International Journal of Engineering, Science and Technology Vol. 2, No. 5, 2010, pp. 198-215 INTERNATIONAL JOURNAL OF ENGINEERING, SCIENCE AND TECHNOLOGY

www.ijest-ng.com

© 2010 MultiCraft Limited. All rights reserved

Genetic rule based techniques in cellular manufacturing (1992-2010): a systematic survey

Tamal Ghosh¹*, Pranab K Dan¹, Sourav Sengupta¹, Manojit Chattopadhyay²

¹Department of Industrial Engineering & Management, West Bengal University of Technology, Kolkata, INDIA ²Department of Computer Application, Pailan College of Management & Technology, West Bengal, INDIA ^{*}Corresponding Author: e-mail:tamal.31@gmail.com, Tel / Fax.+91-33-2334-1014/21/25/28/31

Abstract

Genetic algorithm is believed to be the most robust unbiased stochastic search algorithm for sampling a large solution space. Considering the steady convergence framework of genetic algorithm, it is intensely recognized in group technology applications in cellular manufacturing, and subsequently employed in part family construction, machine cluster formation and manufacturing cell designing since preceding two decades. This study demonstrates a substantial description of various genetic algorithm based techniques and its usage in manufacturing cell design problem and categorically emphasizes on the significance of the prompt propagation of genetic algorithm in cellular manufacturing and its empirical modifications in genetic operations which are evolving as an indispensable segment of managerial decision making. The sustained growth of genetic algorithm and its intricate practices such as managing multi-objective problems and forming hybrid procedures are the focus areas of this article. The major verdict of this research work is to identify the trend of genetic algorithm in cellular manufacturing system, which was started with very basic simple genetic algorithm in 1990 and gradually evolved with complex hybrid techniques in recent time.

Keywords: Cellular manufacturing, group technology, genetic algorithm, survey, review

1. Introduction

In nature individuals are generally harmonized to their surroundings in order to persist in evolution process, in which reproduction conserves those features which make an individual capable enough to compete successfully (Darwin, 1929), therefore the fragile characteristics are ruined consequently. *Genes* are such units which regulate dominating characteristics by forming sets identified as *chromosomes*. Over subsequent generations not only the stronger individuals survive, but also their fittest genes which are transmitted to their descendants during the recombination process namely *crossover*. Metaphors between the mechanism of natural selection and optimization process motivated the evolution of Genetic Algorithm (GA), in which the main objective is to simulate the evolutionary process through computer.

Thematically in cellular manufacturing systems (CMS), group technology (GT) could be projected as a manufacturing metaphysics which recognises similar parts, therefore associating them into part families depending on its manufacturing designs, characteristics and geometric shapes which was first introduced by Burbidge (1963, 1971, 1975). GT is employed in CMS to develop an alternative of conventional manufacturing system. Designing manufacturing cell has been called cell formation problem (CF/CFP). It consists of the following courses: usually similar parts are grouped into part families following their processing requirements, and diverse machines are grouped into manufacturing cells and subsequently part families are designated to cells. The problem encountered in CMS is construction of such cells irrespective of its type (Selim *et al.*, 1998). Not essentially the aforementioned steps are carried out in the above order or even gradually. Depending upon the procedures involved in CFP three methods of achieving solutions are proposed (Papaioannou and Wilson, 2010): (1) recognizing part families first and consequently machines are clustered into cells depending on the processing requirement of part families, (2) recognizing manufacturing cells by grouping heterogeneous machines and then the part families are allocated to cells, (3) part families and machine cells are developed concurrently.

Researchers of Cellular manufacturing are constantly addressing problems for which conventional problem solving techniques are not reliable owing to their higher computational complexities towards convergence. CMS being difficult to systematize

mathematically, many researchers have considered non-conventional techniques such as heuristics, metaheuristics and artificial intelligent techniques such as neural networks and fuzzy set theory to solve CFPs in order to achieve optimal solutions. Genetic Algorithm (GA) is reported as a competent alternative in such categories. In the literature of CFP (Papaioannou and Wilson, 2010) the research trend is found in practicing artificially intelligent methodologies, due to their strong nature of converging to attain optimal solution than that of the conventional methods.

The prime objectives of this study are to: (1) introduce a comprehensive description of Genetic Algorithm (GA), (2) review published literature of CFP based on GA methods, (3) to conduct an analytical study based on aforesaid review and (4) to indicate the possible scope of prospective research.

2. An Overview of Genetic Algorithm

Genetic algorithm is a widespread, parallel, stochastic search and optimisation method, grounded on the perspectives of natural selection (Darwin, 1929) and population genetics (Fisher, 1930). In general, any recursive, population based method that uses selection and random variation to generate new offspring can be widely disposed as genetic algorithm. Holland (1975) first proposed GA and Goldberg (1989) further made this algorithm accustomed among researchers. It is a model of machine learning which derives its behaviour from a metaphor of the processes of evolution in nature. GA is executed iteratively on a set of coded chromosomes, called a population, with three basic genetic operators: selection, crossover and mutation. Each chromosome is represented by a string, which could be binary or real coded. GA utilizes only the objective function information and probabilistic transition rules for genetic operations. Crossover is the elementary operator of GA. The essential steps of a GA (Figure 1) are reported in pseudocode 1. A comprehensive theory of GA can be studied from the book composed by Gen and Cheng (2000). An elaborated discussion of GA and its practice in CFP is contributed accordingly in next subsections.

Due to the strong competency to obtain optimal solution, GA is heavily adopted in diverse industrial optimization problems which are non-linear in nature. Genetic Algorithms could be used for numerous scheduling problems, which enable relatively arbitrary constraints and objectives to be incorporated into a single optimization method (Man *et al.*, 2008; Shaw *et al.*, 1999; Xing *et al.*, 2007). In robotics human designers and engineers develop machines which are proficient to perform human work. GAs can be programmed to search for a range of optimal designs and components for each specific use, or to return results for entirely new categories of robots that can perform multiple tasks and have more general application (Mucientes *et al.*, 2007; Nelson *et al.*, 2009; Fravolini *et al.*, 2003). GAs are being utilized for dynamic and anticipatory routing of circuits for telecommunications networks. Other GA based applications are being developed to optimize placement and routing of cell towers for best coverage and ease of switching (Rango *et al.*, 2007; Zhengying *et al.*, 2001; Bari *et al.*, 2009). Genetic Algorithm could also be used for designing composite materials and aerodynamic shapes of vehicles and transporters, which can enhance the speed and can minimize the weight, fuel consumptions and risk of the vehicles (Rajendran, and Vijayarangan, 2001). Application of GA can also be found in supply chain network design problems (Altiparmak *et al.*, 2006), structural and operational design of buildings, factories, machines (Bullock, 1995), in modelling of finance and investment strategies (Markowska-Kaczmar *et al.*, 2008) and many other emerging industrial sectors including cellular manufacturing since last few decades.

3. Application of Genetic Algorithm in Cellular Manufacturing

Venugopal and Narendran (1992), Gupta *et al.* (1996), Hsu and Su (1998) and Chan *et al.* (2004) implemented GA as a multiobjective solution methodology and solved diverse objectives such as total movements of components, count of EEs, Voids and cell load variation. Joines *et al.* (1996) developed a GA using new chromosome representation which reduced the size of the model; hence demonstrated efficiency by comparing the maximum number of states visited by the technique. Morad and Zalzala (1996) proposed genetic-based methods to solve the CFP in CM and the batch scheduling problem, they reported that the processing parameters do affect the formation of cells. Hwang and Sun (1996) developed globally efficient two-phase GAheuristic for CFP considering intercell move factors. Zhao *et al.* (1996) introduced fuzzy clustering method for in-exact real-data structure and proposed GA due to its population-wide and stochastic nature. Whereas Chi and Yan (2004) and Pai *et al.* (2005) attempted to test GA in fuzzy environment speculating the manufacturing factors such as multi-process plan, alternative routing of parts, fuzzy product demands and fuzzy technical feasibility of machines. Another method, known as integer-coded GA was proposed by Tavakkoli-Moghaddam *et al.* (2007) to handle the uncertainty in fuzzy environment. Al-Sultan and Fedjki (1997) stated a genetic-operator-based heuristic method and tested the aforementioned technique with previously proposed methods with prospective solutions.

Pierreval and Plaquin (1998, 2000) suggested an NPEA, which demonstrated a set of non-dominated solutions with respect to several objectives and further investigated on EA based on four constraints criteria: bounded size of cells, the machines which must stay together, and the machines which should not stay together, the machines around which the cells have to be formed, and they reported faster convergence characteristics of the proposed technique. Gravel *et al.* (1998) presented a double-loop GA method which could be used to make the best use of the existing cell design by routing parts through the cells efficiently. Moon and Gen (1999) and Kazerooni *et al.* (1997) both considered Production volume, machine capacity, processing time and sequence, number of cells and cell sizes and alternative routing, and therefore the proposed solutions depicted encouraging result. Zhao and

Wu (2000) used multi-objective modified-GA and found the technique is completely feasible for mid-size problems with moderately higher execution time. Mak and Wong (2000) implemented a genetic CFP model based on total cell flows and further ANOVA technique is introduced to select the appropriate system parameters. On the other hand Zolfagharia and Liang (2003, 2004) considered processing time, lot size, and machine capacity and used multi-factor ANOVA, and the study reported significant improvement by indicating the importance of GA parameters selection and the authors further experimented with generalized grouping efficacy index compared with conventional measures and stated that GA is best-fit with larger population size and lower mutation rate.

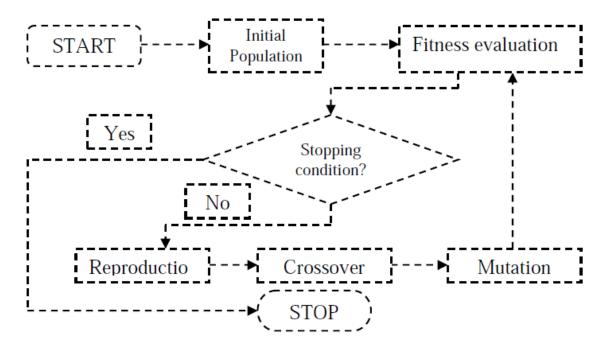


Figure 1. Genetic Algorithm

Mak *et al.* (2000) suggested an adaptive scheme based genetic search technique to solve CFP which maximized bond energy measure to some extent. Anita Lee-Post (2000) efficiently used SGA with GT coding system (DCLASS) to cluster part families which is well suited for part design and process planning in production process. Chu and Tsai (2001) proposed a GA based heuristic technique and a new similarity coefficient method to adjust the gene value of each part. However Wu *et al.* (2002) proposed a new group mutation operator to increase the mutation probability, and with the help of two-layer hierarchical chromosome structure the CFP and machine layout problems are simultaneously solved.

Pseudocode 1: Genetic Algorithm (GA)

nitialize;
Repeat
Evaluate the individual chromosome;
Repeat
Select parents using specific selection strategy;
Generate offspring using crossing over operation;
Mutate if enough solutions are generated;
Until population number is reached;
Copy the best fitted individuals into population as they were;
Jntil required number of generations are generated.

