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Abstract 
 
   In the present study a mathematical model for the blood flow in stenosed artery in the presence of magnetic field is proposed. 
The laminar, incompressible, fully developed, non-Newtonian flow of blood in an artery having multiple stenosis is numerically 
studied under the action of transverse magnetic field. The governing equations are transformed by using a radial transformation 
and the numerical results are obtained using a finite difference technique. Effect of overlapping stenosis and externally applied 
magnetic field in the blood flow is discussed with the help of graph. All the flow characteristics are found to be affected by the 
presence of multiple stenosis and exposure of magnetic field of different intensities. 
 
Keywords: Blood flow, Magnetic Field, Overlapping Stenosis, generalized Power Law, Finite Difference Method 
 
1. Introduction 
 
   Many cardiovascular diseases, particularly atherosclerosis, have been found to be responsible for deaths in both developed and 
developing countries. The study of blood flow through a stenotic artery is very important because the nature of blood movement 
and mechanical behaviour of vessel walls are causes of many cardiovascular diseases. Most of the authors (Bali and Awasthi, 
2007; Chakravarty, 1987; Deplano and Siouffi, 1987; Haldar, 1985; Liu et al., 2004; Mandal, 2005; Shalman et al., 2002) studied 
the pulsatile blood flow in the artery having single mild stenosis. The multiple stenosis is commonly found in the femoral and 
pulmonary arteries, so the problem of blood flow becomes more acute in the presence of overlapping stenosis (Chakravarty and 
Mandal, 1994; Ismail et al., 2007). The study of blood rheology and blood flow has several objectives such as not only 
understanding health and disease but also in essence, what kind of fluid it is (Buchanan et al., 2000, Hernan and Gonzalez, 2007, 
Ismail et al., 2007, Mandal, 2005). Some authors in the area of blood flow feel that blood can be assumed to be Newtonian in 
nature especially in large blood vessels such as the aorta (Katiyar and Vasarajappa, 2002; Liepsch, 2002; Liu et al., 2004; Prakash 
et al., 2004; Tashtoush and Magableh, 2008; Tzirtzilakis, 2005). In fact blood is a suspension of cells in plasma. The plasma which 
is a solution of proteins, electrolyte and other substances, is an incompressible virtually Newtonian fluid. From biomechanical 
point of view, blood is considered as an intelligent fluid, probably the most one in the nature, capable of adapting itself in a great 
extent in order to provide nutrients to the organs. 
   It is well known that blood behaves differently when flowing in large vessels, in which Newtonian behaviour is expected and in 
medium and small vessels where non-Newtonian effects appear (Buchanan et al., 2000; Chakravarty and Mandal, 1994; Deplano 
and Siouffi, 1987; Ismail et al., 2007; Mandal, 2005). Blood can be regarded as magnetic fluid, in which red blood cells are 
magnetic in nature. Liquid carriers in the blood contain the magnetic suspension of the particle (Tzirtzilakis, 2005).  
   Human body experiences magnetic fields of moderate to high intensity in many situations of day to day life. In recent times, 
many medical diagnostic devices especially those used in diagnosing cardiovascular disease make use of magnetic fields. 
   It is known from the magneto-hydrodynamics that when a stationary, transverse magnetic field is applied externally to a moving 
electrically conducting fluid, electrical currents are induced in the fluid. The interaction between these induced currents and the 



Varshney et al. / International Journal of Engineering, Science and Technology, Vol. 2, No. 2, 2010, pp. 67-82 

 

68

 

