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ABSTRACT 
We have simulated the diffraction patterns of both periodic and quasiperiodic monatomic chains 
using the code Laue (written by Silsbee and Drager) and investigated the effects of the shape of 
the atomic potential. Three fundamental differences between the diffraction patterns of periodic 
and quasiperiodic monatomic chain were observed. The width and modulated shape of the 
diffraction pattern formed by the quasiperiodic chain was found to depend on the shape of the 
atomic potential. For guassian and exponential atomic shapes, the width decreases as the lattice 
constant is increased. It also decreases as the size of the atom is increased. For a pseudoatomic 
shape, the width varies with lattice constant and size of atom in an un-orderly manner. 
Keywords: Quasicrystal, Pseudo, Gaussian and Exponential Atomic Potentials 
 

 

INTRODUCTION 
Quasiperiodic crystal, which in a short notation is 
often called quasicrystal refers to the crystal material 
with perfect long-range order, but with no three 
dimensional translational periodicity. Quasicrystals are 
solid whose diffraction patterns exhibit a rotational 
symmetry, such as fivefold symmetry that is forbidden 

for periodic crystal (Fujiwara, et al 2008). 
Inspired by the growing number and varieties 

of quasiperiodic crystal, the international union of 
crystallography has redefine the term crystal to mean 
any solid having essentially discrete diffraction 
diagram, thereby shortening the essential attribute of 
crystallinity from position space to Fourier 
space(www.Lassp.cornell.edu/Lifshtz/quasicrystal.html
-6). Within the family of crystal, one distinguishes 
between periodic which are periodic on the atomic 
scale and aperiodic which are not. This definition 
reflects our current understanding, that microscopic 
periodicity is a sufficient but not a necessary condition 
for crystallinity. 
One of the most general features of diffraction pattern 

displayed by a crystal is that, each Bragg’s peak in 
discrete diffraction pattern determines a wave vector 
at which the electron density has non vanishing 
coefficient in its Fourier expansion. In quasicrystal 
there is existence of the other peaks between the 
already existing peaks. This is because quasicrystal 
lattice are dense in the mathematical sense. This 
implies that, there are no requirements of minimal 
distance between wave vectors. Hence the absence of 
such requirement is what allows lattice to have 
symmetries which are forbidden in periodic crystal (n-
fold rotations, with n = 5 and > 6). 
The two forms of quasicrystal are; Icosahedral 
quasicrystal and Polygonal quasicrystal 
 Icosahedral quasicrystal is characterized by 

the occurrence of sharp diffraction spot. 
 Polygonal quasicrystal is characterized by the 

occurrence of non-crystallographic rotational 
symmetry. 

The history of quasicrystal begins with the 1984 paper 
(Shechtman et al., 1984) “Metallic phase with long-
range orientation order and no translation symmetry” 
where D. shechtman et al demonstrated a clear 
diffraction pattern with a five-fold symmetry. The 
pattern was recorded from an Al-Mn alloy which has 
been rapidly cooled after melting. Ishimasa et al, 

(1985), reported twelve fold symmetry in Ni-Cr 
particles. Over the years, hundreds of quasicrystals 
with various compositions and different symmetries 
have been discovered. The first quasicrystalline 
materials were thermodynamically unstable-when 
heated. The first of many stable quasicrystals(e.g 
AlCoNi) were discovered making it possible to produce 
large samples for study and opening thedoor to 
potential applications(Lifshitz, 2003). 