Further GA-embedded heuristic-inspired-mutation is introduced by Mahdavi *et al.* (2009), which is to produce significantly improved solution. Brown and Sumichrast (2001), Filho and Tiberti (2006), Hu and Yasuda (2006) and Yasuda *et al.* (2005) introduced GGA method with new modified crossover, mutation operators, correction scheme and a new codification scheme of chromosomes based on machine groups rather than individual machine. The proposed methodology efficiently converges with lesser CPU time irrespective of number of parts. While Vin *et al.* (2005) introduced the MOGGA technique combined with CF

heuristic by considering process sequence, production volume and alternative routing. Further, James et al. (2007) extended GGA as a hybrid technique combined with local search which outperformed well-known techniques including conventional GGA. On the other hand Tunnukij and Hicks (2009) presented an improved EnGGA method by employing a new approach called rank-based roulette-elitist strategy, for creating successive generations. Onwubolu and Mutingi (2001) addressed multi-objective GA with three objective functions: minimization of intercell moves, cell load variation and the combination of both the former objectives, the technique further competed with hybrid GA and TS methods with improved computational result. Chi and Lin (2002) proposed new technique called EOG which is a mixed form of granular computing and GA, to enhance the simplicity of computation, and its ability to handle large-size problem. Mansouri et al. (2003) considered the chromosome of MOGA as a vector of many decision variables and the fitness function is a function of multiple sub-objective functions. Whereas Solimanpur et al. (2004) introduced multiple fitness function which generates several solutions along the pareto-optimal frontier; hence the proposed MOGA yielded decision support system for CFP. Goncalves and Resende (2004) stated that GA could be more effective with local heuristics in solving CFP. Tavakkoli-Moghaddam et al. (2005) proposed TS, SA and GA methods separately to solve dynamic CFP and reported that SA is better in terms of solution and complexity than the TS and GA. Rogers and Kulkarni (2005) introduce bivariate clustering of matrix for CFP and a GA based method was employed to solve the problem with improved result. Rajagopalan and Fonseca (2005, 2006) proposed a VSM with production volume limit for individual component rather than using product mix and implemented a new GA-model to show that volume limit could enhance the choice of optimal routing of components when machine movement is not viable and the authors further published their GA-model to reduce intercellular and intracellular material handling cost with other cost components such as backtracking cost, machine skipping cost and penalty cost subsequently.

Nsakanda et al. (2006) modelled a GA method combined with price-directed decomposition method for large-scale MOCFP. Boulif and Atif (2006, 2008) stated a graph partitioning formulation of CFP which utilized a binary GA and then a B&B method to enhance the GA and in another study the authors further considered dynamic production factors such as input data with realistic constraints and avoided assumptions such as static number of cells, hence they proposed an improved GA based methodology with the help of fuzzy logic. Chan et al. (2006) considered two mathematical models, one is a CFP to minimize intracell and intercell part movement, and other is a CLP to minimize intercell part travelling distance. Defersha and Chen (2006, 2008a, 2008b) developed a mathematical model which incorporated dynamic cell configuration, alternative routings, sequence of operations, multiple units of identical machines, machine capacity, workload balancing among cells, operation cost, subcontracting cost, tool consumption cost, set-up cost and other practical constraints and a two-phase GA-based-heuristic technique was proposed. The authors further experimented with parallel GA model for dynamic-CFP considering various parameters such as connection topology, migration policy, migration frequency and migration rate. In another article the authors attempted to minimize production and quality related costs by incorporating a number of manufacturing attributes and practical constraints by considering multi-item and multi-level lot sizing aspects and the impact of lot size on product quality. Wu et al. (2006) introduced a hierarchical GA method to solve CF problem and also a group layout problem with 2-20% improvement in result. Car and Mikac (2006) proposed a method based on Emergent Synthesis idea which is utilized in MGA. Ponnambalam et al. (2007) developed a modified grouping efficiency and proposed a GA technique which outperformed traditional techniques such as K-mean clustering and ART1 algorithms. Whereas GA based robust design methodology practiced by Pillai and Subbarao (2007) to forecast the product mix and demand changes during periods of a planning horizon without allowing the composition of machine cells to change over time. Mahapatra and Pandian (2008) considered the operational time and sequence of operation of parts, to minimize cell load variation and EEs. The implemented GA method outperformed K-mean clustering and C-link clustering algorithms.

Besides, Ming and Ponnambalam (2008) proposed a GA-PSO approach and the methodology successfully applied to minimize total cell load variation and total components move. Chan *et al.* (2008) introduced CFP with IAECLP to minimize total part movements and total sum of intracell and intercell part distances due to machine sequence and sequences of newly formed cells. However Tariq *et al.* (2009) developed a local search heuristic based on GA which yielded best solution ever found in literature. Cao *et al.* (2009) formulated a mathematical model for optimal lot splitting into alternative routes to account for either positive or negative effects of production run length on product quality in CM environment. Kor *et al.* (2009) aimed to implement SPEA-II and compared with GP-SLCA to produce improved result. Fan *et al.* (2010) discussed the dual resource-constrained system model for CFP by considering minimum distance of parts and also employees move among cells, the number of hired employees and the load balance of staff. Pailla *et al.* (2010) proposed two methodologies for CFP, one is a modified-EA based on genetic operator-heuristic and second is based on simulated annealing which outperformed the EA. Neto and Filho (2010) designed a multi-objective-optimization model using GA, where fitness evaluation was performed via simulation of CM. while Deljoo *et al.* (2010) worked on dynamic production condition considering product mix, demand of parts during some period, machine movement, addition of new equipment, by providing flexibility in CM.

The abovementioned survey is majorly focused on cell formation attributes selected in CMS, therefore, to incorporate the detailed simulation results obtained from the reviewed GA based techniques, Table 1a to 1d are presented.

References	Initial Population	Fitness function	Selection strategy	Stopping Criteria	
Venugopal and Narendran (1992)			stochastic remainder selection without replacement scheme	Fixed no. of iteration	
Gupta et al. (1996)	randomly generate the initial population	Objective function taken	stochastic remainder selection without replacement scheme	Fixed no. of iteration	
Joines et al. (1996)	Random seeding	Nonlinear form of grouping efficacy	Normalized geometric ranking scheme	maximum number of generations	
Morad and Zalzala (1996)	initial population is generated at random	Objective function taken	elitist strategy	maximum number of generations	
Hwang and Sun (1996)	permutations generated with the numbers	Scaled fitness $sf_{ji} = fitness + offset /(sum (fitness/PS + offset))$	stochastic remainder sampling without replacement	maximum number of generations	
Zhao et al. (1996)	randomly generated by heuristic	rank - based evaluation function	roulette wheel approach	maximum number of generations	
Kazerooni et al. (1997)	randomly generated	number of elements in the MCS matrix which have a value equal to zero or below L_n	tournament strategy	maximum number of generations	
Al-Sultan and Fedjki (1997)	random generation	objective function value	biased roulette wheel approach	maximum number of generations	
Pierreval and Plaquin (1998)	Plaquin (1998) randomly generating total cost or the homogeneity of niched pareto		niched pareto tournament selection	If all the machines are placed in cell	
Gravel et al. (1998)	generated randomly	objective function value	chosen by fitness	When the diversity drops to zero or loss of diversity of the machine cell population should not exceed 3%.	
Hsu and Su (1998)	generated randomly	total cost, and total machine loading imbalances	chosen by fitness	maximum number of generations	
Moon and Gen (1999)	generated randomly	objective function value	Deterministic selection strategy	maximum number of generations	
Zhao and Wu (2000)	generated randomly	objective function value	chosen by fitness	maximum number of generations	
Mak and Wong (2000)	Generate an initial population of individuals randomly	objective function values	chosen by fitness	maximum number of generations	
Mak et al. (2000)	Randomly generated	Bond energy measure	traditional roulette wheel selection operator	maximum number of generations	
Lee-Post (2000)	Generate randomly	sum of similarities	selected probabilistically	time-bounded rule & quality- bounded rule	
Plaquin and Pierreval (2000)	generated randomly	inter-cell traffic function	Based on aggregates and When there is no a their belongingness left to place		
Onwubolu and Mutingi (2001) randomly created solution space		Cost function	remainder stochastic sampling without replacement	maximum number of generations	

Table 1a. Simulation results obtained from reviewed techniques

Table 1b. Simulation results obtained from reviewed techniques

References	Initial Population	Fitness function	Selection strategy	Stopping Criteria
Chu and Tsai (2001) variable restriction method to generate ran		minimizing the number of EEs	roulette wheel selection method	number of generations
Brown and Sumichrast (2001)	Random generation	Based on objectives	rank-based roulette-wheel selection	number of generations
Chi and Lin (2002)	initial radius of the hyperboxes	Objectives and grouping efficiency	stochastic sampling method without replacement	Fixed no. of iteration
Wu <i>et al.</i> (2002)	randomly generate the initial population	Total number of EEs	roulette wheel approach	maximum number of generations
Zolfagharia and Liang (2003)	randomly generated	generalized grouping efficacy	random selection, roulette wheel selection, stochastic universal sampling	maximum number of generations
Mansouri et al. (2003)	Randomly Generate Initial Based on normalize factor Solutions and objective value		Reminder Stochastic Sampling Without Replacement in conjunction with a new Elitism operator	either it converges to a robust non-dominated frontier or a predetermined number of generations
Chan <i>et al.</i> (2004)	random population	Based on objective function	Individuals with higher fitness value	variation in the value of the best objective function

References	Initial Population	Fitness function	Selection strategy	Stopping Criteria
Chi and Yan (2004)	generated randomly	Fuzzy objective function	roulette wheel approach	maximum number of generations
Goncalves and Resende (2004)	randomly generated	objective function	elitist strategy	Maximum No. of generation
Solimanpur et al. (2004)	randomly generated	Total objective function	Probabilistic selection	Maximum No. of generation
Zolfaghari and Liang (2004)	randomly generated	Based on objectives	Best fit parents selected randomly	Maximum No. of generation
Pai et al. (2005)	generated randomly	grouping efficacy	roulette wheel selection principle	maximum number of generations
Vin <i>et al.</i> (2005)	Generate an initial population using a resource planning (RP) heuristic	Cost function	Individuals with higher fitness value	maximum number of generation without improvement
Rogers and Kulkarni (2005)	randomly generated	objective function + penalty function	standard proportional selection incorporating the elitist model	Maximum No. of generation
Rajagopalan and Fonseca (2005)	randomly generated	Production volume function considering upper limit and lower limit of VSM	tournament selection	Maximum No. of generation considering upper limit and lower limit of VSM
Hu and Yasuda (2005)	Random heuristic	Fitness=-A1×C×f1-A2/C×f2	probabilistic selection	Maximum No. of generation
Rajagopalan and Fonseca (2006)	randomly generated	material handling cost + penalty cost	tournament selection	a run of 5000 generation
Filho and Tiberti (2006)	special procedure based on random generation	Sum of the objectives	Roulette Wheel selection procedure	Maximum No. of generation
Nsakanda et al. (2006)	randomly generated using population diversity	Total move cost + total outsourcing cost	stochastic remainder selection without replacement method	No. of generation, number of chromosomes evaluations exceeds, improvement in fitness value, population diversity drops

