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Abstract Objective: To evaluate the potential apelin effect on hepatic injury in caerulein (Cn) -

induced AP in rats.

Experimental protocol: Thirty male albino rats were divided into three groups, 10 rats each: control

group: received 0.9% NaCl solution. AP group: received (Cn, 50 lg/kg/h, i.p.) for 6 h. Apelin-13

treated AP group: received apelin 13, 50 nmol/kg/h, i.p, immediately after each Cn injection, start-

ing after the second Cn dose. 12 h after the last Cn injection, the rats were sacrificed, and serum

amylase, lipase, phospholipase A2 (PLA2), interleukin (IL)-6, IL-1b, IL-10, alanine aminotrans-

ferase (ALT), aspartate aminotransferase (AST) and lactic dehydrogenase activity (LDH) were

assayed. The hepatic malondialdehyde (MDA), reduced glutathione (GSH) and catalase (CAT)

levels, caspase-3 activity and tumor necrosis factor-alpha (TNF-a) were assessed, while myeloper-

oxidase (MPO) was determined in pancreatic and hepatic tissues.

Results: Cn injection caused severe AP, with marked hepatic damage. The exogenous apelin

reduced Cn-induced pancreatic and hepatic injury with reduction in hepatic oxidative, apoptotic

and inflammatory markers, pancreatic and hepatic MPO activity with modulation of inflammatory

cytokines.

Conclusion: Apelin could be protective in AP associated liver damage, possibly through anti-

oxidant, anti-apoptotic mechanisms with modulating the inflammatory mediators.
� 2015 The Authors. Alexandria University Faculty of Medicine. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
1. Introduction

AP is a non-infectious inflammatory disease, associated with
autodigestion of the pancreas, with sudden onset and rapid

progression.1
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Clinically ranges from a mild, self-limiting localized disease
to severe AP often lead to distant organ dysfunction and high
mortality.2

AP induced liver injury is considered to be an important
prognostic indicator in AP, and may develop into hepatic fail-
ure and even result in death. Thus, it is of importance to pro-

tect liver function and block injury-related pathways.3

The pathophysiology of AP and its associated liver injury
are heterogeneous and involve a complex cascade of events.4

Recent studies have shown that inflammatory cytokines, and
adhesion molecules such as TNF-a, IL-6, and IL-1b produced
within the pancreas and systemically, as well as neutrophil acti-
vation and adhesion contribute to the development and sever-

ity of AP and its complicated organs dysfunction.5

Both necrosis and apoptosis occur in experimental pancre-
atitis. It is now well known that the severity of the disease is

related to the type and the degree of cell death induced by dif-
ferent etiologic factors.6

Several experimental7 and clinical studies,8 have provided

some support for the concept that oxidative stress is the com-
mon pathway for the pathogenesis of AP and associated hep-
atic injury.

Current Cn induced AP model reproduces the cardinal fea-
tures of human pancreatitis including elevated serum amylase/
lipase and pancreatitis-associated complications. Cn induces
secretory block which is followed by lysosomal degradation

of intercellular organelles within autophagic vacuoles in acinar
cells, a marked interstitial edema and premature intracellular
protease activation.9

Apelin, a small regulatory peptide, has been identified as
the endogenous ligand of the human orphan G protein-
coupled receptor APJ, a receptor structurally related to the

angiotensin II (ANG II) receptor AT1. It can act via autocrine,
paracrine, endocrine, and exocrine signaling.10

Apelin is synthesized as a 77 amino acid prepropeptide that

is cleaved into several active isoforms, with apelin-13 is the
final active product, being the most potent isoform, more resis-
tant to enzymatic cleavage, with a brief plasma half-life in man
and relatively short lived effects.11

The apelin-APJ axis is widely expressed in heart, brain,
lung, kidney as well as the gastrointestinal tract, on pancreatic
duct, acinar and islets cells and hepatic parenchymal, Kupffer

(KCs), stellate and endothelial cells.12

Apelin peptides have been shown to affect many biological
functions in mammals including the neuroendocrine and

immune systems.10 Apelin signaling is known to play impor-
tant roles in cardiovascular homeostasis; however, its func-
tions in liver injury associated with AP remain unclear.13

Hans et al. proved upregulated pancreatic apelin expression

during Cn-induced AP in mice.14

Multiple therapeutic modalities have been suggested for AP
and its related organ dysfunction, which remain largely sup-

portive but none has been unambiguously proven to be effec-
tive yet2

The aim of this study was to assess the role of apelin-

signaling in the pathophysiology of the AP induced liver
injury, and evaluate potential new therapeutic strategies
through highlighting the effect of exogenous apelin-13 on liver

injury in a rat model of Cn-induced AP and the mechanisms
behind apelin’s effect.
2. Material and methods

2.1. Animals and experimental design

This study was carried out on thirty male albino rats weighing
about 200–250 g. The rats were housed, four per cage, under

standard laboratory conditions at room temperature (24
± 2 �C), and had free access to water and food. The rats were
fasted during the night before the experiment. All animal

experiments were undertaken with the approval of Ethical Ani-
mal Research Committee of Tanta University.

