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Abstract Background: In pre-clinical stage of preeclampsia, placental angiogenesis is impaired

leading to hypoxic placenta and dysregulation of pro- and anti-angiogenetic factors. As a conse-

quence, these cause elevated systemic vascular resistance, vasoconstriction and hypertension in clin-

ical stage of preeclampsia. Dysregulation of microRNAs (miRNAs) has been observed among

preeclampsia patients and they are involved in several aspects of preeclampsia pathogenesis.

Aims: To evaluate the roles of miRNAs in angiogenesis and vascular pressure in preeclampsia.

Material and methods: Articles from MEDLINE database (between 2007 and February 2015)

were searched by using the combination of Medical Subject Headings (MeSH terms) ‘‘preeclamp-

sia’’, ‘‘pre-eclampsia’’, ‘‘miRNA’’ and ‘‘microRNA’’. All sources of miRNAs, all types of

preeclampsia and all techniques used in measuring miRNAs were included. Furthermore, bibliogra-

phies of the articles were also retrieved for further relevant references.

Results: Data reveal that miRNAs interfere with angiogenesis during early pregnancy by dysreg-

ulating pro-angiogenic factors (such as placental growth factor, vascular endothelial growth factor,

fibroblast growth factor, transforming growth factor and insulin-like growth factor) and their

receptors including Fms-like tyrosine kinase-1 and fibroblast growth factor receptor 1. In addition,

miRNAs are also involved on high vascular pressure during preeclampsia by targeting several

vasodilators such as prostacyclin, 17b-estradiol, hydrogen sulfide and nitric oxide, and inducing

the production of angiotensin type I receptor agonistic autoantibodies.

Conclusion: Data confirm that miRNAs are involved in pathobiology of preeclampsia including

interference with angiogenesis during pre-clinical stage and induction of vascular resistance and

vasoconstriction in clinical stage.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of Ain Shams University. This is

an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Preeclampsia is a disease of pregnancy characterized by the
new onset of hypertension and proteinuria after 20 weeks of

gestation and it is classified as mild and severe preeclampsia
[1,2]. It has been estimated that preeclampsia affects 3–5%
of pregnancies [3] and complicates 3–8% of pregnancies world-

wide leading to a large disease burden [4].
Preeclampsia is a two-stage disorder: pre-clinical and clini-

cal stage. In the first stage, the endothelialization of cytotro-
phoblasts is impaired and the invasion of spiral arteries into

myometrium is inadequate leading to poor placentation, and
ischemic and hypoxic placenta. In the second stage, the
ischemic and hypoxic placenta releases anti-angiogenic factors

such as soluble Fms-like tyrosine kinase-1 (sFlt-1), soluble
endoglin (sEng), prostaglandins and cytokines into the mater-
nal circulation and dysregulates the production of pro-angio-

genic factors including vascular endothelial growth factor
(VEGF), placental growth factor (PlGF), fibroblast growth
factor (FGF), transforming growth factor-B (TGF-B) and

insulin-like growth factor I (IGF-I) [5–8]. It is clear that the
levels of sFlt1, sEng and other anti-angiogenic factors are
increased and the concentrations of VEGF, PlGF and other
pro-angiogenic factors are decreased in preeclampsia [9–22].

These changes induce systemic endothelial dysfunction and
inflammatory response leading to elevated systemic vascular
resistance, vasoconstriction, and activation of the coagulation

cascade [23]. As final results, these cause clinical symptoms
such as hypertension, proteinuria, hepatic dysfunction and
hematological and neurological disturbances during clinical

stage of preeclampsia.
One of the most important clinical features of preeclampsia

is hypertension. Several mechanisms are involved in inducing

hypertension among preeclampsia patients including down-
regulation of pro-angiogenic factors [10,24], up-regulation of
anti-angiogenic factors such as sFlt-1 and sEng [7,8,25],
increase of vascular responsiveness to vasoconstrictors [8],

the presence of angiotensin type I receptor agonistic autoanti-
body (AT1-AA) [26,27], high production of aldosterone and
endothelin 1 [28,29] and low production of vasodilator such

as nitric oxide (NO) [30] and hydrogen sulfide (H2S) [31].
The production of these diverse molecules is regulated in a
secure manner by different regulators, and the universal regu-

lator such as miRNAs might have pivotal roles in dysregulat-
ing these molecules during preeclampsia.

Since 2007, several studies have been conducted to investi-
gate the role of miRNAs in pathogenesis of preeclampsia in

deep. Studies revealed that the expression of miRNAs was dys-
regulated in placentas and sera from preeclampsia pregnancies
[32–74]. Therefore, the aim of this study was to evaluate the

roles of miRNAs in angiogenesis during pre-clinical stage
and pathobiology of hypertension during clinical stage of
preeclampsia. This study is a part of our systematic review that

has been conducted to evaluate the role of miRNAs on
preeclampsia pathogenesis.