Table 1b. (cont'd) Simulation results obtained from reviewed techniques

Table 1c. Simulation results obtained from reviewed techniques

References	Initial Population	Fitness function	Selection strategy	Stopping Criteria		
Boulif and Atif (2006)	randomly generated initial population	objective function	Roulette wheel random procedure	Maximum No. of generation		
Chan <i>et al.</i> (2006)	Initially generated randomly	Based on objective function	Chromosomes with higher fitness value	little change of improvement in the best objective function		
Defersha and Chen (2006)	Random generation	Sum of the objectives	biased roulette wheel approach	Maximum No. of generation		
Wu et al. (2006)	randomly generated	Based on objective function	roulette wheel and elitist approach	Maximum No. of generation		
Car and Mikac (2006)	random selection of individuals	sum of total number of voids and the total number of EEs	Individuals with higher fitness value	Maximum No. of generation		
Ponnambalam et al. (2007)	generated randomly	objective function	maximum fitness function value	Maximum No. of generation		
Pillai and Subbarao (2007)	randomly created population	objective function	Best fit chromosomes	Maximum No. of generation		
James et al. (2007)	Random generation	Based on rank and no. of ranked chromosomes	Rank-based roulette wheel selection	No. of generation		
Tavakkoli-Moghaddam <i>et al.</i> (2007)	greedy generational handling strategy	objective function + penalty function	roulette wheel sampling	Maximum CPU time, standard deviation of generation,		
Boulif and Atif (2008)	Random generation	objective function	roulette wheel approach	Maximum No. of generation		
Chan <i>et al.</i> (2008)	Random population	objective function	Best fit chromosomes	little change in the best objective function		
Defersha & Chen (2008a)	Random generation	Sum of the objectives	biased roulette wheel approach	No. of generation, improvement in fitness value		
Defersha & Chen (2008b)	Random generation	Sum of the objectives	biased roulette wheel with replacement	improvement in fitness value		
Mahapatra & Pandian (2008)	Generate random population	objective function	Random selection	Maximum No. of generations		
Mahdavi et al. (2009)	special procedure was developed	total number of voids and EEs	Roulette Wheel selection procedure	Maximum No. of generations		
Tariq <i>et al.</i> (2009)	Random generation	objective function	Best fit chromosomes & roulette wheel approach	improvement in fitness value		
Tunnukij and Hicks (2009)	Random generation	Grouping efficacy	Random selection & Rank- based Roulette-elitist Strategy	Maximum Number of generation		

References	Initial Population	Fitness function	Selection strategy	Stopping Criteria	
Kor <i>et al.</i> (2009)	Random generation	closeness to the true Pareto front and even distribution of solutions	Binary tournament selection with replacement	Maximum No. of generations	
Cao <i>et al.</i> (2009)	Random generation	Objective function value	Best fit chromosomes	No. of generation, improvement in fitness value	
Neto & Filho (2010)	first half is generated by using problem-specific information & second half is generated randomly	Feasibility correction is used to check objective value therefore fitness	NSGA-2 built-in "crowding" tournament used	Maximum No. of generation	

Table 1c. (cont'd) Simulation results obtained from reviewed techniques

Table 1d. Simulation results obtained from reviewed techniques

References	Initial Population	Fitness function	Selection strategy	Stopping Criteria					
Pailla et al. (2010)	Random Generation & constructive heuristic used	grouping efficacy	Selection probability function used from Joins et al. (1996)	Maximum No. of generation					
Fan <i>et al.</i> (2010)	Random generation	Objective function of CFP used	Roulette wheel method	Maximum No. of generation					
Deljoo et al. (2010)	Sequential strategy used	Objective function of CFP used	Best fit chromosomes taken & normalized method used	No. of generation, upper bound of solving time, improvement in fitness value					

4. Discussion

Present section prefaces a thorough analysis of the GA methods and remonstrate some delicate issues based on the discussion of previous section. This work compensates comprehensive amount of research papers based on genetic cell arrangement in CMS, therefore a large sphere of CMS is covered which not only includes CFP but also considers plant layout area and several multi-objective issues and performance metrics. Papers are categorized on the basis of several GA based techniques. To improve this discussion, this section is divided into following sub-sections,

4.1 *Multi-objective evolutionary cell formation:* In general CFPs are articulated in more complicated way by means of multiple objectives, such as intercell or intracell part movements, within cell load variation, count of EEs and voids, machine utilization, machine investment, machine duplicacy, WIP level, part subcontracting, part cycle time, part routing, operational time, operational sequence of parts. Table 2 classifies literatures based on multi-objective CFP model as reported by Ghosh *et al.* (2010).

References	Obj1	Obj2	Obj3	Obj4	Obj5	Obj6	Obj7	Obj8	Obj9
Neto and Filho (2010)	1	1	1						
Vin <i>et al.</i> (2005)		1				1			1
Zhao and Wu (2000)		1		1	✓				
Brown and Sumichrast (2001)		1				1			
Gupta et al. (1996)		1		1					
Hsu and Su (1998)		1	1	1					
Mansouri et al. (2003)		1					✓	1	
Solimanpur et al. (2004)			1						1
Yasuda et al. (2005)		1		1					
Wu et al. (2006)		1			✓				
Dimopoulos (2006)		1				√			
Tavakkoli-Moghaddam et al. (2007)		1	1						
Defersha and Chen et al. (2008)		1	1						
Goncalves and Resende (2004)		1				✓			
Gravel et al. (1998)		1		✓					
Chi and Yan (2004)		1		✓		1	1		
Fan <i>et al.</i> (2010)		1		1					

Table 2. List of papers with multi-objective CFPs

References	Obj1	Obj2	Obj3	Obj4	Obj5	Obj6	Obj7	Obj8	Obj9
Morad and Zalzala (1996)		1		✓					
Kor et al. (2009)		1		1					
Mahapatra and Pandian (2008)				1	1				
Mak and Wong (2000)		1		✓					
James et al. (2007)		1				1			
Pierreval and Plaquin (1998)		✓		✓					
Tariq et al. (2009)		1				✓			
Ming and Ponnambalam (2008)		1		✓					
Solimanpur et al. (2010)	1	1						✓	

Table 2. (cont'd) List of papers with multi-objective CFPs

• Obj1: Level of WIP

• *Obj2: intercell and/or intercell move*

• *Obj3: Machine investment/modification/relocation*

- Obj4: Cell load variation
- Obj5: Count of EEs and/or Voids/Operational sequence/time
- Obj6: machine utilization/cycle time of parts
- *Obj7: machine duplication & part subcontracting*
- Obj8: system under-utilization/ cells utilization/system reliability
- Obj9: part processing/routing/time/cost/total work content of parts

From Table 2 few points can be concluded,

- Around 40% of the papers cover more than two objectives.
- Around 30% of the papers include common objectives such as minimizing intercell or intracell material handling cost, cell load variation and maximizing machine utilization.
- Other objectives considered are, level of WIP, machine investment/ modification/ relocation cost, parts cycle time/part processing/ routing, total work content of parts, machine duplication, part subcontracting, system under-utilization, cell utilization and system reliability.
- Around 50% of total papers reviewed in this article, are dedicated to handle multi-objective issues.
- In order to consider multi-objective CFPs, multi-objective GAs are required. Therefore various complex multi-objective GAs are employed such as NSGA, SPEA, NPEA, MOGA and MOGGA which are known as established techniques for engineering optimization problems.

3.2 Comparison of different GA based methodologies: In this sub-section a comparative analysis is performed on different CFP formulations. Table 3 indicates the list of references, the corresponding methodology used, and the corresponding platform on which the methodologies are tested and table 4a and 4b shows the numbered references and various issues such as, the published data taken with which the present methodology experimented or the established method with which the proposed technique is compared, the execution time of the technique, improvement from published result (in percentage) and selected parameters of the evolutionary method (generation number, population size, crossover rate, mutation rate), while the last column presents few comments about the corresponding study.

No.	References	Techniques	System Specifications
1	Neto and Filho (2010)	NSGA 2	P4 HT 3 GHz and 1 GB of RAM.
2	Zhao and Wu (2000)	MOGA	Pentium/100MHz
3	Anita Lee-Post (2000)	GA-DCLASS	sun sparc station 1+
4	Dimopoulos and Mort (2001)	GP-SLCA	
5	Brown and Sumichrast (2001)	GGA	
6	Gupta et al. (1996)	GA-ANOVA	TURBO PASCAL IBM PS/2 55SX
7	Hsu and Su (1998)	modified GA	
8	Mansouri et al. (2003)	XGA	PII (Celeron) 333MHz 64MB RAM
9	Solimanpur et al. (2004)	MOGA	
10	Chan et al. (2004)	Simple GA	