applied magnetic field produces a body forces (known as the Lorentz force) which tends to retard the movement of blood (Sud and 
Sekhon, 1989) 
   Chester (1957) analyzed the interaction of the magnetic field with the electric current to propose the pressure of body forces in 
stokes problem for the discussion of the motion of the fluids in the classical hydrodynamics. Low frequency, low intensity 
magnetic energy has been employed for treating chronic pain secondary to tissue ischemia and slow healing and non healing ulcers 
with satisfactory to excellent results. This type of energy appears to affect biological process, not through heat production but 
through electrically induced changes in the environment of cells within the organism.  
   Jauchem (1997) studied the effects of low frequency electromagnetic energy on the peripheral blood circulation and concluded 
that low frequency, low intensity magnetic field increased blood flow in the great majority. 
   Hypertension is one flight mechanics presumably exposed to radio frequency radiation at a level of 38 times above the 
permissible exposure limit. There are a number of emerging technologies involving the use of Electro-Magnetic frequencies 
including new types of cellular telephones, magnetically levitated trains and superconducting magnetic energy storage. The 
possible effects of these particular Electro-Magnetic frequencies on health have not been studied directly. 
   Magnetic Resonance Imaging is a tool to study the blood flow phenomena in which magnetic field of large intensity is applied 
on the body. Although existing guidelines on Magnetic Resonance Imaging magnetic fields have been adequate to preclude any 
known biological problem to date, the Magnetic Resonance Imaging industry would like to have greater flexibility in developing 
future designs. Simunic et al. used a model to simulate exposure of the human torso to switched magnetic field that would be 
present during Magnetic Resonance Imaging (Jauchem, 1997) 
   Villoresi et al. (1994) proposed that when magnetic field exceed 0.05 T, it leads to real dangers connected with development of 
heart fibrillation and further irreversible changes. He reported a large decrease in myocardial infarction rates on Saturday, Sundays 
and public holidays and remarked that there were greater man made magnetic disturbances on workdays than during weekends. 
Myocardial infarctions could be triggered by man made magnetic fields. 
   Time varying electromagnetic field produced by electrical currents are used to treat non-unified bone fractures. With regards to 
sympathetic function, time varying electromagnetic fields can modify electrical activity in the brain. This change in electrical 
activity of the central nervous system can inhibit muscle sympathetic nerve activity and increase skin sympathetic nerve activity 
(Kinouchi et al., 1996; Kuipers et al., 2007). 
   Magnetic devices sold to patients commonly utilize static magnetic fields generated by permanent magnets and not time varying 
electromagnetic fields. Like time varying electromagnetic field, there is some evidence to suggest that static magnetic fields alter 
autonomic function in human. A 2.0 T static magnetic field can increase cardiac cycle length, which may be caused by changes 
within the sinus node. A 0.4 T static magnetic field can alter skin blood flow in humans, possibly caused by alteration in calcium 
dynamics (Bali and Awasthi, 2007; Chester, 1957; Gmitrov, 2007; Jauchem, 1997; McKay et al., 2007). 
   Kuipers et al. (2007) studied the influence of static magnetic fields on cardiovascular and sympathetic function at rest and during 
physiological stress and also investigated the influence of static magnetic field on pain perception during noxious stimuli. 
   The biological effects of Magnetic fields have often been linked to nitric oxide (NO), which is responsible for the changes in 
vessel diameter following magnetic field exposure. Recently magnetic fields have been shown to have positive effects on 
numerous human systems. For instance, it is documented that magnetic field exposure can provide analgesia, decrease healing time 
for fractures, increase the speed of nerve regeneration, act as a treatment for depression and provide other medical benefits 
(McKay et al., 2007). 
   Magnetic force therapy could be useful for the reperfusion of ischemic tissue or during sepsis. When blood flow to a tissue 
becomes blocked or reduced, necrosis will eventually occur. Local exposure of a magnetic field could potentially result in blood 
vessel relaxation and increased blood flow. The effects of magnetism on blood vessels and the cardiovascular system are very 
interesting. There is still no experiment that shows the effect of quite magnetic field on blood circulation.  
   In recent years some studies (Katiyar and Basavarajappa, 2002; Kinouchi et al., 1996; Sud and Sekhon, 1989; Tashtoush and 
Magableh, 2008; Tzirtzilakis, 2005) have been reported on the analysis of blood flow through single arteries in the presence of 
externally applied magnetic field. However there are very few studies focusing on the effect of magnetic field in the stenotic 
artery. 
   Considering the influence of magnetic field on the stenotic artery, in this study, we look at the effect of transverse magnetic field 
and multi-stenosis on the blood flow in blood vessel. It is assumed that the arterial segment is cylindrical tube with time dependent 
multi-stenosis and the flowing blood is characterized by generalized Power-law model. Governing equations are solved by using 
suitable finite difference method. The effect of externally applied magnetic field on velocity, flow rate, flow resistance and wall 
shear stress is studied 
 
