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Abstract 
 
   The present paper deals with large deflection static behaviour of thin isotropic skew plates under uniformly distributed load for 
various mixed flexural boundary conditions. A variational method based on the principle of minimization of total potential 
energy has been used through assumed displacement fields. The results are generated for different possible combinations of 
clamped and simply supported boundary conditions and presented in normalized load-deflection plane. Individual effects of 
skew angle, aspect ratio and boundary condition on normalized load-deflection behaviour are separately shown. 
 
Keywords: Skew plate; Variational method; Geometric non-linearity; Large deflection 
 
1. Introduction 
 

   Skew plates are extensively used in various mechanical, civil and aero structures and they are mostly subjected to uniform 
pressure loading in its transverse faces.  Specific application of isotropic skew plates includes aircraft wings and aircraft tail-fins. 
The edges of these plates are often so mounted that their boundaries can be assumed to be equivalent to various classical flexural 
boundary conditions. As static behaviour of the skew plates has significant contribution for its mechanical design, the present 
paper deals with the simulation of static behaviour of skew plates under uniform pressure loading.  

Research work on predicting static behaviour and stability of skew plates had been carried out by various researchers over the 
past three decades. The published research works in this field encompass a wide variety of practical problems. The static behaviour 
of orthotropic skew plates had been investigated by Alwar and Rao (1973, 1974) using dynamic relaxation technique and 
Malekzadeh and Fiouz (2007) using differential quadrature (DQ) approach. The static analysis of isotropic thick skew plates had 
been carried out by various researchers (Liew and Han, 1997; Muhammad and Singh, 2004). The buckling analysis of thick skew 
plates had been carried out by Xiang et al. (1995) and Liew et al. (2004). Recently, Prakash et al. (2008) analyzed thermal post-
buckling behaviour of skew plates having functionally graded materials while Daripa and Singha (2009) studied the influence of 
corner stresses on the stability behaviour of composite skew plates.  

Chia (1980) investigated large deflection elastic behaviour of homogenous isotropic and laminated anisotropic skew plates by an 
analytical method. Rajamohan and Raamachandran (1997) used Boundary Element Method to obtain a fundamental solution for 
the analysis of isotropic skew plates under transverse loading. Duan and Mahendran (2003) had developed a new non-linear 
quadrilateral hybrid/mixed shell element using oblique coordinate systems to investigate the large deflection behavior of skew 
plates under uniformly distributed and concentrated loads. Singh and Elaghabash (2003) developed a numerical method for 
geometrically nonlinear static analysis of thin plates having quadrangular boundary with four straight edges. Recently, Das et al. 
(2009) investigated the static behaviour of clamped and simply supported skew plates under pressure loading through a numerical 
domain mapping technique.    

The present paper is an extension of the earlier work by Das et al. (2009) to analyse the large deflection static behaviour of 
isotropic skew plates under uniform pressure loading.  As compared to the earlier work which deals with the skew plates of 
clamped and simply supported boundaries, the present work deals with the same with all possible combinations of clamped and 
simply supported boundaries. The formulation is based on the total potential energy of the system and the governing equations are 
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obtained using variational principle. The solution is approximate in nature and is obtained by assuming the displacement fields as 
finite linear combinations of unknown coefficients and admissible coordinate functions. The entire computation is carried out in a 
normalized square domain which is obtained using appropriate domain mapping technique. Results are presented in normalized 
load-deflection plane to show the effect of skew angle, aspect ratio and boundary condition.  
 
2.  Mathematical Formulation 
 
   A skew plate ( a x b x t ) with skew angle θ  is shown in Figure 1(a). It is assumed that the material of the plate is isotropic and 
homogeneous and retains linear elastic behaviour under large displacement regime. The effect of shear deformation is neglected by 
assuming the thickness of the plate to be sufficiently small ( /t a ≤ 0.02). 

