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Threonine synthase (TS) is a pyridoxal phosphate dependent enzyme that catalyzes the formation of
threonine (Thr) through O-phosphohomoserine (OPH) from the aspartate family pathway in plants. The
properties of the TS enzyme have been evaluated in many bacteria and few plants. Sequence analysis
of the cDNA from rice revealed that it harbors a full-length open reading frame for OsTS encoding for
521 amino acids, corresponding to a protein of approximately 57.2 kD. The predicted amino acid
sequence of OsTS is highly homologous to that of Arabidopsis TS and many bacterial TS encoded by
thrC gene. The OsTS protein harbors a sighature binding motif for pyridoxal- 5’ -phosphate at the amino
terminus. A thrC mutant strain of Escherichia coli was complemented by OsTS expression. OsTS

expression was correlated with the survival

of the thrC mutant, which is affected by the

supplementation of an aspartate pathway metabolite, methionine.
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INTRODUCTION

Threonine (Thr) is an essential amino acid in animals,
including humans. The biosynthetic pathway of Thr is
initiated from aspartate (Asp) and is called the Asp family
pathway in plants. The aspartate-derived amino-acid
pathway from plants is well suited for analyzing the
function of the allosteric network of interactions in branched
pathways (Curien et al., 2009).

Thr is synthesized via a branched pathway that in-
cludes lysine (Lys) and methionine (Met) (Azevedo et al.,
1997; Bryan, 1980). The carbon skeleton of Thr is derived
from Asp as the amino acids Lys and Met. The common
precursor for the synthesis of Thr and Met in the branch-
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ing point is O-phosphohomoserine (OPH) (Figure 1). In
plants and microorganisms, Thr synthesis is a com-
ponent of the multibranched biosynthetic pathway origin-
nating with Asp and resulting in the synthesis of Lys, Met,
Thr and isoleusine (Curien et al., 1996). Threonine synthase
(TS: EC 4.2.99.2) is a fold type Il pyridoxal 5’ -phosphate
(PLP)-dependent enzyme and catalyses the final step of
Thr formation (Curien et al.,, 2008; Mas-Droux et al.,
2006). TS is involved in the essential amino acids path-
way derived from aspartate and catalyzes the conversion
of O-phosphohomoserine (OPH) into Thr and inorganic
phosphate via a PLP dependent reaction (Mas-Droux et
al., 2006; Casazza et al., 2000). The TS activity has been
identified, purified and described in a variety of micro-
organisms, such as Neurospora crassa (Flavin and
Slaughter, 1960), Escherichia coli (Farrington et al., 1993;
Parsot et al., 19883), Corynebacterium glutamicum
(Eikmanns et al.,, 1993), Crytococcus neoformans
(Kingsbury and McCusker, 2008), Streptococcus sp.
(Tang et al., 2007) and Mycobacterium tuberculosis
(Covarrubias et al., 2008). The corresponding gene was
isolated from a number of bacteria (Parsot, 1986; Han et
al.,, 1990; Motoyama et al., 1994; Omori et al., 1993;
Clepet et al., 1992). The characterization and analysis of
several plant genes have been reported, including those
of Arabidopsis thaliana (Curien et al., 1998; Avraham and
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Figure 1. Scheme of the threonine biosynthesis pathway of
aspartate family in plants. The abbreviations are AK, aspartate
kinase; 3-ASA, 3-aspartic semialdyde; HSD, homoserine
dehydrogenase; OPH, O-phosphohomoserine; SAM, &
adennosylmethionine, CGS, cystathionine g-synthase; TS,
threonine synthase; TDH, threonine dehydratase. Symbols

are indicated:t¥7; allosteric activation, @; feedback
repression and E'; feedback inhibition.

Amir, 2005, Lee et al., 2005; Laber et al., 1999), Solanum
tuberosum L (Casazza et al., 2000) and Sorghum bicolor
(Ferreira et al., 2006).

The synthesis of aspartate-derived amino acids is subject
to complex regulation. The key to pathway control is
feedback inhibition of aspartate kinase by Lys and/or Thr,
or by Lys in concert with S-adenosylmethionine (SAM)
(Rinder et al., 2008). Aspartate kinase, the first enzyme in
the pathway, is inhibited allosterically by Lys and Thr (Lee
et al., 2005). TS compete with the first enzyme required
for subsequent Met biosynthesis, cystathionine-y-synthase
(CGS), for their common substrate OPH (Thompson et
al., 1982). TS enzyme activity is activated by S-adenosyl-
methionine (SAM) and inhibited by cysteine (Madison
and Thompson, 1976; Giovanelli et al., 1984; Curien et
al., 1996). SAM is, in turn, directly synthesized from Met;
therefore, increasing Met levels will result in increases in
the concentration of SAM and subsequently affect TS
activity (Casazza et al.,, 2000). In vitro studies have
showed that SAM stimulates TS activity in an allosteric
manner (Curien et al., 1998). A number of studies have
also documented a dynamic interaction between CGS
and TS in the control of Met biosynthesis (Amir et al.,
2002; Hesse and Hoefgen, 2003). Over expression of
CGS resulted in elevated free Met levels, but did not
significantly affect Thr levels (Chiba et al., 2003;
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Inaba et al., 1994; Kim et al., 2002). Here, we report the
analysis and characterization of a gene for the TS
enzyme from rice (Oryza sativa), an important crop plant
and the influence on its activities by an Asp pathway
metabolite, probably SAM.