2.  Formulation of the problem 
 
2.1 Mathematical model 
 
   It is well known that blood acts as an electrically conducting fluid. When solid material as Fe is moving in a magnetic field, it 
experiences an electromotive force and as a result an electric current may flow. If we apply a magnetic field on an electrically 
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conducting fluid like blood, an electromagnetic force will be produced due to the interaction of current with magnetic field. The 
electromotive force is proportional to the speed of motion and the magnetic flux intensity B (Tashtoush and Magableh, 2008) 
 
Maxwells relations are performed as follows: 
The current density J is expressed by 

( )J E v B= σ + ×                                                                                                                                                                                  (1) 
Where E is the electric field intensity, σ is the electrical conductivity, B is the magnetic flux intensity and v is the velocity vector. 
In the momentum equation, the electromagnetic force Fm is included and is defined as 

( )mF J B v B B= × = σ × ×                                                                               (2) 
The Navier Stokes equations for blood flow including a Lorentz force is  

( ) 2v v v v B B p v
t

∂⎛ ⎞ρ + ⋅∇ = σ × × −∇ +μ∇⎜ ⎟∂⎝ ⎠
                                                                                            (3) 

Where ρ is the density, μ  is viscosity and p is the pressure. 
   The artery having stenosis is considered as a cylindrical elastic tube of the circular cross section containing an incompressible 
non-Newtonion fluid. The blood flow is modeled to be laminar, unsteady, two-dimensional, axi-symmetric and fully developed. 
Blood is characterized by generalized Power-law model. The flow is considered to take place under the influence of externally 
applied magnetic field in axial direction. Under these assumptions, the governing equations may be written in the cylindrical 
coordinates system (r, z, θ) as 
Equation of continuity 

r r zv v v
0

r r z
∂ ∂

+ + =
∂ ∂

                                                                                     (4) 

Equation of axial momentum 

( )
2

z z z
r z rz zz z

v v v 1 p 1 1 Bv v r ( ) v
t r z z r r z

∂ ∂ ∂ ∂ ∂ ∂ σ⎡ ⎤+ + = − σ + σ −⎢ ⎥∂ ∂ ∂ ρ ∂ ρ ∂ ∂ ρ⎣ ⎦
                                                                             (5) 

Equation of radial momentum 

( ) ( )r r r
r z rr rz

v v v 1 p 1 1v v r
t r z r r r z

∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤+ + = − − σ + σ⎢ ⎥∂ ∂ ∂ ρ ∂ ρ ∂ ∂⎣ ⎦
                                                                                            (6) 

Where the relationship between the shear stress and the shear rate in case of two dimensional motions are given by (Gerrard and 
Taylor, 1977) 

n 1
1m ( · )
2

−⎡ ⎤
⎢ ⎥σ = − γ γ γ
⎢ ⎥
⎣ ⎦

& &                                                                               (7)        

With 
22 2 2

r r z r zv v v v v1 ( · ) 2
2 r r z z r

⎧ ⎫ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪γ γ = + + + +⎨ ⎬ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
& &  

Here σ  denotes the stress tensor, γ& , the symmetric rate of deformation tensor, m  and n  are the respective consistency and fluid 
behavior parameters 

n 11/ 22 2 2 2
r r z r r

zz
v v v v v

2 m
r r z z r

−⎧ ⎫
⎡ ⎤∂ ∂ ∂ ∂⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞σ = − + + + +⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦

⎩ ⎭

zv
z

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

,                

n 11/ 22 2 2 2
r r z r z z r

rz
v v v v v v v

m
r r z z r r z

−⎧ ⎫
⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞σ = − + + + + +⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦

⎩ ⎭

           

and 
n 11/ 22 2 2 2

r r z r z r
rr

v v v v v v
2 m

r r z z r r

−⎧ ⎫
⎡ ⎤∂ ∂ ∂ ∂ ∂⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞σ = − + + + +⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦

⎩ ⎭

                                                               (8) 

Here ( )zv r, z, t and ( )rv r, z, t  represents the axial and the radial velocity components respectly p  is the pressure and ρ  is the 



Varshney et al. / International Journal of Engineering, Science and Technology, Vol. 2, No. 2, 2010, pp. 67-82 

 

70

 

density of blood. The pressure gradient p / z∂ ∂  appearing in equation (5) , is given by 

0 1
p A A Cos t, t 0.
z
∂

− = + ω >
∂

                                                                                  (9) 

Where 0A  → constant amplitude of the pressure gradient 

1A → amplitude of the pulsatile component giving rise to systolic and diastolic pressure and p2 fω = π , where pf  is the pulse 
frequency .  
 