2. Methods

This study is a systematic review to assess the role of miRNAs
on angiogenesis and vascular pressure among preeclampsia

patients. Potential eligible studies from MEDLINE database
from 2007 and February 2015 were searched by using key-
words: ‘‘preeclampsia’’, ‘‘pre-eclampsia’’, ‘‘miRNA’’ and
‘‘microRNA’’. In 2007, the first investigation on the roles of

miRNAs on preeclampsia pathogenesis was published; there-
fore, the year 2007 was used as cut point of the year. The bib-
liographies of the articles were retrieved for further relevant

references. If an article evaluated the expression of miRNAs
either from more than one set of patient-control and sources
of miRNAs, each one of them was considered as one indepen-

dent study. Only articles written in English were included.
Preeclampsia in this study is defined as the new onset of

hypertension and proteinuria after 20 weeks of gestation.
Hypertension is defined as systolic blood pressure of

140 mmHg or greater and diastolic blood pressure of
90 mmHg or greater measured on two occasions at least 4–
6 h apart. Proteinuria is defined as at least 100 mg/dL of protein

in random urine specimens collected at four-hour interval or as
300 mg or more of protein from 24 h of urine specimen and/or
protein to creatinine ratio of >0.03. In this study preeclampsia

is divided into preeclampsia and severe preeclampsia.
All miRNA sources and all techniques that were used to

measure the expression of miRNAs were included. If a study

used microarray to measure miRNA expression profile at the
first time then confirmed by quantitative reverse transcription
polymerase chain reaction (qRT-PCR), the level of miRNAs
expression used was validation level by qRT-PCR. For quality

assessment, inhibition effect of a miRNA on a gene expression
is based on Gene Ontology analysis and supported by direct
miRNA inhibition on 30untranslated region (30UTR) of partic-

ular gene. Case series or reports, editorials, reviews without
original data, letters to the editor were excluded from the sys-
tematic review.

The results of this systematic review are divided to two
parts as miRNAs have diverse effects on preeclampsia patho-
genesis. The first part is the roles of miRNAs on trophoblast

function [75] and the second part is the roles of miRNAs on
angiogenesis and vascular pressure dysregulation. In this arti-
cle, the role of miRNAs in angiogenesis and dysregulation of
pro-angiogenic and anti-angiogenic factors and other mecha-

nisms that contribute to hypertension during preeclampsia
are discussed.
3. Results

In this systematic review, the searches found 89 potential stud-
ies. Thirty-seven studies were excluded after further assessment

and 52 studies were included in this study. Since the first report
on the expression of miRNAs among preeclampsia patients
was published in 2007 [32], intensive investigations have been

conducted [33–74]. Among these studies, most of them were
case–control study [32–40,42,43,45–74] and some of them were
prospective cohort study [41,44,62]. Differential sources of
miRNA expression have been investigated such as placenta

[32–36,38,40,47–51,54–57,59–62,66,68,70–74], plasma [39,41–46,
50,63–65,67], human umbilical vein endothelial cell (HUVEC)
[69], peripheral blood mononuclear cell (PBMC) [53] and mes-

enchymal stem cell (MSC) of decidua or umbilical cord
[37,53,58] from preeclampsia and normal pregnancies. The coun-
try of study also varies including China [33–35,37,40,42,43,

45,50,52–58,63,64,67,69,72–74], USA [32,46–48,51,54,61,70,71],
Canada [50,60], Switzerland [36], Norway [38], Italy [39], Spain
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[41], Czech Republic [44], South Korea [49], Hungary [59], Japan
[62], Turkey [65], Chile [66], and Germany [68].
4. Discussion

4.1. The role of miRNAs in angiogenic factor expression

Evidences suggest that failure of trophoblast invasion is linked
to abnormal placental production of vasculogenic and pro-an-

giogenic factors, such as VEGF, PlGF, FGF, TGF-B, IGF-1
and angiopoietin 2 [5–8,76,77]. In maternal level, VEGF stabi-
lizes endothelial cells, by stimulating the production of NO

and prostacyclin and maintaining the health of fenestrated
endothelium in the kidney, liver, and brain [8]. VEGF activities
are mediated primarily by its receptors (Flt-1 and kinase-insert

domain region (KDR)) that are selectively expressed on vascu-
lar endothelial cell surface. PlGF is a member of the VEGF
and it amplifies VEGF signaling [8]. The function of these
pro-angiogenic factors is interfered by anti-angiogenic factor

such as sFlt-1 and sEng.
sFlt-1, an alternatively spliced and truncated version of

Flt-1, is secreted prominently by syncytiotrophoblasts into

the maternal circulation [8,10]. Because of its structure,
sFlt-1 enables to bind VEGF and PlGF leading to reduced
interaction with their receptors [78,79]. Karumanchi group,

for the first time, demonstrated that administration of sFlt-1
and sEng in animal model produced almost all of clinical
features of preeclampsia by interfering with the biological

function of VEGF and PlGF [10,80]. Among preeclampsia
patients, increased sFlt-1 was associated with decreased free
VEGF and PlGF in the serum [10,24,81] and increase of
sFlt-1 was correlated with preeclampsia severity [9,82,83].

Animal study found that exogenous sFlt-1 administration
induced albuminuria, hypertension, and renal pathological
changes of glomerular endotheliosis [10].

