA-ARS   Germplasm   Resources  
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Information Network available at http://www.ars-grin.gov/npgs. Less 
information is available on wild accessions and improved varieties 
that were obtained from plant breeders from different parts of the 
world.  
 
 
DNA extraction and SSR and RAPD markers 
 
Genomic DNA was extracted from etiolated hypocotyls 5- to 7-day-
old plants of each genotype according to the method of Djè et al. 
(2000). Initially the five individual plants of each accession were 
assayed for RAPDs or SSRs using 5 primers. No polymorphisms 
were detected between individuals within a genotype.  

Seventeen SSR markers described by Brown et al. (1996) and 
11 described by Taramino et al. (1997) were used for genotyping 
assays (Table 2). Eighty different RAPD primers obtained from 
OPERON Technologies (Kits A-D) were used to generate markers 
as described by Tao et al. (1993). Thirty-two primers that generated 
clear and reproducible fragments were used to fingerprint the 22 
sorghum genotypes. The SSR and RAPD reaction products were 
evaluated for polymorphisms on 3% Metaphor agarose gels (FMC 
Products, Rockland, ME, USA) and 1.6% agarose gels, 
respectively. Gels were stained with 1 µg mL-1 ethidium bromide for 
30 to 60 min. 
 
 
Band scoring and cluster analysis 
 
The SSR and RAPD gel images and marker data were processed 
using Quantity One Software v. 4.0.1 (Bio-Rad Laboratories, 
Hercules, CA USA). The bands were sized and then binary coded 
by 1 or 0 for their presence or absence in each genotype. The 
assay efficiency index was calculated as described in detail by Pejic 
et al. (1998). Nie's genetic diversity (Nei, 1972) was computed from 
the binary data for all pairwise combinations of sorghum genotypes. 
Cluster analysis was based on similarity matrices obtained with the 
unweighted pair-group method using the arithmetic average to 
estimate the phenogram. Race and region information was scored 
as 1 and 0 and then analyzed using the simple matching coefficient 
of the SimQual method. All the data analyses were performed using 
the software package NTSYS-pc (Rohlf, 1993). Polymorphism 
information content (PIC) for each SSR primer set was determined 
as described in Smith et al. (1997). Senior et al. (1998) reported 
that PIC is synonymous with the term “gene diversity” as described 
by Weir (1996). The correlations of pairwise distances among all 
pairs of genotypes for SSRs were compared to RAPDs and origin 
and for RAPDs were compared to origin cluster.  
 
 
RESULTS 
 
The 22 sorghum genotypes evaluated in this study were 
differentiated uniquely using the 28 SSR markers and 32 
RAPD primers. The SSR primer was considered to be 
polymorphic when the most abundant allele in the 
population has frequency lower than 95.4%. The analysis 
of SSR products in this study indicated fragment lengths 
that were slightly different from those previously reported 
(Table 2). PIC values for SSR loci range from 0 
(monomorphic) to 1 (very highly discrimitive, with many 
alleles in equal frequencies). The PIC values were quite 
high and ranged from 0.23 to 0.81 (Table 2). The average 
PIC value for SSR markers was 0.622. The SSR markers 
containing  dinucleotide  repeats  had   PIC   values   that  

 
 
 
 
Table 2. SSR marker used to diverse the 22 sorghum accessions. 
 

No. SSR 
Markers1 

No of 
alleles 

Size range 
in bp 

PIC 
value 

1 SBKAFGK1 5 310-325 0.60 
2 ZMADH2N 2 170-175 0.23 
3 Sb1-1 3 255-310 0.61 
4 Sb1-10 4 365-385 0.74 
5 Sb4-15 3 155-170 0.66 
6 Sb4-22 3 300-320 0.38 
7 Sb4-32 7 195-210 0.66 
8 Sb4-121 7 185-210 0.81 
9 Sb5-85 2 210-230 0.40 