The physical domain of interest is mapped to the square computational domain in ξ η−  coordinate system as shown in Figure 2. 
In this domain, the four straight edges ξ =0,1 and η =0,1 represents the oblique plate geometry and the intersections of constant 
ξ  and constant η  lines passing through the gauss points are selected as the reference points for computation. The coordinates of 
all the gauss points in the computational domain are transformed to the x-y plane by suitable grid generation techniques. The 
relationships used for grid generation are given below: 

sin

cos

x a b

y b

ξ η θ

η θ

= +

=
 

The system of governing equations is obtained by applying the variational principle of minimization of total potential energy,       
      ( ) 0U Vδ + =                          (1) 
 where, b mU U U= +  is total strain energy in which bU  is strain energy due to bending and mU  is strain energy due to stretching 
of its mid-plane, V  is the potential energy of the external forces. In case of small deformation, the deflected shape of the mid-
plane can be modeled by the transverse displacement w  only. However, for large deformation, in-plane displacement fields u  
and v  are also required for proper representation of the deflected plate geometry, thus producing nonlinearity in strain-
displacement relations. It is to be noted here that geometric nonlinearity, i.e., the nonlinear strain-displacement relationship is 
taken into consideration through in-plane stretching. The expressions of  bU  and mU  are not given here to maintain brevity and 
can be obtained in Das et al. (2009).  

For a plate loaded with uniform transverse pressure p  (loading is shown in Figures 1(a)-1(d)), potential energy V is given by, 

                                    ( )
tancos

0 tan

y ab

y

V pw dxdy
θθ

θ

+

= − ∫ ∫       (2) 

The present analysis is carried out for skew plates having mixed clamped (C) and simply supported (S) flexural boundary 
conditions, namely, CCCS, CSCS, CCSS and CSSS. It must be noted that the abbreviations for denoting the mixed boundary 
conditions start from the skew side of the plate passing through the origin and proceed in counter clockwise direction as denoted 
by edge 1, 2, 3 and 4 on the plate boundaries in Figures 1(a)-1(d). As regard to membrane effect, the edges of the plate are 
modeled as immovable by imposing zero in-plane displacement boundary conditions. 

 
2.1Derivation of governing equations:  

The displacement fields u , v  and w  are expressed by linear combinations of unknown parameters id  and admissible 
coordinate functions as follows: 
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                                                  (3) 

where, ( ),φ ξ η , ( ),α ξ η  and ( ),β ξ η  are sets of orthogonal coordinate functions and nw , nu  and nv are number of functions 
used for approximating u , v  and w  respectively.  
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(a) CCCS                                                                              (b) CSCS 

 

 
                             (c) CCSS                                                                                   (d) CSSS 

 
Figure 1.  Skew plate with uniform pressure loading and various boundary conditions: (a) CCCS, (b) CSCS, (c) CCSS and (d) 

CSSS. 
 
 

           

(a) Physical domain    (b) Computational domain 

Figure 2. Gauss point locations for skew plate (Das et al., 2009): (a) Physical domain and (b) Computational domain. 
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The start functions of these orthogonal sets are selected to satisfy the flexural and membrane boundary conditions of the plate. 
To cater to the need of numerical scheme, all the start functions are defined in computational domain. The basis functions for the 
definition of plate deflection w  comes from different possible combinations of clamped and simply supported boundary 
conditions. The functions used as basis or start function for different boundary conditions are shown in Table 1. The variations of 
one-dimensional coordinate functions along normalized coordinate are shown in Figure 3 for three different boundary conditions, 
namely CC, CS and SS. The first three functions (functions 1-3) in terms of increasing order are shown in Figure 3(a), whereas, 
functions 4-6 are shown in Figure 3(b). The start functions for u and v  are selected to satisfy the zero displacement conditions at 
the boundary and are given in Table 2. The higher order functions are generated following a two dimensional implementation of 
Gram–Schmidt orthogonalization scheme. Mathematically, clamped and simply supported boundary conditions (with rigid in-
plane restraint) are given by, 

w =0, u =0, v =0 and 
w
ξ
∂
∂

=0 or, 
w
η
∂
∂

=0 along the plate edges for clamped boundary condition, and  

w =0, u =0, v =0 and 
2

2

w
ξ
∂
∂

=0 or, 
2

2

w
η
∂
∂

=0 along the plate edges for simply supported boundary condition. 