However, sFlt-1 excess is not sufficient to explain the other
manifestations of preeclampsia including hyper-coagulation,
liver dysfunction and seizures [84]. Evidences reveal that

sEng, another anti-angiogenic factor, might be the causal fac-
tor for hyper-coagulation, liver dysfunction and seizures
[80,85–87]. sEng, a truncated form of endoglin, prevents endo-
glin to interact with its receptor and sEng expression was up-

regulated in preeclampsia patients [85]. Endoglin is co-receptor
of TGF-b1 and TGF-b3 and it interacts with its receptor, acti-
vin-like kinases (ALK) and regulates the expression of DNA-

binding protein inhibitor ID1, endothelial NO synthase
(eNOS), and plasminogen activator inhibitor-1 (PAI-1) gene
[88]. Therefore, endoglin is involved in regulation of angiogen-

esis, vascular tone, and coagulation and fibrinolytic balance
[89,90]. Studies found that sEng inhibited endothelial capillary
tube formation and promoted vascular permeability [80] and

over-expression both of sEng and sFlt-1 induced severe
proteinuria, hypertension, intrauterine growth restriction,
HELLP syndrome (hemolysis, elevated liver enzyme levels,
and low platelet levels) and increased vascular permeability

that was associated with brain edema [87,80]. The roles of
major pro- and anti-angiogenic factors in preeclampsia patho-
genesis are summarized in Fig. 1.

It is clear that angiogenic factors are involved in preeclamp-
sia pathogenesis but the regulation of their production is still
not well understood. Interestingly, studies found that several
miRNAs target directly angiogenic factors. It is indicating that
miRNAs have critical roles in production of angiogenic factors
during pre-clinical stage of preeclampsia. For example, Hu

et al. [73] found that miR-16, miR-26b, miR-29b, miR-181a,
miR-195, miR-222 and miR-335 were significantly higher in
preeclamptic placentas than in normal placentas. The target

genes of these miRNAs were related to angiogenic factors,
such as VEGF-A and PlGF. This research revealed that
miR-222, miR-335 and miR-195 targeted cysteine-rich 61

(CYR61), PlGF and VEGF-A, respectively. CYR61 is essen-
tial for vascular integrity and it is significantly decreased in
preeclamptic placenta [91,92]. In addition, another study
demonstrated that the expressions of VEGF-A and VEGF

receptor-1 were also down-regulated in cytotrophoblasts of
preeclamptic placenta [93].

In addition, studies found that the expression of miR-182

and miR-182* were significantly higher in preeclampsia than
the control group [32,33,47,68]. Interestingly, a previous study
revealed that angiogenin and VEGF-B were the potential tar-

gets of miR-182 and miR-182*, respectively (Fig. 2) [32].
Additionally, other studies found that miR-29b increased sig-
nificantly among preeclampsia patients [37,47,74] and it tar-

geted VEGFA directly. Another study also found that
VEGF-A is one of the putative targets of miR-16 and over-
expression of miR-16 reduced the protein levels of VEGF-A [53].

Another study also found that preeclamptic placenta had

up-regulation of miR-126 expression [62] and this miRNA
directly targeted the 30UTRs of sprouty-related, EVH1
domain-containing protein 1 (SPRED1) and phosphoinosi-

tide-3-kinase, regulatory subunit 2 (PIK3R2) [94,95].
SPRED1 and PIK3R2 are components that have a pivotal role
in VEGF pathway [94]. See detailed explanation in angiogen-

esis section. A recent study found that miR-424 expression
was up-regulated in placenta from severe preeclampsia patients
[33] and it targeted FGF receptor 1 (FGFR1) [96].

Furthermore, other studies demonstrated that IGF-I was
decreased in serum and placental tissue of women with
preeclampsia [6,74,97]. Zhu et al. [74] documented a significant
up-regulation of miR-30a-3p in preeclamptic placenta and it

targeted IGF-1. IGF-I stimulates renal and placental 1,25-di-
hydroxyvitamin D [1,25-(OH)2D] and it is considered an
important regulator of fetal growth. Other studies indicated

that circulating IGF-I and 1,25-(OH)2D levels in both mater-
nal and umbilical cord compartments were low in preeclamp-
sia and it correlated with low weight and length at birth,

high risk of preeclampsia and preeclampsia severity [97–99].
Surprisingly, a study found that Flt-1 and sFlt-1 were direct

target of miR-10 [100]. This study found that inhibition of
miR-10; both of sFlt-1 and Flt-1 were highly expressed and

bound to VEGF and, in turn, interfered VEGF signaling for
angiogenesis. The inverse condition was true for the presence
of miR-10. It indicates that miR-10 is important to inhibit

the production of anti-angiogenesis, sFlt-1. In preeclampsia,
a study found that the expression of miR-10b was up-regulated
in preeclamptic placentas [62]. There is no further study that

confirms the role of miR-10 in preeclampsia.
4.2. The role of miRNAs in angiogenesis

The crucial roles of miRNAs in angiogenesis became obvious
after several studies demonstrated that deletion of miRNAs



Figure 1 The role of angiogenic factors in preeclampsia pathogenesis. In the pre-clinical stage of preeclampsia, endothelialization of

cytotrophoblasts is impaired leading to placenta ischemia and hypoxia. One of the important causal factors is imbalance pro-angiogenic

factors (VEGF and PlGF) and anti-angiogenic (sFlt-1, sEng, AT1-AA). In the clinical stage, in response of ischemia condition, the

placenta releases anti-angiogenic proteins and reduces the production of pro-angiogenic factors sFlt-1, reduces aldosterone levels in

circulation and antagonizes the function of VEGF and PlGF. Reduction of interaction between pro-angiogenic factors (VEGF and PlGF)

and their receptors leads to impaired fenestrated endothelial function in some organs and reduced the production vasodilators