Ferralis et al. (2004) investigatethe diffraction 
from One- and two dimensional quasicrystalline 
gratings” using two different approaches (laser 
diffraction and calculated diffraction method using 
Fibonacci series). The work suggested that, laser 
diffraction allows an inductive approach for 

understanding complex aperiodic structure, and can 
provide researchers with an innovative tool for 
introducing and extending the traditional concept of 
diffraction. In 1985, Levine conducted a theoretical 
work on the diffraction pattern for an ideal model of 
quasilattice in which identical atoms are placed at 
each point of the lattice, and obtained results that are 
in agreement with the observation earlier reported by 
Shechtmen et al., (Shechtman, 1984). 
To generate a quasicrystal patterns, projection 
methods have been developed (De-Bruijin, 1981; 
Kramer et al,. 1984 and Dueau, 1984). Projection 
methods are mathematical constructs that projects 
sections of hypercubic lattice onto lower dimensional 
spaces. The first such projection was given by De-

Bruijn (Latvin, 1988), where he showed that the 
vertices of the two-dimensional penrose pattern of 
darts and kites can be generated by hypercubic lattice 
into a one-dimensional space. 

http://dx.doi.org/10.4314/bajopas.v7i1.12 
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In this work, the effects of varying the shape of the 
atomic potentials are investigated on one-dimensional 
quasicrystal material using the code ‘Laue’ written by 
Silsbee and Drager,(2005). Laue is based on the 
projection technique, however, unlike traditional 
projection work, in which the emphasis is entirely on 
the diffraction pattern, the code can provide additional 
data that can be used to characterize the quasicrystal. 
Three types of potentials namely Gaussian, 
Exponential and Pseudo atom were used in this work. 

The electron density,  at distance  from the 

atomic center of a single atom for the potentials are 
given in Table 1 below. In these expressions, R is the 

atomic position, Z its atomic number, and  is the size 

of the atom which is taken as the root mean square 
width of its electron density. The pseudo atom is 
represented by an electron density of the core 

electrons, a Gaussian of width  , 

superimposed on an electron density of the valence 

electrons, a Gaussian of width  . All 

three  atom shapes agree in their zeroth, first, and 

second moment (i.e  is the same for 

each  for  

 
Table 1 Expression for the Electron Density.  

ATOM SHAPE ELECTRON DENSITY  OF SINGLE ATOM 

GAUSSIAN 

 
EXPONENTIAL 

 
PSEUDO ATOM 

 
 
DIFFRACTION PATTERN OF QUASICRYSTAL 
The diffraction patterns of the quasicrystal consist of a set of Bragg peaks    that densely fill reciprocal space in 
an array with quasicrystal symmetry. For a one-Dimensional quasicrystal with atomic position of the Nth atom 
given by(Levine 1985); 

  ,     (1) 

where  is thegolden ratio ;  and   are arbitrary real numbers and ’s  represent the greatest integer 

function. This particular example is central to study the pentagonal and icosahedral quasilattice. The atomic 
position of the 1D (Fibonacci) quasicrystal described by Eqn. (1) may be expressed as; 

 ,  (2) 

where  signifies the fractional part function and we have used the fact that  . 

Using identity is The function   is periodic in X with period 1. This expression is of the 

general form; 

  ,     (3) 

where  is periodic in  with period  is irrational. Expressions of this variety arise in the study of 

Frenkel-Kontrovamodel(Lavine, 1985), which describe a 1D in commensurate crystal. The Fourier transform of 
such a set of atomic positions consist of Bragg peaks at positions 

,  

where M and N are integers. This result may be obtained by expanding the exponential appearing in 

the expression for the transform in a Fourier series of its own and employing the completeness relation for 
complex exponentials. For our case, this means that there will be peaks at 

  ,      (4) 

where p and q are integers. The diffraction pattern (i.e. Fourier transform of the 1D quasicrystal can be 
computed using this relation from Eqn. (2).  
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where the summation is over the N atomic position in the chain. First consider  for K of the form 

 as define in eqn. (4). Noting the identitythe exponent in eqn. (5) is given by; 

 

 

 (6) 

The first term in the expression  is an integer times  and therefore only yield a 

factor of unity upon exponentiation. The last two terms   are independent and 

contributes to the sum in an important fashion. Since the second 

term  lies between zero and , where  since  is an irrational 

number, the value of the second term is uniformly and densely distributed in the interval (0, X), enabling us to 
approximate the sum in eqn. (5) by an integral; 

,     (7)  

where  and  . Equation (7) is the solution of  for the special 

values , which correspond to the position of bragg peaks. Thus we conclude that  

 .     (8) 

Those familiar with the computation of the fourier 
transform of 1D quasicrystal via projection method will 
recognize that the two methods agree exactly. 