 

  
    

(a) Functions 1-3                                                                                  (b) Functions 4-6 
 

Figure 3. Variation of coordinate functions along normalized coordinate: (a) Functions 1-3 and (b) Functions 4-6. 
 

          Table 1. Start functions for displacement w  
 
 

 
 
 
 
 

 
 
 

 
          Table 2. Start functions for displacements u and v  

 
Displacement Start function 

u  ( ){ } ( ){ }1 1 1α ξ ξ η ξ= − −  

v  ( ){ } ( ){ }1 1 1β ξ ξ η ξ= − −  

Boundary condition ( )1 ,φ ξ η  
CCCS ( ){ } ( ){ }2 2 21 3 5 2ξ ξ η η η− − +  

CSCS ( ){ } ( ){ }21 sinξ ξ πη−  

CCSS ( ){ } ( ){ }2 2 2 23 5 2 3 5 2ξ ξ ξ η η η− + − +  

CSSS ( ){ }{ }2 23 5 2 sin( )ξ ξ ξ πη− +  
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     (a) a/b=1                (b) a/b=2/3 
 
 

 
(c) a/b=1/2 

 
Figure 4. Normalized load-deflection plots of CCCS plate of different skew angles for various aspect ratios: (a) a/b=1, (b) a/b=2/3 

and (c) a/b=1/2. 
 
Substituting the appropriate expressions of strain energy and potential energy in Eq. (1), and using the assumed approximate 

displacement fields as given in Eq. (3), the governing equations are obtained in the following form: 
[ ]{ } { }K d f=        (4) 

where, [ ]K = bk⎡ ⎤
⎣ ⎦ + mk⎡ ⎤

⎣ ⎦   is the stiffness matrix of dimension ( )nw nu nv+ + , bk⎡ ⎤
⎣ ⎦  is the stiffness matrix due to bending 

action, mk⎡ ⎤
⎣ ⎦  is the stiffness matrix due to stretching action, { }d  is the unknown coefficient vector and { }f  is the load vector. 

bk⎡ ⎤
⎣ ⎦  and mk⎡ ⎤

⎣ ⎦  are of the form given below: 
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The elements of bk⎡ ⎤
⎣ ⎦  and mk⎡ ⎤

⎣ ⎦   are given in the appendix. The load vector { }f  is of the form [ ]Tfff 131211 , 
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where, { }
1 1

11
1 0 0

det
nw

j
j

f p J d dφ ξ η
=

= ∑ ∫ ∫ and { }12f ={ }13f =0. 

Here, det J is the determinant of the Jacobian matrix of transformation from yx −  plane to ηξ −  plane given by, 

                                           
sin cos

x y
a 0

J
b bx y

ξ ξ

θ θ
η η

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ⎡ ⎤⎝ ⎠ ⎝ ⎠⎢ ⎥

⎢ ⎥= =⎢ ⎥
⎢ ⎥⎢ ⎥⎛ ⎞ ⎛ ⎞∂ ∂ ⎣ ⎦

⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

. 

The governing equation given by Eq. (4) is non-linear in nature and is solved by direct substitution technique with successive 
relaxation scheme (Das et al., 2009). The entire computational work is carried out using Compaq Visual Fortran (ver. 6.6).  