(prostaglandin and NO). These cause hypertension, proteinuria, neurological disturbances and high liver enzyme. sEng inhibits the

production of NO by antagonizing TGF-b interaction to its receptor complex. TGF-b1 signaling is important to induce endothelium-

dependent relaxation via an eNOS-dependent mechanism. sEng is also to be involved in hyper-coagulation and fibrinolytic imbalance by

attenuating endoglin regulation on PAI-1 gene. One of the possible factors induces the production of sFlt-1 and sEng is AT1-AA. AT1-

AA induces intracellular cascades and promoter activations in the nucleus lead to an up-regulation of endothelin-1, sFlt-1, sEng and other

tissue factors. miRNAs could be an important factor either in up-regulation of sFlt-1 and sEng or down-regulation of VEGF and PlGF.

Red arrow (down-regulation) and green arrow (up-regulation) indicate the confirmed expression level of molecule (as indicated) in

preeclampsia condition. AT1-AA: the agonistic angiotensin II type 1 receptor autoantibody, AT1-receptor: angiotensin II type 1 receptor,

eNOS: endothelial nitric oxide synthase, Flt-1: Fms-like tyrosine kinase-1 (also known as vascular endothelial growth factor receptor 1

(VEGFR-1)), KDR: kinase insert domain receptor (also known as VEGFR-2), PlGF: placenta growth factor, sEng: soluble endoglin,

sFlt-1: soluble Fms-like tyrosine kinase-1, TGF-b: transforming growth factor beta, VEGF: vascular endothelial growth factor.
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resulted in severe in vivo and in vitro angiogenesis defects [101–

103]. Since then miRNAs were shown to play important roles
in regulation of angiogenesis during development and normal
physiological processes, as well as pathological angiogenesis

[104].
In preeclampsia, several miRNAs are involved in angiogen-

esis by targeting various molecules including pro-angiogenic

factors. A study found that miR-29b increased significantly
among preeclampsia patients and it targeted VEGF-A directly
(Fig. 2) [37,45,73]. Therefore, it has direct effect on angiogen-
esis. VEGF is a positive regulator of angiogenesis and plays a

crucial role in vascular endothelial cell growth, blood vessel
production as well as vascular permeability. Another study
also found that VEGFA is one of the putative targets of

miR-16 and over-expression of miR-16 reduced the protein
levels of VEGFA (Fig. 2) [53]. A study confirmed that the
expression of miR-16 was up-regulated among preeclampsia

patients [33,37,53,73].
Wang et al. [53] found that angiogenesis-associated

miRNAs (miR-17, miR-20a and miR-20b) were up-regulated
among preeclampsia patients. These miRNAs target Ephrin-
B2 and Ephrin type-B receptor 4 (EPHB4) (Fig. 2). Ephrin-

B2 belongs to Ephrin ligands of Eph receptor, while EPHB4
belongs to families of Eph receptor. Interaction of Eph recep-
tor and Ephrin ligands mediates vascular cell adhesion, repul-

sion, and migration [105]. A pro-angiogenic function of
Ephrin-B2 was achieved by regulating internalization and sig-
naling activities of VEGF receptor 2 (VEGFR2) and
VEGFR3; therefore, both of EPHB4 and Ephrin-B2 have piv-

otal roles for angiogenesis during placentation [53].
In addition, miR-17, miR-20a and miR-20b also target

other genes that are important for placental angiogenesis,

including hypoxia-inducible factor 1-alpha (HIF1A),
VEGFA, matrix metalloproteinase 2 (MMP2), metallopepti-
dase inhibitor 2 (TIMP2), IL-8 and TGF-b receptor (Fig. 2)

[53,106]. HIF1A is a hypoxic-sensitive transcription factor



Figure 2 The molecular models of regulation of miR-17, miR-20a, miR-20b, miR-16, miR-29b, miR-210, miR-424 and miR-10 on

angiogenesis and vascular integrity. Red arrow (down-regulation) and green arrow (up-regulation) indicate the confirmed expression level

of miRNA or molecule (as indicated) in preeclampsia condition. EPHB4: ephrin type-B receptor 4, FGFR1: fibroblast growth factor

receptor 1, FGF-bR: fibroblast growth factor beta receptor, Flt-1: Fms-like tyrosine kinase-1 (a receptor of VEGF), HIF1A: hypoxia-

inducible factor 1-alpha, HOXA9: homeobox protein Hox-A9, KDR: kinase-insert domain region (a receptor of VEGF), MMP2: matrix

metalloproteinase 2, sFlt-1: soluble Fms-like tyrosine kinase-1, TIMP2: TIMP metallopeptidase inhibitor 2, VEGFA: vascular endothelial

growth factor A, VEGFR2: VEGF receptor 2, VEGFR3: VEGF receptor 2.
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for placental development and function by regulating the
expression of hypoxia-responsive genes including VEGFA,
while MMP2 and TIMP2 are critical for regulating extracellu-

lar matrix degradation during initial angiogenic response.
TGF-b1 induces angiogenesis through VEGF-mediated apop-
tosis [107]. Therefore, it is clear that miR-17, miR-20a and
miR-20b regulate multiple steps during angiogenesis, including

down-regulation of angiogenic factors expression, as well as
inhibit matrix breakdown, endothelial cell proliferation,
migration, and tube formation.

