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Abstract Background: Human androgen receptor (AR) functions as a steroid-hormone activated

transcription factor. The receptor binds to its ligand (testosterone or dihydrotestosterone) and is

translocated to the nucleus to stimulate the transcription of androgen responsive genes. Mutations

in the ligand binding domain (LBD) impair the receptor activity and play a crucial role in the devel-

opment and progression of prostate cancer (PCa).

Materials and methods: This work was designated to investigate the restriction integrity of the

LBD and its association with benign prostatic hyperplasia (BPH) and prostate cancer. Exons of this

domain (exons: 4–8) were amplified from prostate tissue of BPH and PCa patients and the restric-

tion polymorphism was investigated by SmlI, HphI and Tsp45I restriction enzymes in both BPH

and PCa groups.

Results: Data revealed the integrity of exons 4–6 in both BPH and PCa patients. Exons 7 and 8,

however have kept their constitutional pattern only in BPH patients.Hph1 site showed an abnormal

restriction pattern in 40% and 26.7% of PCa patients. Also, Tsp45I demonstrated restriction poly-

morphism in 20% and 13% of PCa patients.

Conclusion: Our results indicate that the loss of the restriction integrity in the C-terminal part

(exons: 7 and 8) of the LBD is associated with the progression of benign prostatic hyperplasia to

prostate cancer.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of Ain Shams University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Prostate cancer is the sixth leading cause of cancer-related
deaths among men [1]. Prostate cancer cells usually acquire a
large number of genetic alterations including point mutations,

deletions, amplifications and translocations. Also, a wide
range of epigenetic modifications was reported, such as
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Table 1 Mean ages and prostate specific antigen (PSA) in benign prostatic hyperplasia and prostate cancer patients.

Groups

Benign prostatic hyperplasia Prostate cancer

n 15 15

Age (yr) PSA (ng/ml) Age (yr) PSA (ng/ml)

Mean 58.9 7.1 61.9 1.9a

SEM 2.59 1.7 2.9 0.4

Range

Minimum 48.0 1.40 47.0 0.5

Maximum 82.0 21.2 75.0 1.8

Normality test (KS) 0.135 0.21 0.218 0.312

P value >0.1 >0.1 >0.1 >0.1

a Significant difference between the indicated group vs BPH.
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changes in the acetylation and/or methylation patterns in addi-
tion to chromatin remodeling [2,3]. This type of cancer devel-

ops through a gradual progression through which the benign
prostatic epithelial cells progress to prostatic intraepithelial
neoplasia (PIN), invasive adenocarcinoma, distant metastatic

disease and androgen refractory metastatic disease [4]. This
transformation is characterized by several diagnostic nuclear
morphological features, such as nuclear and nucleolar enlarge-

ment and alterations in chromatin structure [5].
The dependence of prostate cancer on androgen stimula-

tion was described few decades ago [6]. Androgens (testos-
terone or dihydrotestosterone) bind to the androgen

receptors (AR) and the liganded receptor is translocated
to the nucleus, binds the androgen responsive elements
(ARE), affects the transcription of androgen-regulated

genes (e.g. prostate-specific antigen, PSA) and ultimately
stimulates the proliferation and inhibits apoptosis of prostate
cancer cells.

Many studies have reported that androgen receptor muta-
tions and polymorphism are deeply involved in prostate cancer
[7] and [8]. This receptor is encoded by AR gene, located on the
X chromosome, at Xq11-12 [9], which consists of 6 functional

domains ‘‘labeled A through F” [10]. The ligand binding
domain (LBD) (domain E) represents the attachment site of
androgens and has activation function-2 (AF2), which is

responsible for agonist induced activity. Also, the LBD func-
tions as a nuclear export signal [11]. Mutations in LBD were
found to restrict the binding of testosterone or DHT to the

receptor and subsequently impair AR mediated transactiva-
tion. The literature has reported unlimited number of genetic
abnormalities in different domains of the AR gene. Most of

these genetic abnormalities were detected in prostate cancer
(PCa) patients. Also, the majority (79%) of mutations, identi-
fied in the LBD in PCa patients, were clustered to three dis-
crete regions that influence the receptor activity [12].

A few studies have investigated the genetic integrity of AR
gene during the progression toward cancer, especially in
patients with androgen insensitivity syndrome (AIS) and/or

patients with prostate cancer. Hence, this work was designated
to investigate the genetic integrity of LBD in patients with
benign prostatic hyperplasia (BPH) and those who developed

prostate cancer (PCa) compared to the constitutional restric-
tion pattern.
2. Subjects and methods

2.1. Patient population and grouping

The study included 30 male patients. All subjects were selected

from inpatient of the catheterization units of El-Hussein hospi-
tal, Al-Azhar University, and Shebin El-Kome hospital and
from El-Mataria Institute. Samples were obtained after sur-
gery under informed consent, following the regulations and

approval of the ethics committee and in accordance with the
Code of Ethics of the World Medical Association (Declaration
of Helsinki) for experiments in humans. Patient’s medical his-

tory and PSA levels were recorded with special attention to
any associated medical problems. The inclusion criteria were
benign prostatic hyperplasia (BPH) or prostate cancer (PCa).