 
 

                       
           (a) a/b=1                                         (b) a/b=2/3 

 
 

 
(c) a/b=1/2 

 
Figure 5. Normalized load-deflection plots of CSCS plate of different skew angles for various aspect ratios: (a) a/b=1, (b) a/b=2/3 

and (c) a/b=1/2. 
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3. Results and Discussion 
 
   Static behaviour of skew plates is presented in the form of load-deflection plots in normalized plane. Results are presented for 
mixed clamped (C) and simply supported (S) boundary conditions, namely, CCCS, CSCS, CCSS and CSSS.  The normalized load 
parameter is defined as * 4( ) /(16 )p pa Dt=  and the maximum normalized deflection is defined as *

max /w w t= . It is to be noted 
that for symmetric boundary conditions (having opposite symmetric edges), maximum deflection occurs at the plate centre, i.e., the 
intersection point of the two diagonals, whereas, for asymmetric boundary conditions, the location of maximum deflection needs to 
be specified separately. The results are generated using the following material and geometric parameter values; E = 210 GPa, ν  = 
1/3, a=1.0 m and t  = 0.01 m. The skew angle and the aspect ratio (a/b) of the plate are indicated in the corresponding plots. 
Convergence and validation of the present approach are shown in the paper by Das et al. (2009) and has not been shown here to 
maintain brevity. 
 
3.1 Normalized load-deflection behaviour: 

   The normalized load-deflection behaviour of CCCS skew plates has been shown in Figures 4(a)-4(c) for aspect ratio 1, 2/3 and 
1/2 respectively. In each of these figures, plots are presented for different values of skew angles and those values are 150, 300, 450 
and 600. The plots clearly show the non-linear load-deflection behaviour of skew plates, thus showing the effect of geometric non-
linearity. It can also be seen that normalized deflection ( *w ) decreases as the skew angle increases for any fixed value of aspect 
ratio and this behaviour is consistent for all aspect ratios.  
 

                            
       (a) a/b=1                (b) a/b=2/3 

 

 
(c) a/b=1/2 

 
Figure 6. Normalized load-deflection plots of CCSS plate of different skew angles for various aspect ratios: (a) a/b=1, (b) a/b=2/3 

and (c) a/b=1/2. 
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The normalized load-deflection behaviour with different skew angles are shown in Figures 5-7 for CSCS, CCSS and CSSS skew 
plates, respectively, for three different values of various aspect ratios, as considered earlier. The values of the skew angles are also  
taken as same as that used for CCCS boundary conditions. All these plots exhibit similar trend as observed for CCCS plates. The 
normalized load deflection behaviour with the variation in aspect ratio have been shown in Figures 8(a-d) for CCCS, CSCS, CCSS 
and CSSS boundary conditions respectively, for a fixed value of skew angle, θ =300. These plots follow a general consistent trend  
that for a fixed value of skew angle, the normalized deflection decreases with increases in aspect ratio. 

In order to investigate the relative difference in the load-deflection behaviour of skew plates for all the boundary conditions, the 
normalized load-deflection plots for all the boundary conditions for a rhombic plate having θ =300 are presented in Figure 9. It is 
clear from the figure that the magnitude of normalized deflection for any value of normalized load is minimum for CCCS plate and 
maximum for CSSS plate. The normalized coordinates of the points of maximum deflection in normalized domain corresponding 
to each boundary condition are also provided in parentheses in the legends. The validation of the load-deflection behaviour for 
CCCS and CSCS rhombic skew plates having θ =300 with commercial finite element package ANSYS (version 10.0) is also 
shown in the same figure and the comparison clearly shows the validity of the present method. The results in ANSYS are 
generated using SHELL63 element with 50 x 50 elements in the two oblique coordinate directions.   
 
 

                            
           (a) a/b=1               (b) a/b=2/3 

 

 
(c) a/b=1/2 

 
Figure 7. Normalized load-deflection plots of CSSS plate of different skew angles for various aspect ratios: (a) a/b=1, (b) a/b=2/3 

and (c) a/b=1/2. 
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(a) CCCS     (b) CSCS 
 

                  
(c) CCSS      (d) CSSS 

 
Figure 8. Normalized load-deflection plots of 300 skew plates for varying aspect ratios having different boundary conditions: (a) 

CCCS, (b) CSCS, (c) CCSS and (d) CSSS. 
 