The brightest spots occur for those  where 

X is small. This occurs when    is close to . It is well 

known that the best rotational approximants to  

occur when q and p are successive Fibonacci 

number . This means that the sequence of most 

intense peaks corresponds to 

(Levine, 1985) . 

The diffraction pattern of a quasicrystal is one of its 
most distinctive features, the pattern consist of a set 
of Bragg’s peaks that densely fill reciprocal space. This 
result can be understood intuitively by considering the 
case of 1D quasicrystal with atomic position given in 
equation (1). The equation can be divided into a sum 
of two functions that describe periodic spacing but 
with incommensurate periods. If the first term were 
kept, the diffraction would consist of Bragg peaks 
spaced periodically in reciprocal space with some 

fundamental period . Because the second term is 

incommensurate, it leads to Bragg peak at some 

incommensurate reciprocal space period  . The full 

pattern then consist of the union of the two sets of 

peak plus peaks at linear combination of and . 

Because the two are incommensurate, the peaks 
densely fill reciprocal space (in a countable non-fractal 
way) (Levine, 1985) 
 
MATERIALS AND METHODS 
Laue Code 
The code, “Laue” written by Silsbee and Drager 
(2005) was employed in this work. Basically the code 
computes the electron density and diffraction pattern 
of a one-dimensional array of atoms. The one-
dimensional crystal is represented by its real-space 
electron density which is generated from superposition 
of atomic electron densities. The corresponding 
diffraction is then computed as the square of the 

Fourier transform of that electron density. To compute 
the diffraction pattern (Intensity) of the electron 
density, “Laue” uses a Fast Fourier Transform (FFT) 
routine. The intensities are normalized to give a height 
for the central peak of one for the monatomic 
quasicrystal. 
The program has two main output windows for 
displaying the electron density and diffraction pattern 
respectively. The code has eight menus namely: Quit 
Display, Configure, Presets, Help, Material, Modulation 
and Calculate. The material menu allows user to select 
the type of material simulated. The possible options 
are Monatomic crystal, Diatomic crystal, Single atom, 
Pair of atoms, Liquid and Quasicrystal. 

In this case of simulating quasicrystal, the program 
has the following variables: Lattice constant, Size of 

atom, the Spacing ratio and Atom shape. In this work 
the atomic potential was first chosen to be Gaussian, 

64 



Bajopas Volume 7 Number 1 June, 2014 

 

 
 

and then followed by Pseudo and Exponential and in 
each, the diffraction pattern was observed and 
analyzed. 
 
Procedure 
Procedure 1(Monatomic Chain) 
The size of the atom was set to be 0.1Åand the 
atomic potential was chosen to be Pseudo. The lattice 
constant was set to be 3.0Å and then the simulation 
executed. The procedure was repeated for the values 
of lattice constant of 4.0, 5.0, 6.0 and 7.0Å. The data 
from the simulation was then exported to excel for 
further analysis which include among others, 
computation of the width of the diffraction pattern 
and plotting the variation of diffraction intensity with 

the scattering wave vector for the following values of 
size of the atom; 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7Å. 
 
 
PROCEDURE 2 (QUASICRYSTALS) 
The atomic potential shape was chosen to be 
Gaussian, the golden mean, the size of the atom and 
the lattice constant were set at 1.6, 0.1Å and 3.0Å 
respectively. The code was then run. The lattice 
constant was varied to 4.0, 5.0, 6.0 and 7.0Å 
respectively and the simulation executed for each of 
lattice constant. 

The size of the atom was then varied to 0.2, 0.3, 0.4, 
0.5, 0.6 and 0.7Å respectively and this procedure the 
was repeated for each atomic size. The data obtained 
for the diffraction due to Gaussian potential was 
exported for further analysis. 
The atomic potential shape was changed to pseudo 
and exponential respectively and the procedures 
above were repeated. 
 