Patients were divided into two groups. Group I (n = 15)
included patients with BPH, their ages ranged from 48 to
82 years (average ± SEM: 58.9 ± 2.59 years), whereas group

II included 15 patients diagnosed with PCa, their ages ranged
from 47 to 75 years (average ± slandered deviation: 61.8
± 2.9 years) (Table 1).

2.2. Extraction of genomic DNA and exons amplification

Genomic DNA was extracted from tissues of BPH and PCa
tumors using QlAmp DNA (GENELUTE) following the

manufacturer’s instruction. The DNA yield was measured at
260 nm and its integrity was tested by running onto 1.5%
agarose gel. Exons 4–8 of the LBD were amplified using

segment specific primer pairs (Table 2). In each amplification,
100 ng/ll was amplified in a PCR mix containing 1X (5 ll of
10X buffer) (Stratagene), 0.2 mM each dNTP (2 ll dNTPs

mix), 100 pmol/ll (2 ll) of each exon specific primers
(Integrated DNA Technologies, USA) and 2.5 U (0.5 ll) Taq
DNA polymerase (GENE KRAFT, Germany). The reaction
mixture was brought to 50 ll with molecular biology grade

water.
Reactions of exons 4/5 and 6 were subjected to a thermal

cycling program consisting of initial denaturation at 94 �C for

5 min, followed by 35 cycles of annealing at 55 �C for 30 s, pri-
mer extension at 72 �C for 40 s and denaturation at 94 �C for
30 s followed by a single extension at 72 �C for 5 min. For



Table 2 Sequence of primers used to amplify different LBD exons.

Exon number Primer Direction Nucleotide sequences Band size (bp)

4/5 LBD4/5s Sense 50-gtgattttcttagctagggc-30 424

LBD4/5as Antisense 30-atcccccttatctcatgctc-50

6 LBD6s Sense 50-tggtaaacttcccctcattc-30 249

LBD6as Antisense 30-taatggcaaaagtggtcctc-50

7 LBD7s Sense 50-tgtggtcagaaaacttggtg-30 299

LBD7as Antisense 30-ctctatcaggctgttctccc-50

8 LBD8s Sense 50-gccacctccttgtcaaccct-30 288

LBD8as Antisense 30-agaggagtagtgcagagtta-50
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exons 7 and 8 amplification, reactions were subjected to a ther-
mal cycling program consisting of initial denaturation step at

94 �C for 5 min, followed by 35 cycles of annealing at 58 �C
for 40 s, primer extension at 72 �C for 1 min and denaturation
at 94 �C for 30 s followed by a single extension step at 72 �C for

10 min. At the end of the reaction, the amplification products
(10 ll) resolved onto 2% agarose gel containing ethidium bro-
mide for 30 min at 70 V, where DNA bands were visualized and

photographed under a UV transilluminator.

2.3. Restriction analysis

Restriction analysis polymorphism of the LBD was

undertaken using SmlI, HphI and Tsp45I (FERMINTASE,
Germany). Each reaction included 1X of enzyme buffer, 5 ll
of the targeted PCR product and 10 U of the restriction

enzyme. Reactions were brought to 20 ll with water and incu-
bated at 37 �C for at least 4 h after which enzymes were inac-
tivated by 3 ll of stop solution then 10 ll of the product was

electrophoresed onto ethidium bromide-containing agarose
gel (3%) and the restriction pattern was observed and pho-
tographed under UV. Restriction analysis of the wild type

sequence of exons was performed using Restriction-Mapper,
version 3 (http://restrictionmapper.org).

2.4. Data analysis

Prostate specific antigen (PSA) data were expressed as mean
(±SEM). Statistical analysis was performed using
GraphPad-Instat software (Graphpad, San Diego, CA,

USA). The normal distribution of PSA data was tested by
Kolmogorov–Smirnov (KS) normality test. Accordingly, the
comparison between means was analyzed by the ANOVA test.

P value less than 0.05 was considered significant.