 
 

Figure 9. Normalized load-deflection plots of 300 rhombic plate for different boundary conditions. 
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3.2 Deflected shape: 
In order to visualize the transverse deflection profiles of the skew plates, three dimensional surface and contour plots of 

deflected shapes of rhombic skew plates for 300 skew angle have been shown in Figure 10 for all the four boundary conditions.  It 
is to be noted that the deflected shape of the plate is represented by considering only the transverse displacement. Quite obviously, 
the location of maximum deflection point lies at the plate centre when the boundary conditions are symmetric as can be seen from 
the contour plots shown in Figure10(b) for CSCS skew plate. For asymmetric boundary conditions, the point of maximum 
deflection tends to shift away from the clamped boundary which is visible from the contour plots for CCCS, CCSS and CSSS skew 
plates shown in Figures 10(a), 10(c) and 10(d) respectively. It must be mentioned that the nature of plots shown in Figures 10(a-d) 
are not dependent on the magnitude of loading and hence they are not to the original scale. 

 

                    
       (a) CCCS                                                          (b) CSCS 
 

                
                                                      (c) CCSS                             (d) CSSS   

 
     

Figure 10. Surface and contour plots of deflected shape of rhombic skew plates with 300 skew angle having boundary 
conditions: (a) CCCS, (b) CSCS, (c) CCSS and (d) CSSS. 

 

4. Conclusions  

In this paper, large deflection static analysis of thin isotropic skew plates under uniform transverse pressure has been presented 
for various mixed flexural boundary conditions. A variational approach has been followed to obtain governing equations and the 
solution obtained is approximate in nature. Results are presented in the form of normalized load-deflection plots by varying both 
the skew angles and the aspect ratios, keeping the other fixed. The effect of boundary condition is also shown for a fixed value of 
aspect ratio and skew angle. Also the deflected shape plots of the plates are shown to visualize the effect of the boundary 
conditions. The method of analysis which is based on domain mapping technique can be extended to obtain the static and dynamic 
behavior of irregular shaped structural elements. 
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Nomenclature 

a  Length of the plate 
 b  Width of plate along skew direction 
{d}   Vector of unknown coefficients 
D  Flexural rigidity of the plate 
E  Young’s modulus of the plate  
{f}  Load vector 
J  Jacobian of the coordinate transformation 
[K]  Stiffness matrix 
[kb]  Stiffness matrix due to bending  
[km]  Stiffness matrix due to stretching 
nw         Number of functions for w 
nu          Number of functions for u 
nv          Number of functions for v 
 p  Uniform transverse pressure 
 p*  Non-dimensional load parameter 
 t  Thickness of the plate 
 u  Displacement along x direction  
U  Strain energy 
Ub  Strain energy due to flexural action 
Um  Strain energy due to membrane action 
v  Displacement along  y direction 
V  Work potential 
w  Transverse displacement 
w*  Maximum transverse displacement 
ν   Poisson’s ratio 

iφ           Set of functions defining approximate displacement field w 

iα         Set of functions defining approximate displacement field u 

iβ           Set of functions defining approximate displacement field v 
θ  Skew angle 
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2 1

nw nw nu nw nwj jm i i nw i i nw
i i

j i nw i i

Etk d d
x x x y x y

φ φφ α φ α
ν

ν

+
− −

= = + = =

∂ ∂⎡ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎡ ⎤ = +⎢ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ∂ ∂ ∂ ∂ ∂ ∂− ⎝ ⎠ ⎝ ⎠⎣
∑ ∑ ∑ ∑∫ ∫  

             ( )
1

1 det
nw ji i nw

i
i

d J d d
y y x

φφ α
ν ξ η−

=

∂ ⎤⎛ ⎞∂ ∂
+ − ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎦

∑ , 

( )
1 1

13 2
1 1 1 10 0

2 2
2 1

nw nw nu nv nw nwj jm i i nw nu i i nw nu
i i

j i nw nu i i

Etk d d
y y y x y x

φ φφ β φ β
ν

ν

+ +
− − − −

= = + + = =

∂ ∂⎡ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎡ ⎤ = +⎢ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ∂ ∂ ∂ ∂ ∂ ∂− ⎝ ⎠ ⎝ ⎠⎣
∑ ∑ ∑ ∑∫ ∫  