RESULTS AND DISCUSSION 
It is important to understand the units of intensity 
used in the plots of the diffraction pattern and the 
width of the diffraction pattern. In the plots of the 
diffraction pattern for the periodic monatomic chain, 
the intensities of the peaks are normalized such that 

the central peak is unity. Thus in these plots the 
intensities of all the central peaks are unity in arbitrary 
units even though their actual magnitudes are not 
equal. In the plots of the diffraction pattern for the 
quasi periodic monatomic chain, the intensities are not 
normalized but are also given in arbitrary units. 
The width of the diffraction pattern simply refers to 

the range [ ] where the intensity is 

identically zero. This is not the same as the width of 
the distribution function. It is also not the same as the 
width that is visible in the plots of the diffraction 
pattern. 

 
Features of the Diffraction Pattern of A Periodic Monatomic Chain 
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Figure 1: Sample of the Diffraction Pattern for Periodic Monatomic Chain using Pseudo Potential 

 
The following features of the diffraction pattern of the 
monatomic chain (atomic potential being pseudo) are 
observed from Fig.1: 

i. The diffraction peaks are equally spaced, i.e the 

scattering wave vector,  is constant. 

ii. The intensity of the peaks is inversely 

proportional to . 

iii. Since each Bragg’s peaks determine the wave 
vector, the Bragg’s planes of the material are 

equally spaced, ensuring the periodicity of the 
material. 

iv. For a given atomic size, as the lattice constant 
increases, the diffraction intensity for the central 
peak increases. 

v. From Table 1.below, the width of the diffraction 
pattern varies in an un-oderly manner with 
respect to size of atom and lattice constant. This 
will allows the careful observation for the 
variation of lattice constant with the increase of 
size of the atom.    

 
Table 1: Variation of width of diffraction patter with size of the atom for Pseudo Potential  

Lattice constant  

               ( ) 

 

Size of Atom( ) 

3.0  4.0  5.0  6.0  7.0  

0.1 131.9468 98.9602 79.1681 65.9734 56.5486 

0.2 119.3805 98.9602 79.1681 65.9734 56.9734 

0.3 67.0206 69.1150 70.3716 65.9734 56.5486 

0.4 50.2654 50.2654 52.7788 52.3598 52.0606 

0.5 131.9468 40.8408 40.2124 41.8880 41.2896 

0.6 131.9468 98.9602 35.1858 33.5104 34.1088 

0.7 131.2826 98.9602 30.1592 29.3216 28.7232 

 
Features of The Diffraction Pattern of The Quasiperiodic Monatomic Chain 
Guassian Potential 
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Figure 2: Sample of the Diffraction Pattern for Gaussian Potential 

 
The following features of the diffraction pattern of the 
Quasicrystal (atomic potential being Gaussian) are 
observed from Fig.2: 
i. Each diffraction pattern has sharp peaks, just like 

periodic crystal, but in addition there is a 
background intensity. 

ii. The spatial distribution of the diffraction peaks is 
unique for a given size of atom, in particular the 
spacing between the peaks is constant for a given 
size of atom and independent of the lattice 
constant. 

iii. The intensity of the central peak is maximum and 
in general, the intensity decreases as the 

scattering wave vector is increased, however, the 
intensity is not strictly proportional to the 
scattering wave vector. 

iv. For a given size of atom, there is an increase in 
the background intensity, as the lattice constant 
increases.  

v. For a given lattice constant, the width of the 
diffraction pattern decreases as the size of the 
atom increases as shown in Table 2. However, for 
a given size of atom the width varies in an un-
orderly manner with respect to lattice constant. 