3. Results

The study included 2 groups comprising BPH and PCa
patients. Their diagnosis was confirmed by the histological
analysis (Fig. 1). The PSA data, obtained from patient’s med-

ical reports, indicated an increased PSA serum level in BPH
patients, where it showed 3–5 fold increase compared to the
normal PSA level. PCa patients, however, recorded normal
to low PSA levels due to the radical prostatectomy they under-

went (Table 1). To investigate the integrity of the restriction
pattern of LBD and its possible association with the progres-
sion from benign to invasive prostate cancer, we investigated
the frequency of LBD polymorphisms, using SmlI, HphI and
Tsp45I restriction enzymes in both premalignant and malig-

nant tissues compared to the wild type restriction pattern iden-
tified by the Restriction-Mapper.

The LBD consists of 894 pb, extends between nucleotides

2401 and 3294 and has 5 exons (4, 5, 6, 7 and 8) (Fig. 2). Exon
4/5 fragment (424 bp) did not show any SmlI, Tsp45I or HphI
restriction abnormalities in both BPH and PCa groups

(Fig. 3A). The wild type sequence of exon 6 consists of
134 bp (nt: 2842–2974). This fragment contains a single recog-
nition site for 17 restriction enzymes (including SmlI and
Hph1), whereas Tsp45I has no recognition site along the exon

sequence. Similar to the wild type, exon 6, in both groups,
showed normal SmlI, Hph1 and Tsp45I restriction patterns
(Fig. 3B). Exon 7, in contrast, demonstrated the constitutional

patterns of SmlI, Hph1 and Tsp45I only in BPH patients.
However, Hph1 and Tsp45I revealed an abnormal pattern in
6 (40%) and 4 (26.7%) of the PCa patients, respectively

(Fig. 3, panels CII and CIII). A similar changing pattern was
observed in exon 8. This fragment represents the C-terminal
domain of the LBD. Its wild type sequence harbors a single
recognition site for 17 enzymes and 2 sites for another 5 restric-

tion enzymes. Other known restriction enzymes, however, are
non-cutters (do not cleave this fragment). SmlI, Hph1 and
Tsp45I restriction patterns were conserved in BPH patients

(Fig. 3, panel D). However, both Hph1 and Tsp45I in PCa
patients (group II) showed abnormal restriction patterns in 3
(20%) and 2 (13.3%) in PCa patients, respectively.

These patients have a single fragment of 288 bp, due to the
elimination of the PhpI restriction site (Fig. 3, panel DII).
Also, they have 2 different abnormal banding patterns due

to the elimination (or changing) of the Tsp45I restriction site
(Fig. 3, panel DIII).
4. Discussion

In this work the restriction analysis of SmlI, Tsp45I, and HphI
in the LBD of human androgen receptor gene was used to
investigate the association between the integrity of this domain

and the progression of BPH into PCa. Such approach was pre-
viously used to investigate the relation between LBD StuI site
polymorphism and baldness, where it was found that LBD

StuI restriction site was detected in 98.1% of young bald
men, in 92.3% of older bald men and in 76.6% of non-bald
men [13]. Herein, we analyzed the restriction pattern of the

LBD in both BPH and (PCa) patients. Many reasons stand
behind the choice for the LBD including: (i) This domain is

http://restrictionmapper.org


Figure 1 Histological pattern in prostate cancer (top) and benign prostatic hyperplasia patients (bottom).

Figure 2 Human androgen receptor gene, located on the X chromosome, at Xq11-12, is encoded by 8 exons (1–8). The figure shows the

exons that constitute the receptor ligand binding domain (LBD) and the corresponding amplified fragments used to investigate the

restriction polymorphism.
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poorly conserved and has hydrophobic nature similar to

testosterone or DHT. (ii) Testosterone or DHT binding site,
located in this domain, dictates hormone binding specificity
[14]. (iii) LBD represents the pocket into which the ligand fits.

Consequently, mutations in this domain may affect the confor-
mation of the hormone binding site [15]. (iv) Helix 12 of the
LBD plays an important role in the interaction between the

androgen receptor and many coactivators, such as Steroid
Receptor Coactivator-1 (SRC-1) and antiestrogens, such as
tamoxifen [16]. (v) LBD contains the AF-2 of the androgen
receptor, which is considered one of the most important func-

tions of the receptor. (vi) LBD contains some domains that
represent the binding site for heat shock protein-90 (HSP-
90), which maintains the receptor in the nonliganded form in

the cytoplasm in absence of the ligand [17].
The approach used is based upon the restriction analysis of

4 fragments representing the entire AR-LBD. The investigated
exons (4–8) range in size from 131 bp (exon 6) to 158 bp (exon

7). Exon 4/5 analysis did not show any SmlI, HphI and Tsp45I
restriction polymorphism in both benign BPH and PCa
patients. Similarly, the 3 sites were conserved in exon 6 derived

from both BPH and PCa patients. The normal restriction pat-
terns obtained in both exons 4/5 and 6 do not exclude the exis-
tence of point mutations away from the recognition sites of the

3 enzymes used. Previously point mutation (T to G, led to
M807R substitution) was reported in exon 6. This mutation
has induced complete androgen insensitivity in a patient with
46, XY karyotype and affected the AR transactivation func-

tion (Tables 3 and 4) [18].
Exon 7 has kept its restriction integrity in BPH patients.