10 Sb5-206 4 145-155 0.71 
11 Sb5-214 2 190-245 0.29 
12 Sbf-236 4 160-190 0.43 
13 Sb6-36 4 160-190 0.65 
14 Sb6-57 6 290-320 0.79 
15 Sb6-84 5 180-195 0.76 
16 Sb6-325 3 125-150 0.63 
17 Sb6-342 2 265-305 0.35 
18 SbAGA01 5 105-120 0.68 
19 SbAGE01 7 195-235 0.65 
20 SbAGB02 4 130-155 0.68 
21 SbAGD02 4 115-135 0.67 
22 SbAGG02 5 185-200 0.80 
23 SbAGB03 7 120-155 0.72 
24 SbAGE03 3 130-160 0.59 
25 SbAGF06 6 135-165 0.71 
26 SbAGF08 6 145-175 0.72 
27 SbAGH04 7 130-160 0.71 
28 SvPEPCAA 7 235-265 0.79 

 

1Primers 1-17 from Brown et al. (1996) and primers 18-28 from 
Taramino et al. (1997). 
 
 
 
averaged 0.634. These results were in agreement with 
the results of Smith et al. (1997) who reported that the 
PIC of SSR dinucleotide repeats had the highest values. 
A few of the SSR primers amplified more than one band 
per genotype, indicating residual heterogeneity within 
lines. RAPD markers were less polymorphic than SSR 
markers.  

The 32 OPERON primers generated a total of 213 
RAPD bands. Of these bands, only 125 were 
polymorphic across the 22 sorghum accessions. A band 
(locus) was considered as plymorphic if the band 
differentiates at least any 2 of the 22 genotypes. The 
number of amplification products per primer varied from 3 
to 11, with a mean of 6.66. These primers produced 
fragments varying from 225 to 2600 bp in size. Although 
SSR primers amplify PCR products from only one locus 
per assay, an average of 4.5 alleles per locus was 
detected in this study, indicating a large degree of genetic  



 
 
 
 
diversity among accessions. The RAPD primers amplified 
dominant markers that were scored as two alleles per 
locus. An average of 3.9 polymorphisms was amplified 
for each RAPD primer tested in this study. The assay 
efficiency was higher for SSR marker reactions than for 
RAPD marker reactions. 

The SSR markers provided the most powerful assay for 
discriminating genetic diversity among sorghum 
accessions. Similarity matrices constructed based on 
shared allele analysis revealed that the average genetic 
similarity between genotypes was lowest when it was 
estimated using SSR markers (0.437). Genetic similarity 
among entries was higher when it was determined using 
RAPD markers (0.612). These results indicated that 
RAPD markers provide less resolving power than SSR 
markers. Molecular assays were much more powerful at 
discriminating genetic diversity than estimates based on 
geographical and race classification, which revealed high 
levels of genetic similarity among accessions (0.951). 

Genetic similarity among sorghum lines based on SSR, 
RAPD, and geographical and race data are represented 
in Figures 1A, B and C, respectively. The UPGMA 
dendrogram based on SSR and RAPD marker data 
clearly discriminated among genotypes (Figures 1A and 
B). The cluster analysis generated using country of origin 
and race information was not able to differentiate among 
all entries because of the limited number of class 
variables (Figure 1C). Some consistency in classification 
was observed among clusters. The two Chinese 
genotypes (Shan Qui Red and San Chi San) and two wild 
types (12-26 and 47-121) are fully conserved across the 
three clusters. The genotypes SC35 and SC1158, which 
originate from Ethiopia and represent race Durra, also 
were grouped together. The breeding line Sureno was 
classified as a lone outlier using both RAPD and SSR 
markers.  

Genetic diversity of sorghum measured using SSR and 
RAPD markers exhibited highly significant association 
with geographic origin and race classification (P<0.01). 
The correlation of pairwise distances between all pairs of 
genotypes for SSRs compared to geographical and race 
was r = 0.51; the correlation for RAPDs with geographical 
and race data was r = 0.43. The correlation of pairwise 
distances among all pairs of sorghum genotypes for 
SSRs compared to RAPDs was r = 0.79. 
 
 
DISCUSSION 
 
Sorghum SSR markers revealed higher levels of genetic 
polymorphism than did RAPD markers in this study. 
These results are in agreement with studies in other 
species (Morgante and Olivieri, 1993; Powell et al., 1996; 
Wu and Tanksley, 1993). The higher level of 
polymorphism associated with SSR markers may be a 
function of the unique replication slippage mechanism 
responsible for generating SSR allelic  diversity  (Pejic  et  
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Figure 1. Genetic similarity among sorghum genotypes revealed by 
UPGMA cluster analysis based on (A) SSR, (B) RAPD, and (C) 
country origin and race data with the simple matching coefficient of 
SimQual method. 
 