METHODS AND MATERIALS
Strains and plasmids

Two E. coli strains were used in this study, Gif41 [thrC1001, A14-,
e14-, relA1, spoT1, th-1 thi-1] (Theze et al., 1974) and Sg415 [Udk-
2, upp-11, rclA1, rpsL254 (strR), metB1] (Hammer-Jespersen and
Munch-Petersen, 1973). The source of both strains was the E. coli
Genetic stock Center (CGSC) at Yale University, USA. An EST
clone (Genbank Accession Number AK101669 and clone name
J033058D04) was used in this study.

DNA sequence analysis

An EST clone (GenBank Accession No. AK101669 and clone name
J033058D04) used in this study was obtained from the Rice Genome
Resource Center (RGRC), National Institute of Agrobiological
Science (NIAS), Japan. The clone was derived from a rice cDNA
library (Osato et al., 2002) from developing seeds prepared in
pBluescript SK-. DNA sequencing was conducted using an
automatic sequencer (A1Fexpress DNA sequencer, Pharmacia
Biotech. Inc., UK) with synthetic oligonucleotide primers. Nucleotide
sequences and amino acid sequences were compared with the
sequences in the GenBank and EMBL databases and analyzed via
BLAST (Wheeler et al., 2003) and the Clustal W multiple sequence
alignment program (Thompson et al., 1994) or Biology WorkBench
3.2 (http://workbench.sdsc.edu; San Diego Supercomputer Center;
University of California San Diego, USA). Sequence comparisons
were conducted at the nucleotide and amino acid levels. Motifs were
searched by the GenomeNet Computation Service at Kyoto Univer-
sity (http://www.genome.ad.jp) and phylogenic tree with bootstrap
value prepared by the Mega 4.1 program (Kumer et al., 2008).

Polymerase chain reaction (PCR) and recombinant constructs

Our sequence analysis showed the presence of an ATG start codon
located in-frame at -99 positions upstream from the translation-
starting site. Therefore, the specific primers were designed from the
sequence information around the translational start and stop
codons of OsTS to amplify the full-length open reading frame (ORF)
and to over express the gene product in E. coli. Polymerase chain
reaction (PCR) (Sambrook and Russell, 2001) was conducted to
amplify the full-length ORF. After the EST was purified from a pellet
harvested from a liquid culture containing ampicillin (Amp), the ORF
of OsTS was amplified from the EST clone as a template and the
following primers were designed from the OsTS sequence: OsTS-F
(5’- AAA GCT TTC ACT CAC TCC CTA AAA CCC-3’) and OsTS-R
(5" AAA GCT TCA CAC TTC AGA GCT TAC CCT -3’) using Ampli
TaqGold polymerase (Perkin-Elmer, U.S.A). The underlined bases
in the OsTS-F and OsTS-R primers are the designed restriction
sites for Hindlll to facilitate subcloning, respectively. The poly-
merase chain reaction was conducted using a MYCyler™ PCR
system (BioRad, U.S.A) for 35 cycles with 95°C for 1 min, 55°C for
1 min and 72°C for 2 min, with 10 uM primers. The PCR products
were analyzed on 1% (w/v) agarose gel. The amplified fragment
(1.5 kb) was then subcloned into pGEM-T-easy vector (Promega)
and finally subcloned into pBluescript I KS+ (Stratagene Inc.,



1124 Afr. J. Biotechnol.

U.S.A) as a Hindlll fragment, to give pB::OsTS. Restriction analysis
was conducted in an effort to confirm the recombinant DNA
construct of pB::OsTS with the right orientation for over expression.

Functional complementation and growth assay

The competent thrC mutant of E. coli strain, Gif41, was transformed
with pB::OsTS via electroporation (ECM399, BTX, USA) using a
cuvette with a 0.1 cm electrode gap, then plated on LB medium (20
g/l) with Amp (100 pg/ml). The growing culture was tested for
growth retardation in M9 minimal medium containing Amp (25
pg/ml), 20% glucose, 1 mM isopropyl B-D-thiogalactopyranoside
(IPTG) and 19 amino acids (Sigma, Germany) each at a concen-
tration of 25 pug/ml, excluding Thr. Bacterial growth was then asses-
sed by measuring optical density at 595 nm at one-hour interval.
After 12 h, the diluted culture was plated and incubated overnight at
37°C.