However, HphI and Tsp45I site polymorphism was observed

in some PCa patients. There genetic abnormalities are sup-
ported with the high number of mutations previously reported
in exon 7 [19].



Figure 3 Analysis of human androgen receptor ligand binding domain (AR-LBD) polymorphism by polymerase chain reaction–

restriction fragment length polymorphism. DNA samples, derived from benign prostatic hyperplasia and prostate cancer patients, were

amplified using exons specific primers. PCR products were digested with the restriction endonucleases SmlI, HphI and Tsp45I and the

digestion products were resolved onto 3% agarose gel with ethidium bromide staining and visualized under UV transilluminator. Panels

A–D show the obtained restriction patterns SmlI, Tsp45I, or HphI of exons 4/5, 6, 7 and 8, respectively. Lanes showing an abnormal

restriction patterns are marked with *.

Table 3 Recognition sites of SmlI, HphI and Tsp45I, along the wild type sequence of exons 4–8 of AR-LBD.

Enzyme Recognition sequence Overhang Frequency/cut position

Exon 4/5 Exon 6 Exon 7 Exon 8

SmlI CTYRAG 50 0 1/60 1/110 0

HphI GGTGA 30 0 1/76 1/122 1/68

Tsp45I GTSAC 50 1/182 0 0 1/46

Y = C or T and R = A or G.

Table 4 Restriction patterns of SmlI, HphI and Tsp45I in exons 4–8 of AR-LBD of benign prostatic hyperplasia and prostate cancer

patients.

Exon Enzyme Frequency in the wild type sequence Restriction pattern

BPH (n = 15) PCa (n = 15)

Normal Abnormal Normal Abnormal

4/5 SmlI 1 15 (100%) 0.0 (0.0%) 15 (100%) 0.0 (0.0%)

HphI 0 15 (100%) 0.0 (0.0%) 15 (100%) 0.0 (0.0%)

Tsp45I 0 15 (100%) 0.0 (0.0%) 15 (100%) 0.0 (0.0%)

6 SmlI 1 15 (100%) 0.0 (0.0%) 15 (100%) 0.0 (0.0%)

HphI 1 15 (100%) 0.0 (0.0%) 15 (100%) 0.0 (0.0%)

Tsp45I 0 15 (100%) 0.0 (0.0%) 15 (100%) 0.0 (0.0%)

7 SmlI 1 15 (100%) 0.0 (0.0%) 15 (100.0%) 0 (0.0%)

HphI 1 15 (100%) 0.0 (0.0%) 6 (40%) 9 (60.0%)

Tsp 45I 0 15 (100%) 0.0 (0.0%) 3 (20%) 12 (80.0%)

8 SmlI 0 15 (100%) 0.0 (0.0%) 15 (100%) 0 (0.0%)

HphI 1 15 (100%) 0.0 (0.0%) 4 (26.7%) 11 (73.3%)

Tsp45I 1 15 (100%) 0.0 (0.0%) 2 (13.3%) 13 (86.7%)
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Similarly, BPH patients did not show Tsp45I resection
polymorphism in exon 8, where Tsp45I did not cleave the
amplified fragment (288 bp). The androgen receptor gene

mutations database [20], has reported tens of mutations along
exon 8. Also, some reports identified Q919R mutation in a
prostate cancer patient. This may explain the development of

Tsp45I polymorphism in 13% of PCa patients. The observed
fragment (�150 bp) may indicate a newly developed restriction
site due to point mutation(s). Moreover the wobbling, coding

of an amino acid with more than one codon, Tsp45I site

(GTSAC) may enhance the chance of the development of a

new cleavage site. Clustering of these genetic alterations in
the last C-terminal part of the receptor (exons 7 and 8) is trans-
lated as defects in testosterone binding to the receptor, co-
activator interaction and transactivation function due to the

localization of these functions along or in the C-terminal part
of LBD (Fig. 2). This may explain how prostate cancer is
transformed and progresses from an androgen-dependent state

to an androgen-independent state [21]. Although androgen
deprivation therapy suppresses the AR activity and inhibits
the growth of prostate cancers, such genetic alterations could

be the reason of recurrence and the development of androgen
independent progression to prostate cancer [22].

5. Conclusion

The data obtained may present an example for the parallel
association between the existence of restriction polymorphism

and the progression of benign prostatic hyperplasia to prostate
cancer. Although normal restriction analysis does not elimi-
nate the possibility of mutations, this approach presents a sim-
ple and fast genetic based discrimination between benign

hyperplasia and invasive prostate cancer.
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