Another miRNA that might be important on angiogenesis
pathobiology during the first stage of preeclampsia is
miR-210. Although, a couple of studies found that miR-201

expression was down-regulated in mild preeclampsia [71,74],
up-regulation of miR-210 is robust in preeclampsia patients
[33,39,40,43,46,47,54,62,65–67,77]. Previous studies found that

miR-210 targeted homeobox protein Hox-A9 (HOXA9)
(Fig. 2) [67]. HOXA9 is a member of homeobox gene family
and has a crucial role in angiogenesis by regulating the
EPHB4 receptor to modulate endothelial cell tube formation

[108]. In addition, ablation of HOXA9 gene in endothelial cells
inhibited in vitro sprout formation and cell migration [108].
Furthermore, a study also revealed that the levels of mRNA

and protein of HOXA9 were significantly lower in preeclamp-
tic placentas compared to healthy control [67].

In addition, a study found that there was an up-regulation

of miR-424 in placentas from severe preeclampsia patients [33]
and FGF receptor 1 (FGFR1) was a target of miR-424 (Fig. 2)
[96]. FGFR1 also has pivotal roles in many signaling pathways
that control cellular proliferation, differentiation, survival, and

angiogenesis [96].
One of the most robust miRNA functions on angiogenesis

is shown by miR-126. Studies found that miR-126 directly tar-

geted the 30UTRs of vascular cell-adhesion molecule-1
(VCAM-1), sprouty-related, EVH1 domain-containing protein
1 (SPRED1), and phosphoinositide-3-kinase, regulatory subunit
2 (PIK3R2) (Fig. 3) [94,95]. VCAM-1 is a stimulator of angio-
genesis [109], while SPRED1 and PIK3R2 are pivotal compo-

nents of VEGF pathway [94]. SPRED1 inhibits RAF1 kinase
activity, decreases ERK phosphorylation and, as the final result,
reduces VEGF signaling that related to angiogenesis and vascu-
lar integrity. In addition, miR-126 regulates VEGF (and other

growth factor signaling) also by targeting PIK3R2. PIK3R2 is
an anti-angiogenic factor and a negative regulator of phos-
phatidylinositide 3-kinases (PI3) kinase activity signaling cas-

cades [52]. By targeting PIK3R2, PIK3R2 reduces the PI3
kinase activity and AKT, and as the final consequence it reduces
VEGF signaling (Fig. 3).miR-126 also regulates EphrinB2 and

regulator of G-protein signaling 5 (RGS5) [94]. EphrinB2 is
an inhibitor of MAP kinase, a component of signal cascade
downstream of VEGF. In reduced miR-126 expression,

EphrinB2 is up-regulated and it causes reduced MAP kinase sig-
naling pathway for angiogenesis (Fig. 3). RGS5 represses phos-
phorylation of ERK. A study found that RGS5 protein was up-
regulated in endothelial cells when miR-126 expression was

down-regulated and RGS5 protein inhibited tubulogenesis by
reducing ERK phosphorylation [110]. Therefore, it is clear that
miR-126 has pivotal roles in angiogenesis signaling pathways.

However, there is a contradictive result of miR-126 expression
from preeclampsia patients. Although profiling analysis found
that expression of miR-126 was up-regulated in preeclamptic

placentas [63], another study confirmed that miR-126 expression
was down-regulated [34].

4.3. The role of miRNAs in vascular tone

4.3.1. Regulation of renin angiotensin system (RAS) and AT1-

AA

Angiotensin II has a critical role in preeclampsia pathogenesis.
In normal pregnancy, renin, aldosterone, and angiotensin II



Figure 3 The molecular models of miR-126 regulation on

angiogenesis and vascular integrity. miR-126 targets several

molecules that are involved in VEGF signaling cascade (such as

PIK3R2 and EphrinB2) and MEK/ERK signaling (such as

SPRED1 and RGS5). Both of these signaling cascades are

important for angiogenesis and vascular integrity. Red arrow

(down-regulation) and green arrow (up-regulation) indicate the

confirmed expression level of miRNA or molecule (as indicated) in

preeclampsia condition. AKT: known as protein kinase B (PKB),

is a protein kinase that has a key role in multiple cellular processes

including apoptosis, cell proliferation, transcription and cell

migration, ERK: extracellular signal-regulated kinases, FGFR1:

fibroblast growth factor receptor 1, MEK: mitogen-activated

protein kinase kinase, PI3: phosphatidylinositide 3-kinases,

PIK3R2: phosphoinositide-3-kinase, regulatory subunit 2,

RGS5: regulator of G-protein signaling 5, SPRED1: sprouty-

related, EVH1 domain-containing protein 1, VEGFR-2: vascular

endothelial growth factor receptor type 2, also known as kinase-

insert domain region (KDR).
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are increased; however, pregnant women remain normotensive
because they are resistance to vasoconstriction effect of angio-
tensin II [111]. In contrast, preeclamptic women have increased

vascular responsiveness to angiotensin II and other vasocon-
strictors [8]. AbdAlla et al. [112] found that an up-regulation
of heterodimerization of angiotensin type I (AT1) and the bra-
dykinin B2 receptor in circulation increased vascular respon-

siveness to angiotensin II among patients with preeclampsia.
Furthermore, a study revealed that immune system partic-

ipated in activation of RAS and increased vascular responsive-

ness in preeclampsia through the development of AT1-AA of
the IgG isotype [111]. AT1-AA was originally detected by
Wallukat et al. [113] based on the ability of this autoantibody

to activate AT1 receptor (AT1-R). A study found that admin-
istration of AT1-AA (from pregnant women) in animal models
caused hypertension, proteinuria, placental abnormalities, and
glomerular endotheliosis [114].