The rats were randomly divided into three groups (10 rats
each):

2.2. Control group

The rats were given hourly, i.p injection of 2 ml 0.9% NaCl

saline solution, throughout the experimental period.

2.3. Acute pancreatitis (AP) group

AP was induced by i.p. injection of a supra-maximal concen-
tration of (Cn) (50 lg/kg), (Sigma–Aldrich Chemical, Stein-
heim, Germany), diluted in 2 mL saline, every hour for a

total of 6 h. At the end of Cn injections, the rats were given
2 mL i.p. saline till the end of experiment.15

Cn is a stable cholecystokinin analogue, leading to prote-
olytic enzyme secretion that causes pancreatic acinar autolysis

with progressive interstitial edema just one hour after injec-
tion. It is used to induce experimental AP models in rats and
mice.9

2.4. Apelin-13 treated acute pancreatitis group

Apelin-13 (Apelin�, Phoenix Pharmaceutical, Belmont, CA,

USA), is given (50 nmol/kg/h, i.p.),16 dissolved in 2 ml saline,
immediately after each Cn injection starting after the second
Cn dose.

At the end of experiment, 12 h after the last Cn injection,
the rats were sacrificed and blood samples were collected,
immediately centrifuged at 3000g for 10 min, and the super-
natant was stored at �20 �C for biochemical assays. Tissue

samples of pancreas and liver of all groups were quickly
removed and kept frozen at �80 �C for further analysis. Hepa-
tic and pancreatic protein content was determined according to

the method of Lowry et al.17

The following parameters were determined.

2.5. Liver function assay

Serum (ALT) and (AST), as indicators of liver functions, were
measured according to the method of Rei.18

Serum (LDH) activity, as a marker of tissue injury, was

assayed according to the method of Martinek.19

2.6. Liver caspase-3 activity and (TNF-a) assay

Liver caspase-3, the common signal molecule of various apop-
totic mechanisms and TNF-a, was measured by the enzyme-
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linked immunosorbent assay (ELISA) method according to the
studies by Janicke et al.20 and Endo et al.21 respectively.

2.7. Hepatic and pancreatic myeloperoxidase activity assay

(MPO) activity, as a marker of tissue leukocyte infiltration,
was assessed by the ELISA (MPO ELISA kit, Hycult Biotech-

nology, Uden, Netherlands), according to the method of Kue-
bler et al.22 One unit of MPO activity is defined as degrading
1 lmol of hydrogen peroxide at 37 �C; MPO activity was

expressed as unit per gram of tissue protein (U/g).

2.8. Serum enzyme activities assay

Serum amylase level was assessed by modified Bernfeld’s
method23 as described by Jamieson.24 Serum lipase was mea-
sured as described by Williamson.25 Serum (PLA2) was mea-
sured as described by Aufenanger et al.26 The results are

expressed as U/L.

2.9. Serum cytokines assay

Serum (IL)-6, (IL-1b), and IL-10 were measured using ELISA
kits according to the manufacturer’s instructions (Quan-
tikine�; R&D Systems, Minneapolis, MN, USA). The results

of cytokine levels were expressed as pg/ml.

2.10. Liver lipid peroxidation and antioxidant enzymes assay

Hepatic oxidative stress markers were evaluated by the
amount of lipid peroxides measured as (MDA) and hepatic
antioxidant levels, GSH and CAT. MDA content was mea-
sured as described by Esterbauer and Cheeseman27 CAT and

GSH were measured according to the studies by Aebi28 and
Nagi et al.29 respectively.

3. Statistical analysis

The results were presented as the mean ± standard deviation
(SD). Data were analyzed using the unpaired student’s t-test.

Probability values less than 0.05 were considered significant.
All the analyses were performed using Graph Pad Prism soft-
ware release 4.0 (Graph Pad Software, San Diego, CA).

4. Results

4.1. Effect of apelin treatment on liver functions (Table 1)

Following Cn injections, our results revealed marked hepatic

damage as evidenced by significant increase in ALT, AST
and LDH levels in Cn-induced AP group compared to the con-
trol group; however, apelin treatment provided marked hep-
atic protection with significant reduction in serum levels of

ALT, AST and LDH as compared with AP group.