A.

B.

C.
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al., 1998). The PIC value of SSR markers was in the 
range reported by Senior et al. (1998). However, higher 
PIC values have been reported (Smith et al., 1997), but 
this difference may be associated with the use of 
acrylamide gels for allele detection in their study. 
Acrylamide gels have greater resolving power than 
agarose gels. The increased resolution of acrylamide 
over agarose gel separation could result in the detection 
of larger number of alleles per locus. This may be 
particularly important for SSR loci containing dinuleotide 
repeats whose amplification products are in the 130 to 
200 bp range, because PCR products differing by two 
base pairs cannot be resolved with agarose gels.  

The mean number of RAPD bands per primer obtained 
in this study is low compared to that reported by Tao et 
al. (1993) and Ayana et al. (2000) and is comparable with 
most of the previous studies in sorghum using RAPDs 
(Vierling et al., 1994; de Oliveira et al., 1996; Menkir et 
al., 1997). The level of RAPD polymorphism observed in 
the study is higher than those reported in previous 
studies (Tao et al., 1993; Vierling et al., 1994; Yang et al., 
1996; Menkir et al., 1997).  

The high levels of allelic diversity of SSR and RAPD 
markers observed in this study probably were associated 
with the extensive range of genetic diversity represented 
in the panel of sorghum genotypes. We took into account 
not only differences in geographical range but also 
results of morphological variation. These results are in 
agreement with previous observations in soybeans, 
barley and corn (Powell et al., 1996; Russell et al., 1997; 
Pejic et al., 1998). The highest degree of polymorphism 
was associated with SSR markers. The presence of 
many unique alleles may be explained by the relatively 
high rate of mutation in SSR loci (Henderson and Petes, 
1992). Such alleles are important, because they may be 
diagnostic for particular regions of the genome specific to 
a particular type of sorghum.  
Differentiation among sorghum genotypes was much 
higher for molecular markers than for geographical and 
race classification. These results are consistent with 
morphological, isozyme, and RFLP studies (DeWet et al., 
1970; DeWet et al., 178; House, 1985; Aldrich et al., 
1992; Cui et al., 1995). These studies indicated that 
sorghum has an unusual amount of diversity for a 
predominately self-pollinating species. The levels of 
polymorphism found for sorghum in this study were 
similar to those reported for other plant species including 
maize and barley (Cui et al., 1995). These results may 
reflect the fact that the 22 genotypes examined were 
chosen deliberately to include racial and geographic 
diversity. Multiple origins for domesticated sorghums, 
cross-pollination between selected races, and 
outcrossing between domestic cultivars and highly 
variable wild species all are considered to be factors 
contributing to the extensive genetic diversity observed in 
sorghum (Doggett, 1988). The relatively high frequency 
of SSR polymorphism should be  helpful  in  phylogenetic  

 
 
 
 
analyses to better understand these relationships.  

RAPD variation showed weak association with regional 
and racial diversity. Several studies have reported limited 
regional differentiation for world collection of sorghum 
using allozyme data (Moeden et al., 1989), RFLP (Cui et 
al., 1995) and RAPD data (Tao et al., 1993; Menkir et al., 
1997; Djè et al., 1998; Ayana et al., 2000). The results of 
Fahima et al. (1999) showed no association with 
geographic distance between emmer wheat population 
sites of origin and RAPD markers. Considering that many 
of the accessions evaluated in this study were breeding 
lines of mixed pedigree, SSR markers exhibited a 
remarkably strong association with genetic origin and 
race. 

Both SSR and RAPD markers have unprecedented 
utility for analysis of population genetics and phylogenetic 
diversity of sorghum. Because neither requires 
radioactive isotopes, these methods can be used 
efficiently by researcher in developing countries (Udupa 
et al., 1998). The use of SSRs potentially could remove 
most, if not all, of the limitations in revealing 
polymorphisms and in obtaining more complete genomic 
coverage for plants, as has been achieved already for the 
human genome (Smith and Helentjaris, 1996). The utility 
of PCR-based markers such as SSRs for measuring 
diversity, for assigning genotypes to heterotic groups, 
and for genetic fingerprinting should prove valuable for 
sorghum breeding programs. 
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