The binding of AT1-AA to AT1-R induces sFlt-1 and sEng
(Fig. 1) [115,116]. A population based study found that
preeclampsia patients with AT1-AA had higher sFlt-1 level,

lower VEGF level, and greater insulin resistance than
preeclampsia patients without AT1-AA [117]. AT1-AA also
promotes IL-6 production, in turn, induces endothelin produc-

tion and stimulates placental oxidative stress [118].
Another effect of AT1-AA is inducing the synthesis and

secretion of PAI-1 by trophoblast cells of the placenta

(Fig. 1) [119]. Elevated PAI-1 contributes to the hyper-coagu-
lation and fibrinolytic imbalance in preeclampsia [90]. Another
study also found that administration of AT1-AA and AT1-R
in human mesangial cell culture stimulated PAI-1 synthesis
and secretion, a feature that may contribute to kidney damage
leading to proteinuria in preeclampsia [90]. AT1-AA also stim-
ulates production of tissue factors and NADPH oxidase, fea-

tures that may play a role in vascular injury and oxidative
stress, respectively (Fig. 1) [120]. Overexpression of tissue fac-
tors also contributed to hyper-coagulation in preeclampsia

[90].
Some miRNAs contribute to RAS function and AT1-AA

production. miR-155 regulates human AT1-R expression in

fibroblast cells by targeting 30-UTR AT1-R directly [121].
They also demonstrated that inhibition of miR-155 increased
AT1-R expression and enhanced activation of angiotensin II-
induced phospho-ERK1/2.

In preeclampsia, although, studies found that miR-155
expression was up-regulated in preeclampsia [32,35,69,72],
another study revealed that miR-155 from HUVECs of severe

preeclampsia was less mature compared to miR-155 from con-
trols [69]. Therefore, Cheng et al. [69] speculated that the func-
tion of miR-155 in preeclampsia was decreased. In addition,

they also demonstrated that RAS expressions, especially
angiotensin II and AT1-R, were significantly increased in
HUVECs from patients with severe preeclampsia [69].

In addition, AT1-R levels could also be regulated by
another miRNA. In human intestinal epithelial cell line, a
bioinformatics study found that miR-802 could directly inter-
act with 30UTR AT1-R [122]. This study also demonstrated

that loss of miR-802 function resulted in augmented AT1-R
levels and enhanced angiotensin II-induced signaling.
However, there is no report related to miR-802 expression in

preeclampsia patients.
Besides targeting AT1-R production, miRNAs also con-

tribute to RAS by involving in regulation of AT1-AA produc-

tion. A previous study found that miR-181a expression was
significantly increased in placentas from women with
preeclampsia [33,58,63,73]. miR-181a enhanced mRNA

expression of IL-6 and indoleamine 2,3-dioxygenase (IDO)
by activating p38 and c-Jun N-terminal kinases (JNK) signal-
ing pathways, respectively [58]. Interestingly, increased IL-6
levels could stimulate production of AT1-AA (Fig. 4) [58]. A

previous study also supports that the level of IL-6 in plasma
was elevated in preeclampsia patients [123].

IDO is an enzyme that mediates the conversion of trypto-

phan to kynurenine and it regulates T-cell activity and
endothelial-derived relaxing factor. A previous study found
that mice with IDO knockdown suffered from renal glomeru-

lar endotheliosis, proteinuria, endothelial dysfunction,
intrauterine growth restriction, and elevated blood pressure
[124]. However, Liu et al. [58] found that IDO mRNA level
was increased about 10 times in mesenchymal stem cells from

preeclampsia patients compared to normal pregnancy.
Therefore, the role of IDO in preeclampsia is still debatable.

In addition, another study found that miR-1301 was signif-

icantly down-regulated in preeclampsia and miR-1201 targeted
leptin gene (LEP) [38]. Furthermore, over-expression of LEP
in preeclampsia (because of miR-1301 down-regulation)

increased IL-6 production, and as a result, induced the produc-
tion of AT1-AA (Fig. 5D) [38]. It also confirmed that down-
regulation of miR-1301 was correlated with increasing mater-

nal blood pressure [38]. Therefore, there are enough evidences
to support that that miRNAs are involved in RAS dysregula-
tion during clinical stage of preeclampsia. The existing data
reveal that miRNAs interfere with RAS by targeting AT1-R



Figure 4 The role of miR-181a in AT1-AA production. Up-

regulation of miR-181a in preeclampsia increases the activation of

JNK signaling, in turn, it increases the production of AT1-AA. As

a consequence AT1-AA activates AT1 receptor and induces the

production of ET-1, sEng, sFlt-1 and aldosterone. Red arrow

(down-regulation) and green arrow (up-regulation) indicate the

confirmed expression level of miRNA or molecule (as indicated) in

preeclampsia condition. AT1-AA: angiotensin type I receptor

agonistic autoantibody, Flt-1: Fms-like tyrosine kinase-1, JNK:

c-Jun N-terminal kinases.