4.2. Effect of apelin treatment on liver caspase-3 activity and
TNF-a (Table 2)

At the end of our experiment, biochemical assessment of hep-
atic apoptosis and inflammatory markers were performed and
revealed significant increase in liver caspase-3 and TNF-a
levels in AP rats as compared to control, while apelin treat-
ment induced significant decrease in both parameters in com-

parison with AP group.

4.3. Effect of apelin treatment on hepatic and pancreatic MPO
activity (Fig. 1)

The present study revealed that AP induction was associated
with marked hepatic and pancreatic neutrophils infiltration

that was improved significantly with apelin treatment.

4.4. Effect of apelin treatment on serum amylase, lipase and
PLA2 levels (Fig. 2)

On AP induction, there was marked pancreatic damage, as
indicated by significant increase in serum amylase, lipase and
PLA2 levels compared with the control group, while apelin

treatment caused significant decrease in these parameters as
compared with AP group.

4.5. Effect of apelin treatment on hepatic lipid peroxidation and
antioxidant enzymes (Table 2)

Compared with control group, AP induction was associated

with marked oxidative stress with significant increase in liver
MDA level and decrease in liver GSH and CAT levels. Apelin
treatment induced marked antioxidant activity with significant

reduction in liver MDA and elevation in liver GSH and CAT
levels compared with AP group

4.6. Effect of apelin treatment on serum cytokines (Fig. 3)

It is obvious from our results that the AP induction was asso-
ciated with increase in serum IL-6, IL-1b and IL-10 as com-
pared with the control group, while apelin treatment

exhibited marked anti-inflammatory effect through abrogating
the proinflammatory cytokines (IL-6, IL-1b), and enhancing
the anti-inflammatory cytokine, IL-10 compared to AP group.

5. Discussion

AP associated hepatic dysfunction has been described by many

authors. It is considered a manifestation of systemic inflamma-
tory response during which the hepatic microcirculatory dys-
function, tissue hypoxia, and inflammatory cytokines could

play a central role. Further elucidation of the involved mech-
anisms and their interactions is critical in developing effective
treatment.30

To our knowledge, the present study is the first to delineate

the potential role of apelinergic pathway in AP – induced hep-
atic injury.

On AP induction, there was significant increase in serum

lipase, amylase and sPLA2, and advocated the auto digestion
theory of pancreas. PLA2 released to blood to attack and
decompose the phospholipids ingredient of membrane,

destroying cell membrane stability and causing massive out
leakage of lysosome enzymes, generating bioactive free fatty
acid and soluble lecithin, and destroying the function and
structure of systemic cell and organ system.31



Table 1 Effect of apelin 13 (50 nmol/kg/h) on liver functions in Cn – induced AP group.

Parameter Control group AP group Apelin treated AP group

ALT (U/L) 12.188 ± 4.096 42.993 ± 6.58a 18.179 ± 4.08b

AST (U/L) 14.161 ± 3.701 41.228 ± 3.175a 19.602 ± 2.806b

LDH (U/L) 335.34 ± 19.12 1506.62 ± 201.39a 823.778 ± 36.997b

Serum alanine aminotransferase (ALT), Aspartate aminotransferase (AST) and Lactic dehydrogenase (LDH).
a P< 0.05 versus control group.
b P< 0.05 versus AP group. All values are expressed as mean ± SD of 10 rats in each group.

Table 2 Effect of apelin 13 (50 nmol/kg/h) on liver apoptotic, proinflammatory oxidative stress markers in Cn – induced AP group.

Parameter Control group AP group Apelin treated AP group

Caspase-3 activity (nmol/mg protein) 0.785 ± 0.2059 1.402 ± 0.26a 1.124 ± 0.19b

TNF-a (Pg/mg protein) 8.629 ± 2.485 20.396 ± 2.582a 15.30 ± 2.23b

Liver MDA (nmol/mg protein) 6.961 ± 0.856 18.91 ± 4.364a 10.994 ± 1.401b

Liver GSH (U/mg protein) 10.152 ± 0.72 6.858 ± 0.555a 8.45 ± 0.697b

Liver catalase (U/mg protein) 3.336 ± 0.442 1.295 ± 0.336a 1.78 ± 0.423b

Hepatic tumor necrosis factor-alpha (TNF-a), Malondialdehyde (MDA) and Glutathione (GSH).
a P< 0.05 versus control group.
b P< 0.05 versus AP group. All values are expressed as mean ± SD of 10 rats in each group.