Table 3. List of references opted for comparison of GA techniques in CFP

11 Yasuda et al. (2005) GGA Intel P3.1 GHz CPU. 256MB RAM 12 Rajagopalan and Foljki (1997) modified GA 13 Al-Suthan and Foljki (1997) modified GA 14 Hu and Yasuda (2005) GGA Intel P3 1 GHz processor, 250MB RAM 15 Dimopoulos (2006) MO GP-SLCA-NSGA 2 16 Tavalkoh-Moghaddam et al. (2007) GA hearistic Celeron Mobile 1.3 GHz 512 MB RAM 17 Chan et al. (2008) island model PGA P4 processor (3.2 GHz, 2GB RAM) 19 Goncalves and Resende (2004) GA & BAB Cyrix NII 300/323MHz and 32 MB RAM 20 Boulif and Aif (2006) GA & BAB Cyrix NII 300/323MHz and 32 MB RAM 21 Rogers and Kulkarni (2005) simple GA P3 700 MHz workstaino 256 MB RAM 22 Gravel et al. (1998) double loop GA Intel Pentium Pro 200 MHz 23 Tunnakij and Hicks (2009) EnGGA Pattor (2005) 24 Pati et al. (2005) fuzzy GA PHITD5 OCP and 192M RAM 25 Zbao et al. (1996) simple GA Pentium T0 3MHz processor 26 Onwabola and Mutringi (2011) modified GA Pentium T0 3MHz processor 27 Cao et al. (2009) GA-SPEA 2 Pontium T0 70.3 GHz, 512MB RAM) 28 <td< th=""><th></th><th colspan="10">Table 3. (cont'd) List of references opted for comparison of GA techniques in CFP No. Paternance No. Paternance</th></td<>		Table 3. (cont'd) List of references opted for comparison of GA techniques in CFP No. Paternance No. Paternance									
12 Rajagopalan and Fonseca (2005) GAM 13 Al-Sultan and Fedjki (1997) modified GA 14 Hu and Ysuda (2005) GGA Intel P3 1 GHz processor, 256MB RAM 15 Dimopoulos (2006) MO GP-SLCA-NSGA 2 Eleron Mobile 1.3 GHz 512 MB RAM 16 Tavakkoli-Moghaddam <i>et al.</i> (2007) GA heuristic Celeron Mobile 1.3 GHz, 512 MB RAM 17 Chan <i>et al.</i> (2008) island model PGA P4 processor (3.2 GHz, 2GB RAM) 19 Goncalves and Resende (2004) GA & LSH AMD Thunderbird 1.33 GHz processor 20 Boulin and Artif (2005) simple GA P3 700 MHz workstation 256 MB RAM 21 Rogers and Kulkarni (2005) simple GA Intel Pentium Po 200 MHz 23 Tunnukij and Hicks (2009) EnGGA latel Pentium Po 200 MHz 24 Pai <i>et al.</i> (2005) fuzzy GA PHI750 CPU and 192M RAM 25 Zhao <i>et al.</i> (1996) imple GA Pentium IV (2.93 GHz, 512MB RAM) 26 Ownwholu and Muingi (201) modified GA Pentium IV (2.93 GHz, 512MB RAM) 26 Ownwholu and Muingi (2001) modified GA Pentium IV (2.93 GHz, 512MB RAM) 27 Ca	No.	References	Techniques	System Specifications							
13 Al-Sultan and Fedjiki (1997) modified GA Intel P3 1 GHz processor, 256MB RAM 14 Hu and Yasuda (2005) GGA Intel P3 1 GHz processor, 256MB RAM 15 Dimopoulos (2006) MO GP-SLCA-NSGA 2 Celeron Mobile 1.3 GHz 512 MB RAM 16 Tavakkoli-Moghaddam et al. (2007) GA heuristic Celeron Mobile 1.3 GHz 512 MB RAM 17 Chan et al. (2008) island model PGA P4 processor (3.2 GHz, 2GB RAM) 18 Defersha and Chen (2008) island model PGA P4 processor (3.2 GHz, 2GB RAM) 20 Boulif and Atif (2006) GA & BAB Cyrix MI 300 233MHz and 32 MB RAM 21 Rogers and Kulkami (2005) simple GA P3 700 MHz workstation 256 MB RAM 22 Graved et al. (1998) double loop GA Intel Pentium Pro 200 MHz 23 Tunnukij and Hicks (2009) EnGGA laptop with a 1.6GHz processor 24 Pai et al. (2005) fuzzy GA P11750 CPU and 192M RAM 25 Zhoo et al. (1996) fuzzy GA Pentium IV (295 GHz, 512MB RAM) 26 Onwubolu and Muingi (2001) modified GA Pentium IV (295 GHz, 512MB RAM) 27 Cao et al. (2009) GA-SPEA 2 <td< td=""><td></td><td>· · /</td><td></td><td>Intel P3, 1 GHz CPU. 256MB RAM</td></td<>		· · /		Intel P3, 1 GHz CPU. 256MB RAM							
14 Hu and Yasuda (2005) GGA Intel P3 I GHz processor, 256MB RAM 15 Dimopoulos (2006) MO GP-SLCA-NSGA 2 16 Tavakkoli-Moghadam et al. (2007) GA heuristic Celeron Mobile 1.3 GHz 512 MB RAM 17 Chan et al. (2008) simple GA P4 processor (3.2 GHz, 2GB RAM) 18 Defersha and Chen (2008) GA & BAB Cyrix MII 300/ 233MHz and 32 MB RAM 19 Goncalves and Ksende (2004) GA & E3H AMD Thunderbid 1.33 GHz processor 20 Boulif and Arif (2006) GA & BAB Cyrix MII 300/ 233MHz and 32 MB RAM 21 Rogers and Kulkarni (2005) simple GA P3 700 MHz worksation 256 MB RAM 22 Gravel et al. (1998) double loop GA Intel Pentium Pro 200 MHz 23 Tunnukij and Hicks (2009) EnGGA Iaptop with a 1.66GHz processor 24 Pai et al. (2005) fuzzy GA Pentium/ 133MHz processor 25 Zbao et al. (1996) fuzzy GA Pentium IV (2.93 GHz, 512MB RAM) 26 Owwhobu and Mutingi (2011) modified GA Pentium IV (2.93 GHz, 512MB RAM) 27 Cao et al. (2009) GA-simple xheuristic Pentium IV (2.93 GHz, 512MB RAM) 28 Maka and Vangi 2000) GA-simple A Pentium IV (2.93 GHz, 512MB RAM) 29 Kot et al											
15 Dimopoulos (2006) MO GP-SLCA-NSGA 2 16 Tavakkoli-Moghaddam et al. (2007) GA heuristic Celeron Mobile 1.3 GHz 512 MB RAM 17 Chan et al. (2008) single GA P4 processor (3.2 GHz, 2GB RAM) 19 Goncalves and Resende (2004) GA & LSH AMD Thunderbird 1.333 GHz processor 20 Boulif and Atif (2006) GA & LSH AMD Thunderbird 1.333 GHz processor 21 Boulif and Atif (2006) GA & B&B Cyrix MII 300' 233MHz and 32 MB RAM 22 Gravel et al. (1998) double loop GA Intel Pentium Pro 200 MHz 23 Tunnukij and Hicks (2009) EnGGA Iaptop with a 1.66GHz processor 24 Pai et al. (2005) fuzzy GA P11750 CPU and 192M RAM 25 Zhao et al. (2009) GA-simplex heuristic Pentium IV 33MHz processor 26 Onwubolu and Mutingi (2001) modified GA Pentium IV (2.93 GHz, 512MB RAM) 28 Morad and Zalzala (1996) simple GA Pentium IV (2.93 GHz, 512MB RAM) 29 Kor et al. (2007) GA-simplex heuristic Pentium IV (2.93 GHz, 512MB RAM) 29 Mangatar and Pandian (2008) GA heuristic Pentium IV (2.93 GHz, 512MB RA			modified GA								
16 Tavakkoli-Moghadam et al. (2007) GA heuristic Celeron Mobile 1.3 GHz 512 MB RAM 17 Chan et al. (2008) simple GA P4 processor (3.2 GHz, 2GB RAM) 18 Defersha und Chen (2008) island model PGA P4 processor (3.2 GHz, 2GB RAM) 19 Goncalves and Resende (2004) GA & LSH AMD Thunderbird 1.333 GHz processor 20 Boulif and Atif (2006) GA & RAB Cyrix MII 300/233MHz and 32 MB RAM 21 Rogers and Kulkarni (2005) simple GA P3 700 MHz workstation 256 MB RAM 22 Gravel et al. (1998) double lop GA Intel Pentium Pro 200 MHz 23 Tunnakij and Hicks (2009) EnGGA laptop with a 1.66GHz processor 24 Pai et al. (2005) fuzzy GA Pentium/133MHz processor 25 Zhao et al. (2009) GA-simplex heuristic Pentium/133MHz processor 26 Orwubolu and Mutingi (201) modified GA Pentium IV (2.93 GHz, 512MB RAM) 28 Kor et al. (2009) GA-simplex heuristic Pentium IV (2.93 GHz, 512MB RAM) 29 Kor et al. (2007) simple GA Pentium IV machine 31 Mahapatr and Pandian (2008) GA heuristic	14		GGA	Intel P3 1 GHz processor, 256MB RAM							
17 Chan et al. (2008) simple GA P4 18 Defersha and Chen (2008) Island model PGA P4 processor (3.2 GHz, 2GB RAM) 19 Goncalves and Resende (2004) GA & LSH AMD Thunderbird 1.333 GHz processor 20 Boulif and Atif (2006) GA & B&B Cyrix MII 300' 233MHz and 32 MB RAM 21 Rogers and Kukarni (2005) simple GA P3 700 MHz workstation 256 MB RAM 22 Gravel et al. (1998) double loop GA Intel Pentium Pro 200 MHz 23 Tumukij and Hicks (2009) EnGGGA laptop with a 1.6GHz processor 24 Pai et al. (2005) fuzzy GA P111750 CPU and 192M RAM 25 Zhao et al. (2009) GA-simplex heuristic Pentium/133MHz processor 26 Onwubou and Muringi (2001) modified GA Pentium IV (2.93 GHz, 512MB RAM) 28 Morad and Zalzala (1996) simple GA Pentium IV 12.03 GHz, 512MB RAM) 29 K or et al. (2007) simple GA Pentium IV machine 31 Mahapatra and Pandian (2008) GA heuristic Pentium IV machine 32 Mak and Wong (2000) GA-SANOVA Pentium IV 130 MHz processor <td< td=""><td>15</td><td></td><td>MO GP-SLCA-NSGA 2</td><td></td></td<>	15		MO GP-SLCA-NSGA 2								
18 Defershu and Chen (2008) island model PGA P4 processor (3.2 GHz, 2GB RAM) 19 Goncalves and Resende (2004) GA & LSH AMD Thunderbird 1.333 GHz processor 20 Boulif and Atif (2006) GA & B&B Cyrix MII 300 / 233 MHz and 32 MB RAM 21 Rogers and Kulkami (2005) Simple GA P3 700 MHz workstation 256 MB RAM 22 Gravel et al. (1998) double loop GA Intel Pentium Pro 200 MHz 23 Tunnukij and Hicks (2009) EnGGA laptop with a 1.66GHz processor 24 Pai et al. (2005) fuzzy GA Puttory GA 25 Zhao et al. (2005) Ga simple GA Pentium/133MHz processor 26 Onwubolu and Mutingi (2001) modified GA Pentium IV (2.93 GHz, 512MB RAM) 28 Morad and Zalzala (1996) simple GA Pentium IV nachine 29 Kor et al. (2009) GA-SPEA 2 Pentium IV machine 31 Mahapatra and Pandian (2008) GA with heuristic Pentium IV nochased PC 32 Maka M Wong (2000) GA-ANOVA Pentium IV 120 OMEz processor 33 Chu and Chang-Chun-Tsai (2001) GA with local search heuristic 2.00 GHz processor personal	16	-	GA heuristic	Celeron Mobile 1.3 GHz 512 MB RAM							
19Goncalves and Resende (2004)GA & LSHAMD Thunderbird 1.333 GHz processor20Boulif and Atif (2006)GA & B&BCyrix MII 300/233MHz and 32 MB RAM21Rogers and Kulkarni (2005)simple GAP3 700 MHz workstation 256 MB RAM21Gravel et al. (1998)double loop GAIntel Pentium Pro 200 MHz23Tunnukij and Hicks (2009)EnGGAIaptop with a 1.66GHz processor24Pai et al. (2005)fuzzy GAPIII750 CPU and 192M RAM25Zhao et al. (1996)fuzzy GAPentium/133MHz processor26Onwubolu and Mutingi (2001)modified GAPentium/133MHz processor27Cao et al. (2009)GA-simplex heuristicPentium IV (2.93 GHz, 512MB RAM)28Morad and Zalzala (1996)simple GAPentium IV machine29Kor et al. (2007)simple GAPentium IV machine30Ponnambalam et al. (2007)simple GAPentium IV pC, 2.4 GHz processor31Mahapatra and Pandian (2008)GA heuristicPentium IV I processor and 96 MB of RAM34Wu et al. (2002)hierarchical GAPentium IV 10300 MHz) processor35James et al. (2007)GGA with local search heuristic2.00 GHz processor personal computer36Nsakanda et al. (2006)GA, large scale optimization techniqueIBM compatible Pentium computer37Tarig et al. (2005)MO GGA786 MB RAM 450 MHz computer38Car and Mikac (2006)GA LSHPantium SC 6000 model 3BT39Vine et al. (2005)MO GGA	17	Chan <i>et al.</i> (2008)	simple GA								
20 Boulif and Atif (2006) GA & B&B Cyrix MII 300/233MHz and 32 MB RAM 21 Rogers and Kulkarni (2005) simple GA P3 700 MHz workstation 256 MB RAM 21 Gravel et al. (1998) double loop GA Intel Pentium Pro 200 MHz 23 Tunnukij and Hicks (2009) En GGA laptow with a 1.66GHz processor 24 Pai et al. (2005) fuzzy GA PIII750 CPU and 192M RAM 25 Zhao et al. (1996) fuzzy GA Pentium/133MHz processor 26 Onwubolu and Mutingi (201) modified GA Pentium IV (2.93 GHz, 512MB RAM) 28 Morad and Zalzala (1996) simple GA Pentium IV (2.93 GHz, 512MB RAM) 29 Kor et al. (2009) GA-SPEA 2 Pentium IV machine 30 Ponnambalam et al. (2007) simple GA Pentium IV machine 31 Mahapatra and Pandin (2008) GA heuristic Pentium IV mochine 32 Mak and Wong (2000) GA-ANOVA Pentium IV 1300 MHz) processor 33 Ghapac'Lun-Tsai (2001) GA with hoeal search heuristic Pentium 11 processor and 96 MB of RAM 34 Wu et al. (2002) hierarchical GA Pentium IV 1300 MHz) processor <td>18</td> <td>Defersha and Chen (2008)</td> <td>island model PGA</td> <td>P4 processor (3.2 GHz, 2GB RAM)</td>	18	Defersha and Chen (2008)	island model PGA	P4 processor (3.2 GHz, 2GB RAM)							