2.2 Boundary conditions 
(1) There is no radial flow along the axis of the artery and the axial velocity gradient of the streaming blood may be assumed to 

be equal to zero i.e., there is no shear rate of fluid along the axis. 

( )rv  r,  z,  t   0= , zv (r,z, t) 0
r

∂
=

∂
and rz  0σ = at r  0=                                                                            (10)  

(2) The velocity on the artery wall is taken as 

 ( )r
Rv  r,  z,  t  
t

∂
=
∂

 and ( )zv r,  z, t   0=  at ( )r  R z,  t=                                                                            (11) 

(3) It is assumed that no flow takes places when the system is at rest. 
( )rv  r,  z,  t   0=  and ( )zv  r,  z,  t   0=  at t  0=                                                                                             (12)

          
2.3 Geometry of stenosed artery 
   The multiple stenosis is commonly found in the femoral and pulmonary arteries. The geometry of the arterial segment having 
multiple stenosis is mathematically given by (Chakarvarty and Mandal, 1994) 

( ) ( ) ( ) ( ) ( )2 3 43 2
1

1

11 47 1 3la 1 a (t) z d l z d l z d l z d , d z d
R z,  t   32 48 3 2

a.a (t), ;otherwise

⎧ ⎫⎛ ⎞⎡ ⎤− − − − + − − − ≤ ≤ +⎪ ⎪⎜ ⎟⎢ ⎥= ⎣ ⎦⎨ ⎬⎝ ⎠
⎪ ⎪
⎩ ⎭

    

                                  (13)
            
where a is the unconstricted radius of stenosed artery, d  is the location of stenosis and l  is the length of the stenosis.   
The time variant parameter is given by ( ) –b t

1a t   1 –  b Cos( t –  1) e ω= ω ; p2 fω = π . 
 
3. Solution procedure 
 
3.1 Transformation of the governing equations  

Let us introduce a radial coordinate transformation 
rx

R(z, t)
⎡ ⎤

=⎢ ⎥
⎣ ⎦

, which has the effect of immobilizing the vessel wall in the 

transformed coordinate x . 
Using this transformation, equations (4-8) together with boundary conditions (10-12) take the following form : - 

r r z zv v v v1 x R 0
r x xR z R x z
∂ ∂ ∂ ∂

+ + − =
∂ ∂ ∂ ∂

                                                                                                                                              (14)

             

z r z z
z z

xz zz xz
xz z

v v v vx R x R 1 pv v
t R t R R z x z z

1 1 1 x R Mv
xR R x z R x z

∂ ∂ ∂∂ ∂ ∂⎡ ⎤= − + − − −⎢ ⎥∂ ∂ ∂ ∂ ∂ ρ ∂⎣ ⎦
∂σ ∂σ ∂σ ∂⎡ ⎤σ + + − −⎢ ⎥ρ ∂ ∂ ∂ ∂⎣ ⎦

                                                                                                         (15)                  

Where 
2BM σ

=
ρ

 

 
Normal stress 
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n 11/ 22 2 2 2
r r z z r r 2

zz

z z

v v v v v v v1 x R x R 12 m
R x xR z R z x z R z r x

x vx R
z R z x

−⎧ ⎫
⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂∂ ∂⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞σ = − + + − + − +⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦

⎩ ⎭
∂ ∂∂⎛ ⎞−⎜ ⎟∂ ∂ ∂⎝ ⎠

                             (16)

               
Shear stress 

n 11/ 22 2 2 2
r r z z r r z

xz

z r z

v v v v v v v1 x R x R 1m
R x xR z R z x z R z x r x

v v v1 x R ,
R z z R z x

−⎧ ⎫
⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂∂ ∂⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞σ = − + + − + − +⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦

⎩ ⎭
∂ ∂ ∂∂⎛ ⎞+ −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

                                              (17)

                               
where n  is the fluid behavior index parameter  
3.2 Transformation of the Boundary Conditions 

 ( )rv  x,  z,  t   0= , zv (x,z, t) 0
r

∂
=

∂
and xz  0σ =  an x  0=                                                                                                (18) 