Figure 1 Effect of apelin 13 (50 nmol/kg/h) on MPO activity in pancreatic (A) and hepatic (B) tissues, in Cn – induced AP group. Data

are expressed as mean ± (SD). *At P < 0.05 versus control group, #at P < 0.05 versus AP group.
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The protective effect of apelin in AP recorded in our study
is consistent with the published data by Han et al.32 in AP rat

model, who suggested that pancreatic apelin expression was
up-regulated in AP and functions as an anti-inflammatory
factor.

According to our results, Cn-induced AP evoked deleteri-

ous effects on the liver. High LDH activity revealed progres-
sive hepatic cell death and high AST and ALT plasma
activity indicated a relevant metabolic dysfunction with cell

damage.3

Several studies point out that almost all the pancreatic
enzymes and mediators released from the pancreas into the

plasma during AP pass through the liver before their dilution
in the systemic circulation, aggravating hepatic damage with
leakage of liver enzymes into circulation.33

The hepatic protective effect of apelin recorded in our
study, is consistent with those previously recorded in rat
models of hepatic ischemia reperfusion injury (I/RI)34 and
renal I/R induced liver injury,35 with improved Serum (ALT)

and (AST), liver (MDA) and (GSH), and liver histopathology.
The mechanisms by which distant organs are involved in

AP remain obscure. Besides autodigestion and necrosis of pan-
creatic tissue, serum levels of pro-inflammatory cytokines

increase during the course of AP, and positively correlated
with its severity and appear to be the driving force for the ini-
tiation and propagation of the AP from local pathological

changes to systemic multiple organs dysfunction and their
blockade attenuates the disease process.2

In the present study, hepatic TNF-a and serum IL-1ß, IL-6,

and IL-10 levels increased after induction of pancreatitis.
The Synergy between pro-inflammatory cytokines and

oxidative stress in AP, is particularly pronounced with elevated

hepatic TNF-a, that amplifies the inflammatory cascade
through different mechanisms, such as the activation of



Figure 2 Effect of apelin 13 (50 nmol/kg/h) on serum amylase

(A), lipase (B) and phospholipase A2 (C), in Cn – induced AP

group. Data are expressed as mean ± (SD). *At P < 0.05 versus

control group, #at P < 0.05 versus AP group.
Figure 3 Effect of apelin 13 (50 nmol/kg/h) on serum IL-6 (A),

IL-1b (B) and IL-10(C), in Cn – induced AP group. Data are

expressed as mean ± (SD). *At P < 0.05 versus control group, #at

P < 0.05 versus AP group.

Promoting effect of adipocytokine 313
mitogen activated protein kinases and the nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-jB) and/
or the inactivation of protein phosphatases.36

When the quantity of produced TNF-a exceeds that of tis-
sue TNF receptor, the excessive TNF-a enters blood circula-

tion, triggering the release of cytokines such as IL-1b, IL-8
and IL-6.36

Previous studies have pointed to (KCs), the resident macro-
phages in the liver, as predominant source of inflammatory

mediators, when activated in response to substances released
by the pancreas during AP.33

The proinflammatory cytokines promote B and T cell acti-

vation, acute period reaction and activation of coagulation
cascades. Moreover IL-6, carried by blood to the liver, stimu-
lates the liver to secrete the mannose-bonding protein to bind

bacteria and endotoxin. IL-6 also can lead to leukocyte adhe-
sion to the surface of endothelial cells of hepatic vasculature
with enhanced radical generation and release of toxic sub-

stances such as elastic protease triggering a series of comple-
mentary reactions and lead to hepatic injury.37 Furthermore
these inflammatory mediators invade the hepatic tissues and
destroy the Na+–K+ pump on hepatic cell membrane. The

condition further deteriorated when the liver loses its barrier
function to prevent endotoxemia, that has led to the excessive
release of the endogenous inflammatory mediators, forming a

vicious cycle amplifying reactions.38

On the other hands, IL-10 is a potent cytokines inhibitor
and has been shown to attenuate the degree of pancreatic

and liver injury in mice models of AP.39
We observed that apelin treatment resulted in significant

reduction in hepatic TNF-a and serum IL-1ß, and IL-6, with
significant increase in plasma IL-10 levels. These results could
provide a rationale for the use of apelinergic system as broad
anti-inflammatory, through modulating pro- and anti-

inflammatory cytokines profile in AP.
The apelins’ anti-inflammatory activity in AP is previously

recorded in vitro, in pancreatic acinar cells,40 and in mouse pri-

mary hepatocytes.41 It may be linked to apelin reduction of
AP-induced elevations in NF-jB activation,32 (MPO) activity
or mitigating TNF-a-induced reactive oxygen species (ROS)

generation and c-Jun N-terminal kinase (JNK) activation41

and macrophage inflammatory protein-1 (MIP-1a, MIP-1b)
expression levels.42

While the mechanism of AP is not fully known, it is
believed that oxidative stress is a key pathogenic factor in ini-
tiation and propagation of AP.8

The data obtained in our study support the early activation

and implication of oxidative stress in AP associated hepatic
injury.