21Rogers and Kulkarni (2005)simple GAP3 700 MHz workstation 256 MB RAM22Gravel et al. (1998)double loop GAIntel Pentium Pro 200 MHz23Tunnukij and Hicks (2009)EnGGAlaptop with a 1.66GHz processor24Pai et al. (2005)fuzzy GAPIII750 CPU and 192M RAM25Zhao et al. (1996)fuzzy GAPentium/133MHz processor26Onwubolu and Mutingi (2001)modified GAPentium/133MHz processor27Cao et al. (2009)GA-simplex heuristicPentium IV (2.93 GHz, 512MB RAM)28Morad and Zalzala (1996)simple GAPentium IV c2.93 GHz, 512MB RAM)29Kor et al. (2009)GA-SPEA 2Pentium IV machine30Ponnambalam et al. (2007)simple GAPentium IV PC, 2.4 GHz processor32Mak and Wong (2000)GA-ANOVAPentium IV PC, 2.4 GHz processor33Chu and Chang-Chun-Tsai (2001)GA with heuristicPentium IV (1300 MHz) processor34Wu et al. (2007)GGA with local search heuristic2.00 GHz processor personal computer35James et al. (2007)GGA with local search heuristic2.00 GHz processor personal computer36Nsakanda et al. (2006)GA, Large scale optimization techniqueIBM RISC 6000 model 3BT37Tariq et al. (2005)MO GGA786 MB RAM 450 MHz computer39Vin et al. (2005)MO GGA786 MB RAM 450 MHz computer39Vin et al. (2005)MO GGA1410 GHz AMD Adhlon microcomputer34Paula et al. (2010)hybri	19	Goncalves and Resende (2004)	GA & LSH	AMD Thunderbird 1.333 GHz processor							
22 Gravel et al. (1998) double loop GA Intel Pentium Pro 200 MHz 23 Tunnukij and Hicks (2009) EnGGA laptop with a 1.66GHz processor 24 Pai et al. (2005) fuzzy GA PIII750 CPU and 192M RAM 25 Zhao et al. (1996) fuzzy GA Pentium/133MHz processor 26 Onwubolu and Mutingi (2001) modified GA Pentium/133MHz processor 27 Cao et al. (2009) GA-simplex heuristic Pentium/IV (2.93 GHz, 512MB RAM) 28 Morad and Zalzala (1996) simple GA Pentium IV (2.93 GHz, 512MB RAM) 29 Kor et al. (2007) Ginple GA Pentium IV machine 31 Mahapatra and Pandian (2008) GA heuristic Pentium IV machine 32 Mak and Wong (2000) GA-ANOVA Pentium IV C. 2.4 GHz processor 33 Chu and Chang-Chun-Tsai (2001) GA with heuristic Pentium IV (1300 MHz) processor 34 Wu et al. (2002) hierarchical GA Pentium IV (1300 MHz) processor 35 James et al. (2007) GGA stihl local search heuristic 2.00 GHz processor personal computer 35 James et al. (2006) GA, large scale optimization technique I	20	Boulif and Atif (2006)	GA & B&B	Cyrix MII 300/ 233MHz and 32 MB RAM							
23Tunnukij and Hicks (2009)EnGGAlaptop with a 1.66GHz processor24Pai et al. (2005)fuzzy GAPIII750 CPU and 192M RAM25Zhao et al. (1996)fuzzy GAPentium/133MHz processor26Onwubolu and Mutingi (2001)modified GAPentium/133MHz processor27Cao et al. (2009)GA-simplex heuristicPentium IV (2.93 GHz, 512MB RAM)28Morad and Zalzala (1996)simple GA29Kor et al. (2009)GA-SPEA 230Ponnambalam et al. (2007)simple GAPentium IV machine31Mahapatra and Pandian (2000)GA-NDVAPentium IV PC, 2.4 GHz processor32Mak and Wong (2000)GA-ANDVAPentium IV pentium IV processor and 96 MB of RAM34Wu et al. (2002)hierarchical GAPentium IV (1300 MHz) processor35James et al. (2007)GGA with heuristic2.00 GHz processor personal computer36Nsakanda et al. (2006)GA-LSHIBM compatible Pentium computer37Tariq et al. (2005)MO GGA786 MB RAM 450 MHz computer38Car and Mikac (2006)modified GAIBM compatible Pentium computer39Vin et al. (2005)MO GGA786 MB RAM 450 MHz computer40Pillai and Subbraro (2007)simple GA41Pierreval and Plaquin (1998)NPEAworkstation HP 9000 Series 71042Pailla et al. (2005)GA heuristicPentium IV (1300 MHz)43Tavakkoli-Moghadam et al. (2005)GA heuristicPentium IV 2	21	Rogers and Kulkarni (2005)	simple GA	P3 700 MHz workstation 256 MB RAM							
24Pai et al. (2005)fuzzy GAPIIT50 CPU and 192M RAM25Zhao et al. (1996)fuzzy GA26Onwubolu and Mutingi (2001)modified GAPentium/133MHz processor27Cao et al. (2009)GA-simplex heuristicPentium IV (2.93 GHz, 512MB RAM)28Morad and Zalzala (1996)simple GAPentium IV anchine29Kor et al. (2009)GA-SPEA 2Pentium IV machine30Ponnambalam et al. (2007)Simple GAPentium IV PC, 2.4 GHz processor32Mak and Wong (2000)GA-ANOVAPentium IV PC, 2.4 GHz processor33Chu and Chang-Chun-Tsai (2001)GA with heuristicPentium IV I11 processor and 96 MB of RAM34Wu et al. (2002)hierarchical GAPentium IV (1300 MHz) processor35James et al. (2007)GGA with local search heuristic2.00 GHz processor personal computer36Nsakanda et al. (2006)GA, large scale optimization techniqueIBM compatible Pentium computer37Tariq et al. (2005)MO GGA786 MB RAM 450 MHz computer39Vin et al. (2005)MO GGA786 MB RAM 450 MHz computer41Pierreval and Plaquin (1998)NPEAworkstation HP 9000 Series 71042Pailla et al. (2001)EAHP 9000 Series 71044Plaquin and Pierreval (2000)EAHP 9000 Series 71045Wu et al. (2007)simple GAPentium IV (1300 MHz)46Filho and Theeri (2006)GA heuristicPentium IV (1300 MHz)47Makoli-Moghadam et al. (2005)	22	Gravel et al. (1998)	double loop GA	Intel Pentium Pro 200 MHz							
25Zhao et al. (1996)fuzzy GA26Onwubolu and Mutingi (2001)modified GAPentium/133MHz processor27Cao et al. (2009)GA-simplex heuristicPentium IV (2.93 GHz, 512MB RAM)28Morad and Zalzala (1996)simple GA29Kor et al. (2007)GA-SPEA 230Ponnambalam et al. (2007)simple GA31Mahapatra and Pandian (2008)GA heuristicPentium IV machine32Mak and Wong (2000)GA-ANOVAPentium 200-based PC33Chu and Chang-Chun-Tsai (2011)GA with heuristicPentium 111 processor and 96 MB of RAM34Wu et al. (2007)GGA with local search heuristic2.00 GHz processor35James et al. (2007)GGA with local search heuristic2.00 GHz processor personal computer36Nsakanda et al. (2006)GA, large scale optimization techniqueIBM RISC 6000 model 3BT37Tariq et al. (2009)GA-LSH1BM compatible Pentium computer39Vin et al. (2005)MO GGA786 MB RAM 450 MHz computer40Pillai and Subbarao (2007)simple GA441Pierreval and Plaquin (1998)NPEAworkstation HP 9000 Series 71042Pailla et al. (2010)hybrid EA-LSH1.410 GHz AMD Athlon microcomputer43Tavakkoli-Moghadam et al. (2005)GA heuristicPentium IV 2.1 GHz computer44Plaquin and Pierreval (2000)EAHP 9000 Series 71045Wu et al. (2007)simple GA1.410 GHz AMD Athlon microcomputer46<	23	Tunnukij and Hicks (2009)	EnGGA	laptop with a 1.66GHz processor							
26Onwubolu and Mutingi (2001)modified GAPentium/133MHz processor27Cao et al. (2009)GA-simplex heuristicPentium IV (2.93 GHz, 512MB RAM)28Morad and Zalzala (1996)simple GA29Kor et al. (2009)GA-SPEA 230Ponnambalam et al. (2007)simple GA31Mahapatra and Pandian (2008)GA-heuristic32Mak and Wong (2000)GA-NOVA33Chu and Chang-Chun-Tsai (2001)GA with heuristic34Wu et al. (2002)hierarchical GA35James et al. (2007)GGA with local search heuristic36Nsakandæ et al. (2006)GA, large scale optimization technique37Tariq et al. (2009)GA-LSH38Car and Mikac (2006)modified GA39Vin et al. (2005)MO GGA41Pierreval and Plaquin (1998)NPEA42Pailla et al. (2010)hybrid EA-LSH43Tavakkoli-Moghaddam et al. (2005)GA heuristic44Plaquin and Pierreval (2009)GA heuristic45Wu et al. (2010)hybrid EA-LSH44Pierreval and Plaquin (1998)NPEA45Wu et al. (2007)simple GA46Filho and Tiberti (2006)GA heuristic47Mahdavi et al. (2007)Simple GA48Hwang and Sun (1996)GA heuristic49Hala et al. (2010)hybrid EA-LSH44Haquin and Pierreval GROM45Wu et al. (2007)46Filho and Tiberti (2006)<	24	Pai et al. (2005)	fuzzy GA	PIII750 CPU and 192M RAM							
27Cao et al. (2009)GA-simplex heuristicPentium IV (2.93 GHz, 512MB RAM)28Morad and Zalzala (1996)simple GA29Kor et al. (2009)GA-SPEA 230Ponnambalam et al. (2007)simple GA31Mahapatra and Pandian (2008)GA heuristic32Mak and Wong (2000)GA-ANOVA33Chu and Chang-Chun-Tsai (2001)GA with heuristic34Wu et al. (2002)hierarchical GA35James et al. (2007)GGA with local search heuristic36Nsakanda et al. (2006)GA, large scale optimization technique37Tariq et al. (2009)GA-LSH38Car and Mikac (2006)modified GA39Vin et al. (2005)MO GGA40Pillai and Subbarao (2007)simple GA41Pierreval and Plaquin (1998)NPEA42Pailla et al. (2010)hybrid EA-LSH43Tavakkoli-Moghadam et al. (2005)GA heuristic44Plaquin and Pierreval (2000)EA45Wu et al. (2007)simple GA46Filho and Tiberti (2006)GA heuristic47Makholi-Moghadam et al. (2005)GA heuristic48Hwang and Sun (1996)GA heuristic49Pintium IV 2.1 GHz computer	25	Zhao et al. (1996)	fuzzy GA								
28Morad and Zalzala (1996)simple GA29Kor et al. (2009)GA-SPEA 230Ponnambalam et al. (2007)simple GAPentium IV machine31Mahapatra and Pandian (2008)GA heuristicPentium IV PC, 2.4 GHz processor32Mak and Wong (2000)GA-ANOVAPentium 200-based PC33Chu and Chang-Chun-Tsai (2001)GA with heuristicPentium 111 processor and 96 MB of RAM34Wu et al. (2002)hierarchical GAPentium IV (1300 MHz) processor35James et al. (2007)GGA with local search heuristic2.00 GHz processor personal computer36Nsakanda et al. (2006)GA, large scale optimization techniqueIBM RISC 6000 model 3BT37Tariq et al. (2009)GA-LSH1.800 compatible Pentium computer39Vin et al. (2005)MO GGA786 MB RAM 450 MHz computer40Pillai and Subbarao (2007)simple GAworkstation HP 9000 Series 71041Pierreval and Plaquin (1998)NPEAworkstation HP 9000 Series 71042Pailla et al. (2010)hybrid EA-LSH1.410 GHz AMD Athlon microcomputer43Tavakkoli-Moghadam et al. (2005)GA heuristicPentium IV 2.1 GHz computer44Plaquin and Pierreval (2000)EAHHP 9000 Series 71045Wu et al. (2007)simple GAIntel Pentium IV (1300 MHz)46Filho and Tiberti (2006)modified GGAHP 9000 Series 71047Makdavi et al. (2007)simple GAIntel Pentium IV (1300 MHz)46Filho and Tib	26	Onwubolu and Mutingi (2001)	modified GA	Pentium/133MHz processor							
29Kor et al. (2009)GA-SPEA 230Ponnambalam et al. (2007)simple GAPentium IV machine31Mahapatra and Pandian (2008)GA heuristicPentium IV PC, 2.4 GHz processor32Mak and Wong (2000)GA-ANOVAPentium 200-based PC33Chu and Chang-Chun-Tsai (2001)GA with heuristicPentium 111 processor and 96 MB of RAM34Wu et al. (2002)hierarchical GAPentium IV (1300 MHz) processor35James et al. (2007)GGA with local search heuristic2.00 GHz processor personal computer36Nsakanda et al. (2006)GA, large scale optimization techniqueIBM RISC 6000 model 3BT37Tariq et al. (2009)GA-LSH38Car and Mikac (2006)modified GAIBM compatible Pentium computer39Vin et al. (2007)simple GA40Pillai and Subbarao (2007)simple GA41Pierreval and Plaquin (1998)NPEA42Pailla et al. (2010)hybrid EA-LSH43Tavakkoli-Moghadam et al. (2005)GA heuristic44Plaquin and Pierreval (2000)EAHP 9000 Series 71045Wu et al. (2007)simple GAIntel Pentium IV (1300 MHz)46Filho and Tiberti (2006)modified GGAHP 9000 Series 71047Mahdavi et al. (2007)simple GAIntel Pentium IV (1300 MHz)46Filho and Tiberti (2006)modified GGAHP 9000 Series 71047Mahdavi et al. (2007)simple GAIntel Pentium IV (1300 MHz)48Hwa	27	Cao et al. (2009)	GA-simplex heuristic	Pentium IV (2.93 GHz, 512MB RAM)							
30Ponnambalam et al. (2007)simple GAPentium IV machine31Mahapatra and Pandian (2008)GA heuristicPentium IV PC, 2.4 GHz processor32Mak and Wong (2000)GA-ANOVAPentium 200-based PC33Chu and Chang-Chun-Tsai (2001)GA with heuristicPentium I11 processor and 96 MB of RAM34Wu et al. (2002)hierarchical GAPentium IV (1300 MHz) processor35James et al. (2007)GGA with local search heuristic2.00 GHz processor personal computer36Nsakanda et al. (2006)GA, large scale optimization techniqueIBM RISC 6000 model 3BT37Tariq et al. (2009)GA-LSH38Car and Mikac (2006)modified GAIBM compatible Pentium computer39Vin et al. (2005)MO GGA786 MB RAM 450 MHz computer40Pillai and Subbarao (2007)simple GAworkstation HP 9000 Series 71041Pierreval and Plaquin (1998)NPEAworkstation HP 9000 Series 71042Pailla et al. (2007)GA heuristicPentium IV 2.1 GHz computer43Tavakkoli-Moghadam et al. (2005)GA heuristicPentium IV 2.1 GHz computer44Plaquin and Pierreval (2000)EAHP 9000 Series 71045Wu et al. (2007)simple GAIntel Pentium IV (1300 MHz)46Filho and Tiberti (2006)modified GGAIntel Pentium IV (1300 MHz)47Mahdavi et al. (2009)GA heuristicp4, 2.1 GHz with 512 Mb of RAM48Hwang and Sun (1996)GA & greedy heuristicIBM PC 486<	28	Morad and Zalzala (1996)	simple GA								