 ( )r
Rv  x,  z,  t  
t

∂
=
∂

 and ( )zv  x,  z,  t   0=  on x  1=  and                                                                             (19) 

( )rv  x,  z,  t   0=  and ( )zv  x,  z,  t   0=  at t 0= .                                                                                           (20)
                          
In order to get the radial velocity component, ( )rv x,  z,  t , we have to consider the equation (4) as  

2r z z
r

v v v Rx v xR x · 0
x z x z

∂ ∂ ∂ ∂
+ + − =

∂ ∂ ∂ ∂
                                                                             (21)

             
Now, integrating the equation (21) with respect to  x from the limits 0  x→ , we get (Mandal, 2005): 

( ) ( )2
r z

R Rv x, z, t x v z x
z t

∂ ∂⎡ ⎤= − −⎢ ⎥∂ ∂⎣ ⎦
                                                                                                                                   (22)

                       
3.3 Discretization of the axial velocity component, ( )zv x,  z,  t  

The discretization of axial velocity ( )zv  x,  z,  t  is written as ( )z j i kv  x ,  z ,  t  or ( )k
z i, jv  

We define  

jx   j. x;  j  0,  1,  2 . N= Δ = …  where Nx   1.0=  

iz  i. z;  i  0,  1,  2 . M = Δ = …  

( )Kt   K 1  t;  K  1,  2,  .= − Δ = …  
   The Finite difference scheme is used to solve the governing transformed equation by using central difference approximations for 
all the spatial derivatives in the following manner: 

( ) ( )
( )

x

K K
z zi, j 1 i, j 1z

z f

v vv V
x 2 x

+ −−∂
= =

∂ Δ
 and  

( ) ( )
( )

z

K K
z zi 1, j i j, jZ

z f

v vv v
x 2 z

+ −−∂
= =

∂ Δ
                                               (23)

                         
and the time derivatives are approximated by  

( ) ( )K 1 K
z zi, j i, jz

v vv
t 2 t

+ −∂
=

∂ Δ
                                                                            (24) 
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Similarly, the derivatives for r zz xzv ,  and σ σ  are  

( ) ( )
( )

x

K K
r ri, j 1 i, j 1r

r f

v vv v
x 2 x

+ −−∂
= =

∂ Δ
 and   

( ) ( )
( )

z

K K
r ri 1, j i 1, jr

r fz

v vv v
2 z

+ −−∂
= =

∂ Δ
                                                                                        (25)      

( ) ( )
( )

x

K K
zz zzi, j 1 i, j 1zz

zz fx 2 x
+ −σ − σ∂σ

= = σ
∂ Δ

, 

( ) ( )
( )

z

K K
zz zzi 1, j i 1 , jzz

zz fz 2 z
+ −σ − σ∂σ

= = σ
∂ Δ

,              

and 
( ) ( )

( )
x

K K
xz xzi, j 1 i, j 1xz

xz fx 2 x
+ −σ − σ∂σ

= = σ
∂ Δ

                                                                                          (26)        

Using above discritization techniques equation (22-26) for axial velocity, equation (15) may be transformed to following 
difference equations:  

( ) ( )
( )

( )
KK K

rK 1 K Ki, jj j
z z zi, j i, j i, jk k K

i it t i

vx xR Rv V t . v .
t zR R R

+
⎧⎡ ⎤∂ ∂⎪ ⎛ ⎞ ⎛ ⎞⎢ ⎥= + Δ − +⎨ ⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠⎪⎣ ⎦⎩

 

( )( ) ( ) ( )( ) ( )
K 1

KK K K
z z z xzfx i, j tz i, jK Ki, j i, j

i i i

1 p 1 1 1v v v
z x R R

+ ⎡∂⎛ ⎞− − − σ +⎢⎜ ⎟ρ ∂ ρ⎝ ⎠ ⎢⎣
( ) ( )K K

xz x zz zi, j i, j
f f⎡ σ ⎤ + ⎡ σ ⎤ −⎣ ⎦ ⎣ ⎦  

( ) ( )
K

K Ki
xz x z i, jK i, j

ij

x Rf M v
ZR

⎫⎤∂ ⎪⎛ ⎞⎡ σ ⎤ −⎥ ⎬⎜ ⎟⎣ ⎦ ∂⎝ ⎠ ⎥ ⎪⎦ ⎭
                                                                            (27)