Figure 5 The role of miRNAs in regulation of the production of PG

high vascular pressure in preeclampsia by reducing the production of

Down-regulation of miR-144 in preeclampsia reduces the production

consequence, the production of prostacyclin is reduced. (B) miR-210

enzyme that induces the production of 17b-estradiol. (C) miR-21 redu

Down-regulation of miR-1301 increases the production of leptin and it

or activates endothelial. As a result, these increase responsiveness of e

green arrow (up-regulation) indicate the confirmed expression level of m

AA: angiotensin II type I receptor agonistic autoantibody; COX1: cy

repeat-binding protein 2, H2S: hydrogen sulfide, HSD17B1: 17-beta

molecule 1, PGI2: prostacyclin.
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and induce the production of AT-AA. However, further stud-
ies are needed to investigate other possible mechanism on how
miRNAs regulate RAS.

4.3.2. Regulation of the production of prostacyclin, 17b-
estradiol, hydrogen sulfide and leptin

Several factors are also involved in vascular pressure regula-

tion including prostacyclin (PGI2), 17b-estradiol, hydrogen
sulfide (H2S) and leptin. PGI2 is an anti-platelet aggregator
and vasodilator that is participating in pathogenesis of

preeclampsia. PGI2 is produced from arachidonic acid
metabolism by the cyclooxygenase (COX)-1 and COX-2. A
previous study found that the level of PGI2 product, 6-keto-

prostaglandin F1a, in plasma and urine were lower in severe
preeclampsia compared to normal pregnancies [125]. Recent
data reveal that miR-144 contributes in low level of PGI2 in

preeclampsia. A study found a down-regulation of miR-144
among preeclampsia patients compared to control and miR-
144 targeted CUG triplet repeat-binding protein 2 (CUGBP2)
[35,39]. CUGBP2 is a ubiquitously expressed RNA-binding pro-

tein that interacts and inhibits COX-2 translation (Fig. 5A).
I2, 17b-estradiol, H2S and leptin. Several miRNAs are involved in

potential vasodilators and inducing of endothelial activation. (A)

of enzymes (COX1 and COX2) that produce prostacyclin. As a

reduces the production of 17b-estradiol by targeting HSD17B1,

ces the production of H2S by targeting cystathionine c-lyase. (D)

induces hypertension, either increases the production of AT1-AA

ndothelial to vasoconstrictors. Red arrow (down-regulation) and

iRNA or molecule (as indicated) in preeclampsia condition. AT1-

clooxygenase 1, COX2: cyclooxygenase 2, CUGBP2: CUG triplet

-hydroxysteroid dehydrogenase, ICAM1: intercellular adhesion



Figure 6 The role miRNAs in regulation of eNO production.

miR-21 increases the production of NO by inducing eNOS

phosphorylation. Enhancing the activity of miR-146a inhibits
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Inhibition of COX-2 translation, in turn, reduces the produc-
tion of PGI2 and as the consequence increases vascular tone
and increases platelet count in preeclampsia.

17b-Estradiol is a primary female sex hormone.
Interestingly, 17b-estradiol induced a relaxant response in
Sprague–Dawley rats [126] and it retained the capability for

relaxing omental artery rings from preeclamptic women
[127]. Several studies revealed an increase in expression of
mi-R210 in preeclampsia [32,33,39,40,43,46,54,62,65–67,70].

A study by Ishibashi et al. [62] found that miR-210 targeted
17-beta-hydroxysteroid dehydrogenase (HSD17B1) in
preeclampsia (Fig. 5B). HSD17B1 is an enzyme that catalyzes
17b-estradiol production from estrone [128]. A previous study

identified that HSD17B1 gene was down-regulated in
preeclamptic placentas compared to normal placentas [62]. A
prospective cohort study also found a low HSD17B1 plasma

level before the onset of preeclampsia [63]. Therefore, over-ex-
pression of miR-210 in preeclampsia decreases 17b-estradiol
and increases vascular pressure as a final consequence.

In addition, H2S, a new vasodilator, also has a pivotal role
in regulating vascular pressure in preeclampsia. H2S decreases
vascular tone by targeting ATP-sensitive K+ (KATP) channels

in vascular smooth muscle cells [129] and probably interacts
with NO [130]. A study found that the expression of cys-
tathionine gamma-lyase (CSE), an enzyme that catalyzes H2S
production from a-ketobutyrate and L-cysteine was repressed

by miR-21 [131]. A study revealed a significant up-regulation
of miR-21 expression and down-regulation of CSE protein
and mRNA expression in preeclamptic placentas compared

to normal placentas [130]. Therefore, reduction of CSE expres-
sion (consequently decreasing of H2S expression) contributes
to high vascular tone in preeclampsia (Fig. 5C).

Furthermore, another factor that might contribute to vas-
cular pressure in preeclampsia is indirect effect of leptin pro-
duction. Leptin, a pro-inflammatory factor, promotes Th-1

responses and contributes to vascular pressure regulation
[130]. Dysregulation of placental leptin production in
preeclampsia contributes to excessive systemic pro-inflamma-
tory response. In non-pregnant rabbits, for example, leptin

administration increased blood pressures [132]. In pregnant
rats, leptin administration increased the circulating concentra-
tion of endothelial activation markers (ICAM-1 and E-se-

lectin), and caused hypertension and proteinuria [133]. In
addition, leptin also increased sympathetic nervous response
[134].