Growth inhibition assay of OsTS in E. coli

The E. coli mutants harboring the pB::OsTS construct, control plas-
mid and wild-type with control plasmid were grown at 37°C in M9
minimal medium (5 x M9 salts (200 ml/l), 1 M MgSQO4 (2 ml/l), 1 M
CaCly, 0.1 ml/l IPTG, 20% glucose (20 ml/l), containing 19 amino
acids and Amp (25 pg/ml), excluding Thr and the same medium
was used with all the reagents kept constant, but an additional
supplementation of 10-fold high Met. The bacterial growth was
monitored via optical density measurements every hour using a
spectrophotometer (UV1101, Biochrom, England) at 595 nm
(ODsgs).

RESULTS AND DISCUSSION
Sequence analysis of OsTS

An expressed sequence tag (EST) clone (GenBank
Accession number AK101669, clone name J033058D04
and clone ID 212512) obtained from the Rice Genome
Resource Center (RGRC) was analyzed to determine the
nucleotide sequence using the designed primers. The
cDNA (OsTS) sequence harbored a full-length open
reading frame consisting of 1563bp, encoding for a
protein of approximately 57.2 kDa. The expected iso-
electric point of the protein was 6.60. Data analysis
revealed that the OsTS sequence was identical to the
genomic region located in chromosome V. Comparisons
of the amino acid sequence of the OsTS and the homolo-
gous sequences from maize (Zea mays) and Arabidopsis
(A. thaliana) revealed high identity, at 91 and 71%,
respectively (Figure 2).

Analysis of the OsTS amino acid sequence revealed a
signature binding motif for PLP in the N-terminal region
(189-203) (Figure 2). The motif sequence (HCGISHTGSF
KDLGM) was highly homologous to the consensus
[DESH]-x(4,5)-[STVG]-{EVKD}-[AS]-[FYI]-K-[DLIFSA]-
[RLVMF]-[GA]-[LIVMGA], where the underlined amino
acids were well conserved. The binding motif for PLP is
present in bacterial TSs and Serine/threonine dehy-
dratases that utilize PLP as a cofactor. The exact PLP

binding site seemed to be K-199 and was identified via
comparison with the binding site of bacterial TS. This
result indicates that the OsTS product utilizes PLP as a
co-factor. Phylogenic analysis of the related sequence
further indicated that OsTS is grouped with several plant
sequences and is divergent and evolved from ancestor
bacterial TS (Figure 3).

OsTS expression in E. coli

The recombinant DNA, pB::0OsTS, was constructed using
the ORF of a PCR-amplified OsTS fragment. After the
transformation of E. coli with the recombinant DNA, OsTS
activity was monitored in vivo in a medium containing
IPTG and 19 amino acids, excluding Thr. Functional
complementation was performed using the TS mutant of
E. coli to confirm the enzyme activity of the gene product
of OsTS. To assess the viability of E. coli cells by OsTS
activity, the OsTS-expressing cells were cultured for 12 h
with shaking and the diluted portion was plated on agar
medium containing the 19 amino acids and Amp (25
pg/ml) without Thr (Figure 4). The thrC mutant of E. coli
with the OsTS construct could grow under the conditions
above in which the mutant without OsTS could not. The
result revealed that the OsTS is able to complement with
functional TS activity.

Expression of OsTS can complement the thrC mutant
of E. coli

A growth study was performed to determine whether the
OsTS gene would increase the sensitivity of bacterial
cells to Thr. The pB::OsTS construct was transformed
into the thrC mutant E. coli Gif41. A control plasmid was
also transformed into wild-type (S¢415) and the thrC
mutant Gif41. The pB::OsTS activity was monitored via a
growth assay in the absence of Thr. Bacterial cells were
grown in M9 minimal medium with IPTG and Amp and 19
amino acids excluding Thr. The wild-type E. coli strain
S@415 harboring the control plasmid grew normally and
evidenced an S-shaped classical growth curve in the
medium without Thr (Figure 5A). The Sg415 strain could
synthesize Thr itself and thus grew normally in the
medium. The thrC mutant strain Gif41 expressing pB::OsTS
also grew normally and evidenced an S-shaped classical
growth curve in the same medium, but grew slightly more
slowly than the wild-type strain containing the control
plasmid (Figure 5A), although the Gif41strain harboring
the control plasmid in the same medium without Thr
evidenced dramatically retarded growth. In this case, the
thrC mutant E. coli strain Gif41 could not synthesize Thr
itself and thus grew dramatically less rapidly; however,
the same E. coli strain Gif41 containing pB::OsTS grew
well because the thrC mutant E. coli was able to synthe-
size Thr using TS expressed by the pB::OsTS plasmid
(Figure 5A). This is a consequence of pB::OsTS activity.
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Figure 2. Amino acid sequence alignment of TS from Oryza sativa (OsTS), Arabidopsis thaliana (AtTS2) and Escherichia
coli (EcTS). Shaded residues represent amino acids that are identical among at least three of the three amino acids.
GenBank Accession Numbers; AK101669 (OsTS), Q9SSP5 (AtTS2) and NP_414545 (EcTS).