31Mahapatra and Pandian (2008)GA heuristicPentium IV PC, 2.4 GHz processor32Mak and Wong (2000)GA-ANOVAPentium 200-based PC33Chu and Chang-Chun-Tsai (2001)GA with heuristicPentium I11 processor and 96 MB of RAM34Wu et al. (2002)hierarchical GAPentium IV (1300 MHz) processor35James et al. (2007)GGA with local search heuristic2.00 GHz processor personal computer36Nsakanda et al. (2006)GA, large scale optimization techniqueIBM RISC 6000 model 3BT37Tariq et al. (2009)GA-LSH138Car and Mikac (2006)modified GAIBM compatible Pentium computer39Vin et al. (2005)MO GGA786 MB RAM 450 MHz computer40Pillai and Subbarao (2007)simple GAuverstation HP 9000 Series 71041Pierreval and Plaquin (1998)NPEAworkstation HP 9000 Series 71042Pailla et al. (2010)hybrid EA-LSH1.410 GHz AMD Athlon microcomputer43Tavakkoli-Moghaddam et al. (2005)GA heuristicPentium IV 2.1 GHz computer44Plaquin and Pierreval (2000)EAHP 9000 Series 71045Wu et al. (2007)simple GAIntel Pentium IV (1300 MHz)46Filho and Tiberti (2006)modified GGA147Mahdavi et al. (2009)GA heuristicp4, 2.1 GHz with 512 Mb of RAM48Hwang and Sun (1996)GA & greedy heuristicIBM PC 486	29	Kor <i>et al.</i> (2009)	GA-SPEA 2								
32Mak and Wong (2000)GA-ANOVAPentium 200-based PC33Chu and Chang-Chun-Tsai (2001)GA with heuristicPentium I11 processor and 96 MB of RAM34Wu et al. (2002)hierarchical GAPentium IV (1300 MHz) processor35James et al. (2007)GGA with local search heuristic2.00 GHz processor personal computer36Nsakanda et al. (2006)GA, large scale optimization techniqueIBM RISC 6000 model 3BT37Tariq et al. (2009)GA-LSH	30	Ponnambalam et al. (2007)	simple GA	Pentium IV machine							
33Chu and Charg-Chun-Tsai (2001)GA with heuristicPentium II1 processor and 96 MB of RAM34Wu et al. (2002)hierarchical GAPentium IV (1300 MHz) processor35James et al. (2007)GGA with local search heuristic2.00 GHz processor personal computer36Nsakanda et al. (2006)GA, large scale optimization techniqueIBM RISC 6000 model 3BT37Tariq et al. (2009)GA-LSHIBM compatible Pentium computer38Car and Mikac (2006)modified GAIBM compatible Pentium computer39Vin et al. (2005)MO GGA786 MB RAM 450 MHz computer40Pillai and Subbarao (2007)simple GAworkstation HP 9000 Series 71041Pierreval and Plaquin (1998)NPEAworkstation HP 9000 Series 71042Pailla et al. (2010)hybrid EA-LSH1.410 GHz AMD Athlon microcomputer43Tavakkoli-Moghaddam et al. (2005)GA heuristicPentium IV 2.1 GHz computer44Plaquin and Pierreval (2000)EAHP 9000 Series 71045Wu et al. (2007)simple GAIntel Pentium IV (1300 MHz)46Filho and Tiberti (2006)modified GGAModified GGA47Mahdavi et al. (2009)GA heuristicp4, 2.1 GHz with 512 Mb of RAM48Hwang and Sun (1996)GA & greedy heuristicIBM PC 486	31	Mahapatra and Pandian (2008)	GA heuristic	Pentium IV PC, 2.4 GHz processor							
34Wu et al. (2002)hierarchical GAPentium IV (1300 MHz) processor35James et al. (2007)GGA with local search heuristic2.00 GHz processor personal computer36Nsakanda et al. (2006)GA, large scale optimization techniqueIBM RISC 6000 model 3BT37Tariq et al. (2009)GA-LSHIBM compatible Pentium computer38Car and Mikac (2006)modified GAIBM compatible Pentium computer39Vin et al. (2005)MO GGA786 MB RAM 450 MHz computer40Pillai and Subbarao (2007)simple GAworkstation HP 9000 Series 71041Pierreval and Plaquin (1998)NPEAworkstation HP 9000 Series 71042Pailla et al. (2010)hybrid EA-LSH1.410 GHz AMD Athlon microcomputer43Tavakkoli-Moghaddam et al. (2005)GA heuristicPentium IV 2.1 GHz computer44Plaquin and Pierreval (2000)EAHP 9000 Series 71045Wu et al. (2007)simple GAIntel Pentium IV (1300 MHz)46Filho and Tiberti (2006)modified GGAIntel Pentium IV (1300 MHz)47Mahdavi et al. (2009)GA heuristicp4, 2.1 GHz with 512 Mb of RAM48Hwang and Sun (1996)GA & greedy heuristicIBM PC 486	32	Mak and Wong (2000)	GA-ANOVA	Pentium 200-based PC							
35James et al. (2007)GGA with local search heuristic2.00 GHz processor personal computer36Nsakanda et al. (2006)GA, large scale optimization techniqueIBM RISC 6000 model 3BT37Tariq et al. (2009)GA-LSHIBM compatible Pentium computer38Car and Mikac (2006)modified GAIBM compatible Pentium computer39Vin et al. (2005)MO GGA786 MB RAM 450 MHz computer40Pillai and Subbarao (2007)simple GAworkstation HP 9000 Series 71041Pierreval and Plaquin (1998)NPEAworkstation HP 9000 Series 71042Pailla et al. (2010)hybrid EA-LSH1.410 GHz AMD Athlon microcomputer43Tavakkoli-Moghaddam et al. (2005)GA heuristicPentium IV 2.1 GHz computer44Plaquin and Pierreval (2000)EAHP 9000 Series 71045Wu et al. (2007)simple GAIntel Pentium IV (1300 MHz)46Filho and Tiberti (2006)modified GGAp4, 2.1 GHz with 512 Mb of RAM48Hwang and Sun (1996)GA & greedy heuristicIBM PC 486	33	Chu and Chang-Chun-Tsai (2001)	GA with heuristic	Pentium I11 processor and 96 MB of RAM							
36Nsakanda et al. (2006)GA, large scale optimization techniqueIBM RISC 6000 model 3BT37Tariq et al. (2009)GA-LSH38Car and Mikac (2006)modified GAIBM compatible Pentium computer39Vin et al. (2005)MO GGA786 MB RAM 450 MHz computer40Pillai and Subbarao (2007)simple GA41Pierreval and Plaquin (1998)NPEAworkstation HP 9000 Series 71042Pailla et al. (2010)hybrid EA-LSH1.410 GHz AMD Athlon microcomputer43Tavakkoli-Moghaddam et al. (2005)GA heuristicPentium IV 2.1 GHz computer44Plaquin and Pierreval (2000)EAHP 9000 Series 71045Wu et al. (2007)simple GAIntel Pentium IV (1300 MHz)46Filho and Tiberti (2006)modified GGA47Mahdavi et al. (2009)GA heuristicp4, 2.1 GHz with 512 Mb of RAM48Hwang and Sun (1996)GA & greedy heuristicIBM PC 486	34	Wu et al. (2002)	hierarchical GA	Pentium IV (1300 MHz) processor							
37Tariq et al. (2009)GA-LSH38Car and Mikac (2006)modified GAIBM compatible Pentium computer39Vin et al. (2005)MO GGA786 MB RAM 450 MHz computer40Pillai and Subbarao (2007)simple GAworkstation HP 9000 Series 71041Pierreval and Plaquin (1998)NPEAworkstation HP 9000 Series 71042Pailla et al. (2010)hybrid EA-LSH1.410 GHz AMD Athlon microcomputer43Tavakkoli-Moghaddam et al. (2005)GA heuristicPentium IV 2.1 GHz computer44Plaquin and Pierreval (2000)EAHP 9000 Series 71045Wu et al. (2007)simple GAIntel Pentium IV (1300 MHz)46Filho and Tiberti (2006)modified GGAp4, 2.1 GHz with 512 Mb of RAM48Hwang and Sun (1996)GA & greedy heuristicIBM PC 486	35	James et al. (2007)	GGA with local search heuristic	2.00 GHz processor personal computer							
38Car and Mikac (2006)modified GAIBM compatible Pentium computer39Vin et al. (2005)MO GGA786 MB RAM 450 MHz computer40Pillai and Subbarao (2007)simple GA41Pierreval and Plaquin (1998)NPEAworkstation HP 9000 Series 71042Pailla et al. (2010)hybrid EA-LSH1.410 GHz AMD Athlon microcomputer43Tavakkoli-Moghaddam et al. (2005)GA heuristicPentium IV 2.1 GHz computer44Plaquin and Pierreval (2000)EAHP 9000 Series 71045Wu et al. (2007)simple GAIntel Pentium IV (1300 MHz)46Filho and Tiberti (2006)modified GGA47Mahdavi et al. (2009)GA heuristicp4, 2.1 GHz with 512 Mb of RAM48Hwang and Sun (1996)GA & greedy heuristicIBM PC 486	36	Nsakanda et al. (2006)	GA, large scale optimization technique	IBM RISC 6000 model 3BT							
39Vin et al. (2005)MO GGA786 MB RAM 450 MHz computer40Pillai and Subbarao (2007)simple GA41Pierreval and Plaquin (1998)NPEAworkstation HP 9000 Series 71042Pailla et al. (2010)hybrid EA-LSH1.410 GHz AMD Athlon microcomputer43Tavakkoli-Moghaddam et al. (2005)GA heuristicPentium IV 2.1 GHz computer44Plaquin and Pierreval (2000)EAHP 9000 Series 71045Wu et al. (2007)simple GAIntel Pentium IV (1300 MHz)46Filho and Tiberti (2006)modified GGA4748Hwang and Sun (1996)GA & greedy heuristicIBM PC 486	37	Tariq et al. (2009)	GA-LSH								
40Pillai and Subbarao (2007)simple GA41Pierreval and Plaquin (1998)NPEAworkstation HP 9000 Series 71042Pailla et al. (2010)hybrid EA-LSH1.410 GHz AMD Athlon microcomputer43Tavakkoli-Moghaddam et al. (2005)GA heuristicPentium IV 2.1 GHz computer44Plaquin and Pierreval (2000)EAHP 9000 Series 71045Wu et al. (2007)simple GAIntel Pentium IV (1300 MHz)46Filho and Tiberti (2006)modified GGA47Mahdavi et al. (2009)GA heuristicp4, 2.1 GHz with 512 Mb of RAM48Hwang and Sun (1996)GA & greedy heuristicIBM PC 486	38	Car and Mikac (2006)	modified GA	IBM compatible Pentium computer							
41Pierreval and Plaquin (1998)NPEAworkstation HP 9000 Series 71042Pailla et al. (2010)hybrid EA-LSH1.410 GHz AMD Athlon microcomputer43Tavakkoli-Moghaddam et al. (2005)GA heuristicPentium IV 2.1 GHz computer44Plaquin and Pierreval (2000)EAHP 9000 Series 71045Wu et al. (2007)simple GAIntel Pentium IV (1300 MHz)46Filho and Tiberti (2006)modified GGA47Mahdavi et al. (2009)GA heuristicp4, 2.1 GHz with 512 Mb of RAM48Hwang and Sun (1996)GA & greedy heuristicIBM PC 486	39	Vin <i>et al.</i> (2005)	MO GGA	786 MB RAM 450 MHz computer							
42Pailla et al. (2010)hybrid EA-LSH1.410 GHz AMD Athlon microcomputer43Tavakkoli-Moghaddam et al. (2005)GA heuristicPentium IV 2.1 GHz computer44Plaquin and Pierreval (2000)EAHP 9000 Series 71045Wu et al. (2007)simple GAIntel Pentium IV (1300 MHz)46Filho and Tiberti (2006)modified GGA47Mahdavi et al. (2009)GA heuristicp4, 2.1 GHz with 512 Mb of RAM48Hwang and Sun (1996)GA & greedy heuristicIBM PC 486	40	Pillai and Subbarao (2007)	simple GA								
43Tavakkoli-Moghadam et al. (2005)GA heuristicPentium IV 2.1 GHz computer44Plaquin and Pierreval (2000)EAHP 9000 Series 71045Wu et al. (2007)simple GAIntel Pentium IV (1300 MHz)46Filho and Tiberti (2006)modified GGA47Mahdavi et al. (2009)GA heuristicp4, 2.1 GHz with 512 Mb of RAM48Hwang and Sun (1996)GA & greedy heuristicIBM PC 486	41	Pierreval and Plaquin (1998)	NPEA	workstation HP 9000 Series 710							
44Plaquin and Pierreval (2000)EAHP 9000 Series 71045Wu et al. (2007)simple GAIntel Pentium IV (1300 MHz)46Filho and Tiberti (2006)modified GGA47Mahdavi et al. (2009)GA heuristicp4, 2.1 GHz with 512 Mb of RAM48Hwang and Sun (1996)GA & greedy heuristicIBM PC 486	42	Pailla et al. (2010)	hybrid EA-LSH	1.410 GHz AMD Athlon microcomputer							
45Wu et al. (2007)simple GAIntel Pentium IV (1300 MHz)46Filho and Tiberti (2006)modified GGA47Mahdavi et al. (2009)GA heuristicp4, 2.1 GHz with 512 Mb of RAM48Hwang and Sun (1996)GA & greedy heuristicIBM PC 486	43	Tavakkoli-Moghaddam et al. (2005)	GA heuristic	Pentium IV 2.1 GHz computer							
45Wu et al. (2007)simple GAIntel Pentium IV (1300 MHz)46Filho and Tiberti (2006)modified GGA47Mahdavi et al. (2009)GA heuristicp4, 2.1 GHz with 512 Mb of RAM48Hwang and Sun (1996)GA & greedy heuristicIBM PC 486	44	Plaquin and Pierreval (2000)	EA	HP 9000 Series 710							
47Mahdavi et al. (2009)GA heuristicp4, 2.1 GHz with 512 Mb of RAM48Hwang and Sun (1996)GA & greedy heuristicIBM PC 486	45		simple GA	Intel Pentium IV (1300 MHz)							
48 Hwang and Sun (1996) GA & greedy heuristic IBM PC 486	46	Filho and Tiberti (2006)	modified GGA								
48 Hwang and Sun (1996) GA & greedy heuristic IBM PC 486	47	Mahdavi et al. (2009)	GA heuristic	p4, 2.1 GHz with 512 Mb of RAM							
49 Deligo et al. (2010) GA heuristic Pentium IV 3 GHz AMD and 512 MR PAM	48		GA & greedy heuristic	IBM PC 486							
Degoe or an (2010) Or neurone I chuun 1 y 5 Oriz Ann and 312 MD KAM	49	Deljoo et al. (2010)	GA heuristic	Pentium IV 3 GHz AMD and 512 MB RAM							