The expressions of miR-1301, miR-223 and miR-224 were
down-regulated in preeclampsia and these miRNAs target lep-
tin gene (LEP) [38]. Further evidence reveals that circulating
leptin or placental LEP and placental miR-1301 were inversely

correlated [38]. In addition, miR-1301 was inversely correlated
with both maternal systolic and diastolic blood pressure [38].
Therefore, these data indicated that down-regulation of miR-

1301 in preeclampsia increases maternal blood pressure
(Fig. 5D). Down-regulation of miR-1301 also induces AT1-
AA production (see previous explanation).
the expression of LPS-induced iNOS and NO. Up-regulation of

miR-155 in preeclampsia patients inhibits the production of NO.

Red arrow (down-regulation) and green arrow (up-regulation)

indicate the confirmed expression level of miRNA or molecule (as

indicated) in preeclampsia condition. IFN-c: interferon gamma,

LPS: lipopolysaccharide, NO: nitric oxide, NOS: endothelial NO

synthases, TLR: toll-like receptor.
4.3.3. Regulation of NO production

NO, a biological mediator synthesized from L-arginine by NO
synthases (NOS), plays a pivotal role in regulation of vascular

resistance and hemodynamic changes during normal preg-
nancy and preeclampsia. During normal pregnancy, the
production and activity of NO are increasing because of high
activity of NOS; however, the same does not occur with
preeclampsia [135].

Studies found that the levels of NO, placenta NOS activity,
cyclic guanosine monophosphate (the effector of NO) as well
as nitrate and nitrite were significantly lower in preeclampsia

than in normal pregnancy [135]. In addition, in preeclampsia,
endothelial-derived vasoactive factors are predominated by
vasoconstrictors (endothelin, thromboxane A2) over vasodila-

tors (NO, prostacyclin) [136].
Although, large data exist regarding the regulation of

endothelial NOS (eNOS) enzyme activity, little information
is available about the role of miRNAs in regulation of eNOS

expression. Davis et al. [137] found that shear stress was an
important activator of eNOS expression and it increased the
expression of miR-21 (Fig. 6). In addition, phosphatase and

tensin homolog (PTEN), a known target of miR-21, was
down-regulated. In addition, over-expression of miR-21
increased eNOS phosphorylation and NO production [138].

Interestingly, a recent study found that the expression of
miR-21 was down-regulated in placentas from women with
preeclampsia [135]. It indicates that down-regulation of miR-

21 in preeclampsia leads to reduced eNOS phosphorylation
and NO production.

A previous study found that Dicer-knockdown mice had
elevated eNOS protein and transfection with miR-221/miR-

222 restored the elevated eNOS [101]. This indicates that
miR-221/miR-222 induces the production of eNOS (Fig. 6).
However, prediction sites of these miRNAs are not located

within eNOS 30UTR [104]. Interestingly, in severe preeclamp-
sia, the level of miR-222 was increased significantly [73]. In
addition, a couple of studies also found that the expression

of miR-211 either in MSC-decidual and plasma from patients
with severe preeclampsia was up-regulated [37,45]. However,
miR-211 expression was down-regulated in plasma from

patients with mild preeclampsia [41].
Previously, a study found that lipopolysaccharide (LPS)

could induce iNOS expression through toll-like receptor
(TLR) signaling; and increasing the activity of miR-146a, a
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negative regulator of TLR signaling, significantly inhibited
LPS-induced iNOS and NO expression [139]. However, there
is no study that confirms the expression of miR-146a in

preeclampsia patients.
Additionally, a previous study found that miR-155 targeted

eNOS directly [140]. They validated that over-expression of

miR-155 decreased eNOS expression and NO production,
whereas inhibition of miR-155 increased eNOS expression
and NO production in HUVEC. In addition, another study

also found that miR-155 also reduced iNOS expression by tar-
geting iNOS-upstream regulators [141]. Studies found that
miR-155 expression was up-regulated among preeclampsia
patients [32,35,69,72]. Therefore, it indicates that over-expres-

sion of miR-155 in preeclampsia patients inhibits the produc-
tion of NO and as a result it causes vasoconstriction.

5. Conclusion

One of the major causal factors of preeclampsia is impaired
angiogenesis during placentation and impaired endothelializa-

tion of cytotrophoblasts and the invasion of spiral arteries into
myometrium leading to poor placentation. It causes over-ex-
pression of sFlt-1, sEng and other anti-angiogenic factors

and down-regulation of major pro-angiogenic factors such as
VEGF and PlGF. Our previous study concludes that
miRNAs could be a potential causal factor on pathobiology

of preeclampsia [142]. Data reveal that miRNAs interfere with
angiogenesis process during early pregnancy by dysregulating
these angiogenic factors and their receptors. Dysregulation
of these angiogenetic factors also induce hypertension during

the clinical stage of preeclampsia. In addition, miRNAs also
induce hypertension by inducing the production of AT1-AA
and targeting several vasodilators such as prostacyclin, 17b-
estradiol, H2S and NO.
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