From the above finding, it was concluded that OsTS
expression can functionally complement the thrC mutant
E. coli.

The growth of the thrC mutant of E. coli was
influenced by the expression of OsTS in high levels
of methionine

The growth pattern of the thrC mutant of E. coli comple-
mented with pB::OsTS was also assessed in the presence
of high Met levels. The wild-type E. coli strain Sg415
harboring the control plasmid grew normally and evi-
denced an S-shaped classical growth curve in M9
minimal medium with 19 amino acids (excluding Thr,
containing 1 mM IPTG and supplemented with additional
10-fold high Met). The E. coli strain Gif41 grew and
evidenced an S-shaped classical growth curve in the

same medium, but the growth pattern was much more
vigorous than in the medium without Met (Figure 5B). In
this case, when a high level of Met was added, the Met
was converted to SAM and the SAM allosterically acti-
vated TS activity--this is why the thrC mutant of E. coli
grew so vigorously. This result is consistent with pre-
viously reported results in studies of bacteria and plants
(Giovanelli et al., 1984; Curien et al., 1996, Casazza et
al., 2000 and Ferreira et al., 2006). The principal feature
of plant TS, in contrast to its bacterial counterpart, may
be allosteric regulation by SAM, which induces a
dramatic stimulation of TS activity (Hesse et al., 2004).
However, the Gif41 strain harboring the control plasmid
also evidenced dramatically retarded growth in the same
medium owing to a lack of Thr, even when 10-fold high
Met was added (Figure 5B). This finding indicates that
Met has a marked influence on OsTS activity in rice
plants.
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Figure 3. Phylogenetic tree: Phylogenetic analysis of OsTS related proteins using Clustal W and Mega 4.1
program. GenBank accession numbers are as follows: AK101669 (OsTS from Oryza sativa), XP_002514088
(RcTS; Ricinus communis), Q9S7B5 (AtTS1; Arabidopsis thaliana), Q9SSP5 (AtTS2; A. thaliana),
ABC00741(GmTS; Glycine max), ACG39080 (ZmTS; Zea mays), XP_001698517 (CrTS; Chlamydomonas
reinhardti), YP_001515596 (AmTS; Acaryochloris marina), YP_002463167(CaTS; Chloroflexus aurantiacus),
YP_003264969 (HoTS; Haliangium ochraceum), YP_002492618 (AdTS; Anaeromyxobacter dehalogenans),
YP_002753372 (AcTS; Acidobacterium capsulatum), YP_002522459 (TrTS: Thermomicrobium roseum),
YP_002760880 (GaTS; Gemmatimonas aurantiaca), ZP_01923848 (VVTS; Victivallis vadensis), YP_001330351
(MmTS; Methanococcus maripaludis), NP_070145 (AfTS; Archaeoglobus fulgidus), YP_002466596 (CmTS;
Candidatus Methanosphaerula), YP_503069 (MhTS; Methanospirillum hungatei) and NP_414545 (EcTS;

Escherichia coli).

Attempts are currently underway to obtain some
important information about the substrate specificity of
the enzyme by purifying recombinant OsTS in E. coli and
to assess the physiological functions of this novel
enzyme for Thr metabolism by screening T-DNA insertion
mutants in which the OsTS gene is knocked out in rice.
Our reports regarding the cloning and characterization of

the cDNA encoding for TS from rice have generated bio-
informatic predictions, as well as motifs and complemen-
tation, in a thrC mutant of E. coli. These results may con-
stitute a starting point for investigations at the molecular
level to investigate Thr biosynthesis in rice, which might
eventually be applied to modify the nutritional compositions
of crop plants.
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Figure 4. Functional complementation assay. The thrC mutant strain of E. coli Gif41 containing pB::OsTS and pBluescript
I KS+ and wild-type E. coli Sp415 containing pBluescript Il KS+ as a control plasmid.
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Figure 5. Growth curves of E. coli mutant Gif41 and Sg415 harboring OsTS without Met (A) and supplementing Met (B). Bacterial cells
were grown at 37°C in M9 minimal medium containing 19 amino acids except Thr (A) or the same medium supplemented with an
additional 10 times high Met. Growth was monitored via optical density measurements at 595 nm (ODsgs). Symbols: ¢, Gif41+ pB::OsTS;
A, Sp415+ pBluescript Il KS+; m, Gif41+ pBluescript Il KS+.
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