                          
The equation (16) and (17) has their discritized form as: 

( ) ( )( )
( )

2 K
K rK i, j

zz ri, j fxK Ki, j
i j i

v12 m v
R x R

⎛ ⎞⎧ ⎡⎛ ⎞⎪ ⎜ ⎟σ = +⎢⎜ ⎟⎨ ⎜ ⎟ ⎜ ⎟⎢⎪ ⎝ ⎠⎣⎩ ⎝ ⎠

 +  

( )( ) ( )( )
z x

2KK Kj
z zf fKi, j i, jii

x Rv v
zR

⎛ ⎞∂⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠
 +  

( )( ) ( )( ) ( )( )
z x

2 1/2 n 1KK KKj
r z x zf fK ki, ji, j i, jii j

x R 1v v f V
zR R

−⎛ ⎞∂ ⎞ ⎤ ⎫⎛ ⎞⎜ ⎟− + ⎬⎜ ⎟ ⎟ ⎥⎜ ⎟∂⎝ ⎠ ⎠ ⎦ ⎭⎝ ⎠
 

( )( ) ( )( )
z z

kK Kj
z zf fKi, j i, jii

x Rv v
ZR

⎛ ⎞∂⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠
                                                                            (28) 

and 

( ) ( )( ) ( )
x

2K2
K rK i, j

xz ri, j fk ki, ji j i

v12 m v
R x R

⎧ ⎡ ⎤⎛ ⎞⎛ ⎞⎪ ⎢ ⎥⎜ ⎟σ = − +⎜ ⎟⎨ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦⎩

 +  

( )( ) ( )( )
z x

2KK Kj
z zf fKi, j i, jii

x Rv v
zR

⎛ ⎞∂⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠
 +  
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( )( ) ( )( ) ( )( ) )
z x x

j

KK K 1/ 2 n 12j K
x r z i, jf f fK Ki, j i jii i

x R 1v v v
zR R

−⎛ ⎞∂ ⎫⎛ ⎞ ⎤− +⎜ ⎟ ⎬⎜ ⎟ ⎦⎜ ⎟∂⎝ ⎠ ⎭⎝ ⎠
 

( )( ) ( )( ) ( )( )
z x x

KK K Kj
r x zf f fK Ki, j i, j i, jij i

x R 1v v v
zR R

⎛ ⎞∂⎛ ⎞⎜ ⎟− +⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠
                                                                                          (29)                 

The boundary conditions in discretized form are as follows: 

( )K
r i, jv 0= , ( ) ( )K K

z zi,1 i, 2v v ,= ( )K
xz i, 1 0,σ = ( )K

z i, N 1v + =0, ( )
K

K
r i, N 1

i

Rv
t+

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
 

and  

( ) ( )1 1
r zi, j i, jv 0 , v 0= =                                                                             (30)

             
The radial velocity can be calculated from the equation (22) and its discretized form is  

( ) ( )
K K

K 1 K 1 2
r j z ji, j i, j

i i

R Rv x v 2 x
z t

+ +⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞ ⎡ ⎤= − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎣ ⎦∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
            

The flow rate can be obtained by  
R

z0
Q 2 rv dr= π∫                 

by using the radial coordinate transformation, the discretized  form of flow rate Q  is given by  

( ) ( )
2 1 KK K

i i z ji, j0
Q 2 R x v dx= π ∫                                                                             (31) 

The Resistance of flow λ  can be calculated from  
| L( p / z) |

Q
∂ ∂

λ =             

Its discretized form is given by  
K

K
i K

i

| L( p / z) |
Q

∂ ∂
λ =                                                                             (32)  

The wall share stress is defined as  

z x
w

v v
x z

∂ ∂⎛ ⎞τ = μ +⎜ ⎟∂ ∂⎝ ⎠
               

In the discretized from equation (41) can be written as  

( ) ( )( ) ( )( ) ( )( )
z x

K KK KKK j
w z r z rf fK Ki i, ji, j i, j i ii i x 1

x1 R Rv v f v cos arctan
Z zR R

=

⎡ ⎤ ⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞τ = μ + − ×⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
                                        (33)

  
4. Result and discussion  
 
   Numerical computations have been carried out using the following parameter values (Chakravarty, 1987,  Ismail et al., 2007; 
Katiyar and Vasarajappa, 2002; Mandal, 2005). 