 

Table 2: Variation of width of diffraction pattern with size of the atom for Gaussian Potential 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Lattice constant( )  

 
Size of Atom 

3.0  4.0  5.0  6.0  7.0  

0.1 70.8356 72.5550 58.6334 48.9811 42.0249 

0.2 33.8842 53.1182 35.8588 35.4178 35.9040 

0.3 24.0112 23.1126 23.2924 23.4122 23.4978 

0.4 17.8766 18.0084 17.3686 16.9421 17.9516 

0.5 12.9402 13.4075 14.4068 14.4739 14.5218 

0.6 11.0712 12.0056 10.7547 12.0056 11.0916 

0.7 9.8729 9.7051 9.6045 10.4720 10.2905 
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Pseudo Potential 

 

 

 
Figure 3: Sample of the Diffraction Patterns  for Pseudo Potential 
 
The following features of the diffraction pattern of the 
Quasicrystal (atomic potential being Pseudo) are 
observed from Fig. 3: 

i. Each diffraction pattern has sharp peaks, just 
like periodic crystal, but in addition there is a 
background intensity. 

ii. The spatial distribution of the diffraction 
peaks is unique for a given size of atom, in 
particular the spacing between the peaks is 

constant for a given size of atom and 
independent of the lattice constant. 

iii. Intensity of the central peak was found to be 
the same as that of guassian potential. 

iv. For each size of the atom there is higher 
(compared to the guassian potential) 
increase in the background intensity as the 
lattice constant increases. 

v. The width of the diffraction pattern varies in 
an un-oderly manner with respect to size of 
atom and lattice constant as shown in Table 

3. 
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Table 3: Variation of width of diffraction patter with size of the atom 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Exponential Potential 

 

 
Figure 4: Sample of the Diffraction Patterns for Exponential Potential 
 
The following features of the diffraction pattern of the Quasicrystal (atomic potential being Pseudo) are 
observed: 

i. Each diffraction pattern has sharp peaks, just like periodic crystal, but in addition there is a background 
intensity. 

ii. The spatial distribution of the diffraction peaks is unique for a given size of atom, in particular the 
spacing between the peaks is constant for a given size of atom and independent of the lattice constant 

iii. Intensity of the central peak was found to be constant and the same as that of Gaussian and Pseudo 
potentials.  

iv. For a given size of the atom, there is intermediate (greater than Gaussian but less than Pseudo) 
increase in the background intensity, as the lattice constant increases.  

Lattice constant 

( ) 

 
Size of Atom 

3.0  4.0  5.0  6.0  7.0  

0.1 97.8579 73.5615 58.8779 49.0605 42.0557 

0.2 96.7160 73.2918 58.7772 49.0290 42.0351 

0.3 96.7160 65.8992 66.5342 58.0296 48.8612 

0.4 49.8916 49.4244 50.2654 48..3580 41.4702 

0.5 38.8206 37.4188 39.5358 39.4196 39.3340 

0.6 32.0150 31.4160 32.8968 32.9496 33.7882 

0.7 29.8356 27.7136 28.0946 28.9478 28.2424 
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v.  For a given lattice constant, the width of the diffraction pattern decreases (however very slow) with 
increase in size of atom. However, for a given size of atom the width decreases sharply on increasing 
the lattice constant as shown in Fig. 4.. 

 
Table 4: Variation of width of diffraction patter with size of the atom 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

DISCUSSION 
The following major differences between the 
diffraction patterns of crystal and a quasicrystal have 
been observed in this work:  
(i) In the periodic monatomic chain, the diffraction 
pattern consists of descrete peaks separated by 
regions of zero intensity, while in quasiperiodic 
monatomic chain, there is in addition to these peaks, 
a background intensity so that in the region bounded 
by the width of the diffraction pattern, the intensity is 
non zero everywhere. The quasicrystal reciprocal 
lattice is very dense to the extent that the wave 
vectors form a continuous spectrum, therefore, the 
allowed scattering wave vectors are also continuous. 
(ii) In quasicrystals, the intensity of the central peak 
depends on the golden mean i.e the spacing ratio is 
constant for a given golden mean (Sa'id, 2012). In 
this work, the intensity of the central peak for the 
quasiperiodic chains was found to be a constant of 

 since the golden mean is set at  only. 

However in the periodic monatomic chain, the 
intensity of the central peak was found to be not 
constant (depends on both the size of the atom and 
the lattice constant). However in the plots of the 
diffraction patterns shown in Fig.1.0, the intensity of 

the central peak has been normalized to . 