             ( )
1

1 det
nw ji i nw nu

i
i

d J d d
y x x

φφ β
ν ξ η− −

=

∂ ⎤⎛ ⎞∂ ∂
+ − ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎦

∑ , 

( )
1 1

21 2
1 1 1 10 0

2
2 1

nw nu nw nw nwj nw j nwm i i i i
i i

j nw i i i

Etk d d
x x x y y x

α αφ φ φ φ
ν

ν

+
− −

= + = = =

∂ ∂⎡ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎡ ⎤ = +⎢ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ∂ ∂ ∂ ∂ ∂ ∂− ⎝ ⎠ ⎝ ⎠⎣
∑ ∑ ∑ ∑∫ ∫  

            ( )
1

1 det
nw j nwi i

i
i

d J d d
x y y

αφ φ
ν ξ η−

=

∂ ⎤⎛ ⎞∂ ∂
+ − ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎦

∑ , 

( ) ( )
1 1

22 2
1 1 0 0

2 1 det
2 1

nw nu nw nu j nw j nwm i nw i nw

j nw i nw

Etk J d d
x x y y

α αα α
ν ξ η

ν

+ +
− −− −

= + = +

∂ ∂⎡ ⎤∂ ∂⎡ ⎤ = + −⎢ ⎥⎣ ⎦ ∂ ∂ ∂ ∂− ⎣ ⎦
∑ ∑ ∫ ∫ , 

( )
1 1

23 2
1 1 0 0

2
2 1

nw nu nw nu nv j nwm i nw nu

j nw i nw nu

Etk
y x

αβ
ν

ν

+ + +
−− −

= + = + +

∂⎡ ∂⎡ ⎤ = ⎢⎣ ⎦ ∂ ∂− ⎣
∑ ∑ ∫ ∫  

             ( )1 detj nwi nw nu J d d
x y

αβ
ν ξ η−− − ∂ ⎤∂

+ − ⎥∂ ∂ ⎦
, 
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( )
1 1

31 2
1 1 1 10 0

2
2 1

nw nu nv nw nw nwj nw nu j nw num i i i i
i i

j nw nu i i i

Etk d d
y y y x x y

β βφ φ φ φ
ν

ν

+ +
− − − −

= + + = = =

∂ ∂⎡ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎡ ⎤ = +⎢ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ∂ ∂ ∂ ∂ ∂ ∂− ⎝ ⎠ ⎝ ⎠⎣
∑ ∑ ∑ ∑∫ ∫  

             ( )
1

1 det
nw j nw nui i

i
i

d J d d
x y x

βφ φ
ν ξ η− −

=

∂ ⎤⎛ ⎞∂ ∂
+ − ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎦

∑ , 

( )
1 1

32 2
1 1 0 0

2
2 1

nw nu nv nw nu j nw num i nw

j nw nu i nw

Etk
x y

βα
ν

ν

+ + +
− −−

= + + = +

∂⎡ ∂⎡ ⎤ = ⎢⎣ ⎦ ∂ ∂− ⎣
∑ ∑ ∫ ∫  

             ( )1 detj nw nui nw J d d
y x

βα
ν ξ η− −− ∂ ⎤∂

+ − ⎥∂ ∂ ⎦
 

and 
( )

1 1

33 2
1 1 0 0

2
2 1

nw nu nv nw nu nv j nw nu j nw num

j nw nu i nw nu

Etk
y y

β β

ν

+ + + +
− − − −

= + + = + +

∂ ∂⎡⎡ ⎤ = ⎢⎣ ⎦ ∂ ∂− ⎣
∑ ∑ ∫ ∫  

             ( )1 detj nw nu j nw nu J d d
x x

β β
ν ξ η− − − −∂ ∂ ⎤

+ − ⎥∂ ∂ ⎦
. 

Here, 
( )

3

212 1
EtD

ν
=

−
 is the flexural rigidity of the plate. 
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