0
3 2 2

p 0 1 0 m

a 0.08cm,L 5cm, l 1.6cm,d 1.3cm,b 0.1,m 0.1735P, 0.035P,n 0.639,

1.06g cm ,f 1.2Hz,A 10g cm s ,A 0.2A , 0.4*a, 2.4*pi,

x 0.02, z 0.1 and t 0.00001

− −

= = = = = = μ = =

ρ = = = = τ = ω =

Δ = Δ = Δ =

 

The result appeared to converge with an accuracy of the order ~ 10-5 when the time step was chosen to be 0.00001tΔ = . 
   Figure 1 shows the geometry of the moving arterial wall of the time variant multiple stenosis for different taper angles. It is clear 
that the radius of artery increases during systole and as the diastolic phase start, the radius of the artery decreases. 
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       Figure 1. Radius of constricted Artery at different time 
 
   The complete axial and radial velocity profile in the artery geometry is shown in Figures 2 and 3, respectively. In order to 
analyze the flow field insensibly along the arterial segment under study, Figure 4 exhibits the axial velocity profiles at various 
axial locations for M=2 and t =0.3sec. The axial velocity profile is parabolic at the upstream (z=10mm), the area without stenosis, 
while a flattering trend is followed at the converging section (z=15mm) and subsequently it becomes much blunter at the locations 
(z=24mm and z=28mm), the critical height of the stenosis than at the entry. The velocity appears to be enhanced at the diverging 
section (z=35mm) and finally at the end of the stenosis, the axial velocity profile gets back again into parabolic patterns.  
   The Figure 5 shows the radial velocity profile at various locations for t = 0.3 sec. The radial velocity component varying radially 
for different axial position, which is found to be increasing from zero on the axis with positive values as one moves away from it 
and finally to attain some finite value on the wall surface. Radial velocity is higher in magnitude in the area without stenosis and 
the presence of stenosis slows down radial velocity to a considerable extent.  

 

       Figure 2. Axial velocity profile at t=0.3 sec in stenosed artery 

 

      Figure 3. Radial velocity profile at t=0.3 sec in stenosed artery 
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Figure 4. Axial velocity profiles for different axial positions at t= 0.3s 
        (Tm=0.4a, M=2, d=13mm, l0=16mm) 

 

Figure 5. Radial velocity profiles for different axial positions at t= 0.3s 
          (Tm=0.4a, d=13mm, M=2, l0=16mm) 
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   Figure 6 shows the variation of the axial velocity profile at z = 23mm for different time periods. The flow profiles are directly 
responsible for the pulsatile pressure gradient produced by the pumping action of heart. Whenever the time shifted increases from 
0.1 sec to 0.3 sec, the curve shifts towards the origin. At t = 0.6 sec again the axial velocity increases because of the diastole. It is 
also clear that the streaming blood is much higher than the non-Newtonian values. It is because of the fact that if flowing blood is 
treated as Newtonian, it has a high shear rate flow, which increases the axial velocity profile. Thus the non-Newtonian 
characteristics of the flowing blood affect the axial velocity profile. The results agrees qualitatively with “Chaturani and 
Palanisamy (1991) and Sud and Sekhon (1985)” with their research on stenotic blood flow treated as Newtonian fluid.  

 

Figure 6. Axial velocity profiles for different times at z=23mm 
       (Tm=0.4a, d=13mm, M=2, l0=16mm) 