(iii) In both chains (periodic and quasi), the intensity 
of the central peak is greater than that of the other 

peaks. Let . In case of 

one-dimensional periodic chain, the intensity of the 

peaks are always such that , 

however, in the quasichain it is not necessarily. In 

fact, it is possible for . 

(iv) The width and the modulated shape of the 
diffraction pattern formed by a quasicrystal depends 
on the atomic potential. For guassian and exponential 
atomic shapes, the width decreases as the lattice 
constant is increased. It also decreases as the size of 
the atom is increased. For pseudo-atomic shape, the 

width vary with lattice constant and size of the atom 
in an un-orderly manner.The maximum width in 
Figure( 1-4) is found when the lattice constant is 

 and the atomic size is . The maximum 

width in Fig. 4,and Table 4.is  was 

produced by Exponential Potentials. The Guassian 
produced a maximum width in Fig. 2 and Table 2. 

is . The modulated shape of the diffraction 

pattern is found to be the same as the shape of the 

atomic potential distribution. For example the 
Guassian Potential produces a diffraction pattern 
whose modulated shape is the same as shape of the 
Gaussian distribution. 
         As stated above, the shape of the atomic 
potential affects the width and the modulated shape 
of the diffraction pattern of the one-dimensional 
quasicrystal. The manner in which the shape of the 
atomic potential affects these two features is now 
discussed. 
• Gaussian Potential 
For a small value of lattice constant in Fig.2 and 
Table. 2,the width of the diffraction drops very fast as 
the size of the atom increases. Also at a very large 
size of the atom, the diffraction width increases as the 

lattice constant increases. This is because the atomic 
size is larger compared to the X-ray wave length, 
waves scattered from different part of the atom will 
interfere destructively. In this case the scattered 
amplitude from single atom is inversely proportional to 
the number of electrons and hence the atomic number 
Z. 
• Pseudo Potential 
The diffraction width drops very slowly as the size of 
the atom increases, however it drops very fast as the 
lattice constant increases. Also when compared with 
Gaussian potential it was found that the diffraction 
width is four times larger. This is because the pseudo 
potential gives information not only on the surface of 
the atom but also the nucleon.  

 
 

Lattice constant  

( ) 

 
Size of Atom 

3.0  4.0  5.0  6.0  7.0  

0.1 98.1059 73.5794 58.8779 49.0605 42.0557 

0.2 96.9078 73.2918 58.6334 49.0530 42.0454 

0.3 96.7160 72.6808 58.6334 48.8612 41.8810 

0.4 96.7160 72.5370 58.0296 48.3580 41.5318 

0.5 96.7160 72.5370 58.0296 48.3580 41.5318 

0.6 96.7160 72.5370 58.0296 48.3580 41.4498 

0.7 91.7796 72.5370 58.0296 48.3580 41.4498 
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• Exponential Potential 
The diffraction width of exponential potential is 
comparable to that of pseudo potential but differs only 
in the intensity. 
 
CONCLUSION 
In this work, the diffraction patterns of periodic and 
quasiperiodic monatomic chains of atoms were 
simulated and the effects of the shape of the atomic 
potential investigated. The following are our 
conclusions: 
• The code Leue, written by Silsbee and Drager 
(2005) has been found to be not only suitable but also 
accurate in simulating the diffraction pattern of one-

dimensional monatomic chain of atoms when 
compared with theoretical approaches. 
• The width and the modulated shape of the 
diffraction pattern of quasiperiodic monatomic chain of 
atoms depends on the shape of the atomic potential. 
• In general, the effects of the Pseudo atomic 
potential are '' intermediate '' compared to the effects 
of the guassian and exponential potentials. 
• The width of the diffraction pattern of quasiperiodic 
chain with an exponential or Gaussian atomic shape 
varies in an orderly manner with respect to lattice 
constant and size of the atom. However, the width of 
the pattern for a chain with Pseudo atomic potential 
varies in an un-orderly manner with respect to lattice 
constant and size of the atom. 
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