Table 3. (cont'd) List of references opted for comparison of GA techniques in CFP

Table 4a. Comparison of GA techniques in CFP

No.	Compared/ Experimented with	Run time	Improvement	GN	PS	Pc	Pm	Comment
1	Wu (1998)	8 hrs.	33%	50	50	1	0.5	MO Stochastic Programming model taken
2	Boctor (1991)	2 min	14%					dynamic programming based mathematical model
3	industrial data	2 sec	33%					similarity coefficient technique used
4	ZODIAC GRAFICS MST- GRAPHICS		better or equal	50	500	0.9	0.1	similarity coefficient used/ grouping efficacy tested

No.	Compared/ Experimented with	Run time	Table 4a. (cont') Improvement	GN	PS	Pc	Pm	Comment
5	ZODIAC	21 generation	17%	21	50/100/ 200	1/ 0.6	0/0.25	grouping efficiency used as performance measure
6	Logendran (1990, 1991)		better	10/20/40	10/20/40	0.1/0.6/0. 9	0.05/0.1/ 0.15	objective taken as to minimize total moves
7	Logendran (1991), Gupta <i>et al.</i> (1996)		better					multi criteria MP model proposed
8	NSGA		22.20%		150	0.5	0.03	MO optimization problem model used and XGA is 31.7% faster than NSGA.
9	Gupta <i>et al.</i> (1996), Akturk and Turcan (2000)		better	700	50		0.1	MO Integer programming model suggested
10	joins <i>et al.</i> (1996)		better		200	0.8	0.001	MP model used
11	Venugopal and Narendran (1992), ZODIAC	197.6, 919.2 sec	6-17%	11,27	40	0.9	0.3,0.4	MO MP model
12	Verma and Ding (1995)		4-9%	100; 5000	20,50	0.8	0.01, 0.001	Volume Sensitivity Model used
13	Hon and Chi (1998), Burbidge (1975), Dewitte (1980)	27-824 sec	36%					integer quadratic programming model used
14	Sofianopoulou (1999)	363 sec	better		40/80/60	0.8/0.9	0.4	part processing route & operation sequence considered
15	Gupta <i>et al.</i> (1996)		competitive	1000	50	0.5	0.5	MO MP model proposed
16	B&B solution, LINGO		2.291% gap	10000	200/300	0.8	0.18	fuzzy non-linear mixed integer programming model used
17	Joines (1993), Kazerooni <i>et al.</i> (1997)		better		300	0.9	0.001	MOCFP-IAECLP
18	LINGO, SGA	3600 sec	better					integer programming model taken
19	Carrie (1973)	43.78 sec	11%					grouping efficacy measure utilized
20	binary coded GA	305.54 sec	2.28%	2000/300 0	250	0.8	0.01	objective is to reduce intercell traffic
21	Burbidge (1969) and Lee <i>et al.</i> (1997)	2 h/5 h	11-20%	5000		0.87	0.001	mixed integer LP model, bivariate clustering used
22	random data		near efficient					parts with multiple routing taken into account
23	McCormick <i>et al.</i> (1972)	<40 sec	7.14%	50	100/1000	>=0.6	<=0.4	grouping efficacy measure utilized
24	Balakrishnan and Jog (1995)	42 sec	7.70%	400				grouping efficacy measure utilized
25	Chu and Hayya (1991)	520 sec	11.50%	2000	50	0.7	0.1	non-linear integer programming model taken into account
26	Chan and Milner (1982)		92%					MO math model used, clustering efficiency checked
27	industrial data		optimal solution					mixed integer non-linear programming model considered
28	Burbidge (1963)		better		40	0.7	0.05	multi criteria MP model proposed/similarity coefficient technique adopted