 
   In Figure 7, the radial velocity profile at different time period is shown. The radial velocity profile assume a positive value 
during systole i.e. at t = 0.1sec and 0.3sec. and negative during diastole i.e. at t = 0.6sec and 0.75sec. This is due to the fact that in 
systolic phase the heart muscle has fully contracted and blood is squeezed out and during diastole, the heart relaxes and becomes 
full of blood.  
   Effect of magnetic field intensity on the axial velocity at the specific region z=23 mm and time t=0.3sec is shown in Figure 8. 
The higher values of magnetic field intensity reduce the axial velocity in a larger extent. This is due to the fact that as magnetic 
field applied on the body, the Laurentz force opposes the flow of blood and hence reduces its velocity. 
   The variation of fluid acceleration F at time t = 0.6 sec at the location z = 23mm, where the artery get maximum narrowing is 
shown in Figure 9. The acceleration is maximum on the axis and attains some finite value on the wall. By increasing the magnetic 
field intensity, the fluid acceleration decreases rapidly. Blood is accelerated more for the cases without magnetic field and the 
magnetic field exposure slows down the fluid acceleration. 
   The variation of flow rate at the location z = 23mm over a period of nearly four cardiac cycle for various magnetic field intensity 
is illustrated in Figure 10. The pulsatile nature of the flow rate has been found in all cases thought the time scale. One may note the 
flow rate for an artery without applied magnetic field having higher magnitude than the flow rate for artery with applied magnetic 
field. It is concluded that the presence of magnetic field affect the flow rate to considerable extent.  
   Figure 11 illustrates the variations of the flow rate Q with time t for different values of the frequency and amplitude of pressure 
gradient for the magnetic field intensity M=2 at z=23mm. It is clear that by increasing the pulse frequency fp , the back flow 
increases. The magnitude of flow rate increases with increasing 0A with positive values i.e. no back flow occurs. Thus the 
frequency as well as the amplitude of the pressure gradient affects the rate of flow to a considerable extent in the presence of 
magnetic field. 
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Figure 7. Radial velocity profiles for different times at z=23mm 
       (Tm=0.4a, d=13mm, M=2, l0=16mm) 

 
   The variations of the flow resistance with time for different magnetic field are shown in Figure 12. The resistance of flow gives 
the reverse trend of the flow rate. This is because as the flow rate increases, resistance decreases. The values of resistance are 
higher for the artery without having applied magnetic field than the artery having the effects of applied magnetic field. 

 

Figure 8. Axial velocity profiles for different magnetic field at z=23mm 
  (Tm=0.4a, d=13mm, l0=16mm) 
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   The variation of the time dependent wall shear stress at a specific location of z = 23mm for various magnetic field intensity has 
been shown in Figure 13. The stress yields all time higher values for an artery without applied magnetic field than the artery 
having applied magnetic field. The values are negative by direction 
   Figure 14 illustrates the variation of wall shear stress .for several values of the frequency and the amplitude of pressure gradient. 
The wall shear stress becomes more negative for small value of pf  and an early separation can be noticed for large value of pf . 

The wall shear stress is pulsatile in nature for all cases. The flow separation decreases by increasing the value of 0A .  

 

        Figure 9. Radial variation of fluid acceleration at t=0.6 sec. 
      ( a0=100mm/s2

, z=23mm, Tm=0.4a, d=13mm, l0=16mm) 

 

Figure 10. variation of the rate of flow with time at z=23mm 
(Tm=0.4a, d=13mm, l0=16mm) 
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Figure 11. Variation of the rate of flow with time for different fb and a0 at z=23mm 
(fp=1.2 Hz,, a0=100mm/s2 

, M=2) 
 

 

     Figure 12. Variation of the resistance of flow with time for different magnetic field at z=23mm 
(fp=1.2 Hz, a0=100mm/s2) 
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Figure 13. Variation of the wall shear stress with time at z=23mm 
(Tm=0.4a, d=13mm, l0=16mm) 

 

Figure 14. Variation of the wall shear stress with time for different fp and a0 at z=28mm 
     (Tm=0.4a, d=13mm, l0=16mm, M=2) 
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5. Conclusion 
 
   This analysis presented numerical results for an unsteady blood flow in an artery with multiple stenosis, using the generalized 
power law model of blood viscosity under the influence of applied magnetic field. In this paper we used the time dependent radius 
of the artery having multiple stenosis, which is an important factor considered in this paper. The advantage of this study is that 
here we calculated effect of magnetic field on various fluid parameters like blood velocity, flow rate, wall shear stress, flow 
resistance and flow acceleration with the presence of multiple stenosis in the artery. All the flow characteristics are found to be 
affected by the influence of applied magnetic field as well as presence of multiple stenosis. Various physiological problems due to 
the back flow and low shear stress can be caused by the sufficiently large applied magnetic field. The present study would be 
helpful to analyze the effects of magnetic field on the human by various medical therapies like MRI, Catheter insertion and use of 
many devices e.g. cellular phone. 
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