In addition to the direct detrimental oxidative effects, ROS

can also serve as secondary messengers in intracellular signal-
ing and induce proinflammatory cascades. Free radicals pro-
duced by active leukocytes in liver may oxidize the active

sites of the antioxidant enzymes, CAT and GSH, causing
reduced activity, leading to hepatic cell lytic necrosis, when
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ROS production exceeds the antioxidant capacity, aggravating
the condition.43 Apelin markedly reduced (MDA) level, an
indicator of free radical generation, improved the antioxidant

enzymes, CAT and GSH, in AP group, trying to restore the
oxidant/antioxidant balance, with improved hepatic function.
The antioxidant effect of apelin observed in our study could

be explained at least partially through its anti-inflammatory
and inhibitory effect on hepatic leukocyte infiltration. More-
over apelin behaves as CAT activator as documented previ-

ously by Foussal et al.44

Improvement of hepatic antioxidant, GSH, with decreased
MDA, under apelin treatment has been recorded previously
in vitro,41 and in vivo, in mesenteric I/R induced hepatic

injury.45

Increased leukocyte infiltration in AP group compared to
the control one observed in our study, is a multistep process,

coordinated by specific adhesion molecules and a major char-
acteristic of human and experimental pancreatitis, constituting
a critical link in mediating tissue damage in AP. A fact is sup-

ported by reduced tissue injury in Cn-induced AP with neu-
trophils depletion.46

The apelin-induced inhibition of neutrophil recruitment

may be one mechanism behind the reduction in pancreatic
and hepatic injury with apelin treatment. It could be attributed
to reduced levels of cytokines and chemokines.47

The implied inhibitory role of exogenous apelin on neu-

trophil invasion is bolstered in apelin-deficient mice with pan-
creatitis, where pancreatic neutrophil recruitment was
enhanced significantly, reduced subsequently by apelin treat-

ment, and possibly mediated by an apelin-induced reduction
of keratinocyte chemokine, a key chemoattractant for neu-
trophils and granulocyte colony-stimulating factor secretion,

which exerts a variety of trophic actions on neutrophils to
increase their density.14

It is evident from our results that there was significant

increase in the hepatic caspase 3 activity, a critical executioner
of apoptosis, in the Cn – induced AP group. These results have
implicated the apoptosis in AP- induced early hepatic damage,
consistent with previous report of positive correlation of apop-

tosis with degree of hepatic damage and hepatic failure in
AP.48

In our study, apelin-13 significantly reduced liver caspase 3

activity of AP rats. The anti-apoptosis effect of apelin may be
attributed to its anti-oxidant effect or through the APJ/
phosphatidylinositol-3 kinase (PI3-K)/Akt signaling

pathways.49

Consistent with its role in blocking cell death, Kunduzova
et al.50 revealed dose-dependent antiapoptotic effects of apelin,
possibly through enhancing the Bcl-2, prosurvival protein

expression, or abrogating Bax protein production, a well-
known proapoptotic protein.

Aside from its direct effects on the pathophysiology in AP,

the apelin-APJ pathway has additional protective actions on
AP-induced liver injury through its well-known positive ino-
tropic effect, improving microcirculation/perfusion, aiding to

protect tissues. Moreover endogenous apelin is required for
the suppression of inflammation-induced vascular hyper per-
meability and restores the vasoconstrictors/vasodilator

imbalance.51

Another mechanism could explain the apelin protective
effect in our study suspected by Kapica et al.16 who concluded
that intravenous apelin decreased pancreatic-biliary juice
volume, protein and trypsin outputs in a dose dependent man-
ner, alleviating the inflamed pancreas.

6. Conclusion

The results of the present study identified a previously
unknown role for apelin in abrogating the acute Cn induced

pancreatic and hepatic damage, probably by modulating
inflammatory cytokines, alleviating leukocytes infiltration, oxi-
dants stress with its anti-apoptotic effect. So targeting the ape-

linergic system could be a line of treatment in the course of AP
associated liver damage. However, the present study may be
just the tip of an iceberg and further investigations are needed

to fully characterize apelin-mediated protection in AP associ-
ated hepatic injury and provide further comprehension for
aplinergic signals pathway in AP.
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