Table 4a. (cont'd) Comparison of GA techniques in CFP

Table 4b. Comparison of GA techniques in CFP

No.	Compared/ Experimented with	Run time	Improvement	GÑ	PS	Pc	Pm	Comment
29	Dimopoulos and mort (2001)		39%					multi objective MP model
30	Yiu-Ming Cheung (2003), Mahapatra <i>et al.</i> (2006)		38.70%	250	10	0.7	0.1	modified grouping efficiency measure utilized

			Table 4b. (con	i u) Compan	SOIL OF GA	technique	S III CFF	
31	V&N (1992), Prabhakaran <i>et al.</i> (2002)	3.62637 sec	16%	100-900	15-25	0.5	0.1	modified grouping efficiency measure utilized
32	Srinivasan <i>et al.</i> (1990), Chan and Milner (1982)	2 min	15.40%	100	40	0.8	0.01	Grouping efficacy measure used
33	LINDO, GA	84.1 sec	27.70%		10-100			Grouping efficacy measure used
34	Chandrasekharan and Rajagopalan (1993)	24 sec	19%		100	0.95	0.3	cost of total moves reduced
35	brown and Sumichrast (2001)	0.43-2.3 sec	91.42%	50	100			average solution quality compared
36	open literature		better or equal	1000	10–50	0.6		objective is to minimize intercell move cost
37	open literature		41.67%					Grouping efficiency measure used
38	ROC, ART1		50%		60	0.5	0.5	Grouping efficacy measure used
39	(Vivekananda and Narendran 1998), (Askin, 1997)	10-75 sec	better					Machine utilization is considered in comparison
40	Wicks and Reasor (1999)		14.42%	100	80-250	0.8	0.1	total moves & machine acquisition cost minimized
41	industrial data	30 min	competitive		100	0.6	0.4	intercell traffic & cell workload minimized
42	Goncalves and Resende (2004); Joines <i>et al.</i> (1996)	0-80 sec	33%	150				compare SA & GA
43		0-5250 sec	competitive	100/150/20 0	100/150/ 200			compared with SA & TS
44	random workshop data		competitive		100	0,2		objective is to minimize intercell traffic
45	Chandrasekharan and Rajagopalan (1993)		competitive	100 /200	50/100	0.7 /1.0	0.1 /0.5	reduced intercell traffic & no.of EE, ANOVA used to understand effect of parameters of GA
46	Zolfaghari and Liang (1997), V&N (1992).		competitive	Variable	20-40	0.80– 0.90	0.01-0.1	cell layout design performed & group structure found from data set
47	C&R (1989), Stanfel (1985), King (1980)	0-100 sec	27.30%	Variable	50-200	0.70– 0.80	0.01–0.1	Grouping efficacy measure used
48	INCFR & NLCA	2.3-241.6 sec	97%	30	30	0.8	0.05	group efficiency measure verified
49	random data	<9 min	better					global optimum value compared with LINGO

Table 4b. (cont'd) Comparison of GA techniques in CFP

The conclusion drawn from Table 3, 4a and 4b are,

- Most of the GA techniques are tested on powerful computers due to their high processor speed and higher memory, which can eventually reduce the computational time of the genetic operations which further implies low computer resource investment.
- GA is employed with hybridization or substantial modification due to the growing complexities of cellular manufacturing systems.
- Efficiency is tested on some common test data taken from Venugopal and Narendran (1992), Chandrasekharan and Rajagopalan (1987), Gupta *et al.* (1996), Burbidge (1963), and most popular techniques are ZODIAC, GRAFICS and MST with which the implemented algorithms are compared frequently.
- Around 50% of the papers convey information about computational time of the algorithm to perform the experiments.
- Around 60% of the papers report numerical figure of improvement rather than proposing this in qualitative term. Measures for the improvement usually not identical for every work, and these oscillate among grouping efficacy, grouping efficiency, modified measures, or the efficiency in terms of machine utilization, reduction in EE count, total cell moves, followed by other metric system which can perform comparison among techniques.
- The general trend of selection range of GA parameters are, Generation No. 50-500, Population size 50-200, crossover rates 0.5-0.9, mutation rates 0.01-0.1 and with these parameter values GA is capable to produce good solutions.
- Despite of the fact that proposed multi-objective models are capable of producing good result but due to lack of realistic industrial data set these techniques are not fully utilized in solving CFPs (Dimopoulos, 2006).

• "Figure 2" depicts performance improvement of GA methods obtained from table 4a and 4b when compared with some previously published results. 5-6% of papers report improvement result by more than 50% whereas others present moderate enhancement while obtaining solutions.

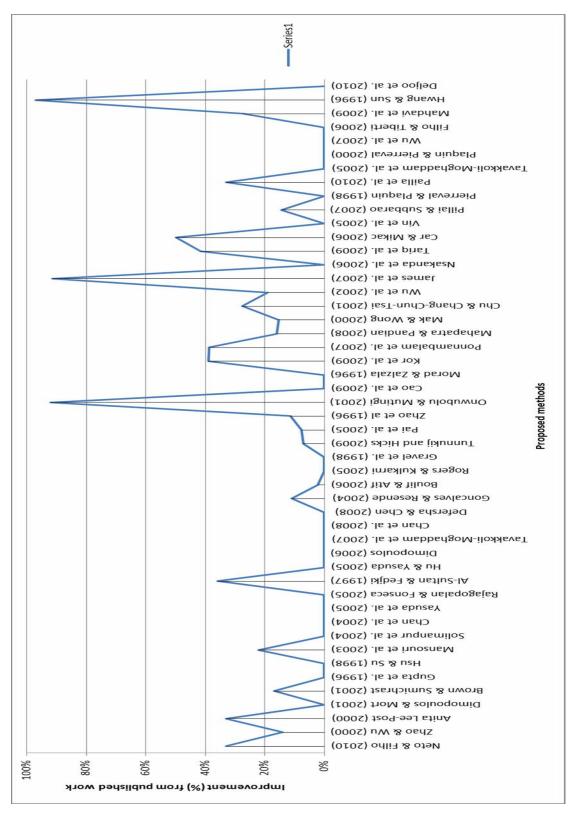


Figure 2. Percentage improvement curve showing the superiority of proposed techniques of literature over published result

4.3 Use of hybrid genetic techniques: Only few papers are focused on hybrid techniques based on various GA with other metaheuristics, exact methods or other heuristic techniques in CFP area. This is also an emerging research area where new methods based on hybrid GA can be formed and utilized further. Table 5 shows the number of papers available in CFP which demonstrate the possibility, effectiveness and usability of such hybrid techniques. The two different forms of hybridization are demonstrated from literature (Bianchi *et al.*, 2009), such as, (1) Component Exchange Method, (2) Cooperative Search method.

- *Component Exchange Method*: It performs inclusion of components of one algorithm into another. The basic idea behind this is, population-based methods are efficient in identifying promising area in search space and deterministic or single solution based methods are good in exploring the promising area, hence hybridisation is required.
- *Cooperative Search method*: It brings parallelism in techniques execution with different level of communication. It is possible for different algorithms to exchange information about states, models, solutions, sub-problems and different attributes of search space among each other.

While comparing with recent review work proposed by Papaioannou and Wilson (2010), this article presents more intricate study of GA based techniques as a solution methodology in cellular manufacturing. The nobility of this paper is to put prime concentration in genetic approaches and a detailed discussion based upon many critical issues as stated above.

From the study presented in this article, followings are summarized,

- a. GA is established methods in engineering optimization problem, reflection is found in CF domain as well. Mid 90s onwards GA is proposed to be a stand-alone tool and also as a hybrid technique and being used rigorously till present time in search of better solutions.
- b. In early stages single objective CFP was of researchers' prime interest, but in later stage since manufacturing decisions are becoming more complex, therefore multi-objective CFPs are considered frequently by focusing on operational time, sequence, alternative process routing, machine duplicacy, dynamic conditions, and several costs related to CMS.
- c. Multi-objective GA methods such as NPEA, NSGA, MOGA, MOGGA are being adopted to solve such multi-objective CFPs.
- d. Due to large problem size, computational time is major concern of many researchers, and hence improved evolutionary optimization techniques are being proposed accordingly.
- e. Powerful computer systems are required to execute such techniques.
- f. Large size industrial data is required to test the efficiency of such complex techniques.
- g. In case of hybridization, although the component exchange method is used frequently but cooperative search method is yet to be fully utilized.
- h. Enhancement is reported in terms of efficacy of proposed technique as well as the computational time. Hence enhancement could be identified while experimental technique produces identical result to the published result with consumption of low computer resources.

Reference	Technique	Tool used
Ming and Ponnambalam (2008)	GA-PSO	**
Boulif and Atif (2006)	GA-B&B	Borland C++
Zhao et al (1996)	GA-fuzzy	**
Chi and Yan (2004)	GA-fuzzy	**
Tunnukij and Hicks (2009)	GGA-GH-RES	С
Chu and Chang-Chun-Tsai (2001)	GA, heuristic	С
Nsakanda et al. (2006)	GA-LSOT	С
Cao et al. (2009)	GA-simplex LP	C++
James et al. (2007)	GGA-LSH	VB .NET
Defersha and Chen (2008b)	GA-LP	C++
Pai et al. (2005)	GA-fuzzy	**
Goncalves and Resende (2004)	GA-LSH	VO 2.0b-1
Tariq et al. (2009)	GA-LSH	**
Hwang and Sun (1996)	GA-GH	**

Table 5. Papers with hybrid genetic algorithm methods

5. Conclusion

This paper postulates a detailed review of recent CF based genetic techniques. Since mid-90s GA has evolved as a powerful optimization technique in CFP and a substantial amount of research papers are reported which employed these techniques. A comprehensive list of papers is recognized which proposed multi-objective GA model, and these techniques are dominating as a solution methodology in Cellular Manufacturing over the last two decades. Since substantial research works are already performed

^{**} Data not available

with simple GA in single objective CFP domain, therefore research trend is observed in implementing modified GA methods, which are capable to outperform simple GA in many instances and this article reflects a clear trend of using these population based modified methodologies as collateral techniques of GA to solve multi-objective CFP. Subsequently research papers are classified based on various issues of GA such as its parameter selection, computer resource usage, hybridization and enhancement from past work, which finally identify future research scope in this narrow area. The research direction of Selim *et al.* (1998) and Papaioannou and Wilson (2010) are thus partially accomplished. Ghosh *et al.* (2010) proposed the trend towards the adoption of the metaheuristics approaches in CFP domain, but due to absence of complex industrial data set, competency of GA based metaheuristic techniques were not fully practiced (Dimopoulos, 2006). It can be stated from this study that new techniques are being employed along with GA as hybrid techniques due to the growing complexities of industrial problems. The forthcoming research should complement its flaws, thus creating powerful approaches to solve realistic GT/CM problems. The major verdict of this research work is to identify the trend of GA in CMS, which was started with very basic simple genetic algorithm in 1990 and gradually evolved with such complex hybrid techniques in recent time. For example, GA-SS, EP-heuristic, SS-PSO, DE-ACO, SA-GP, TS-MA and other similar approaches would be spot-on to solve large scale optimization problems in aforesaid domain with precise focus on reduced computational time and enhanced efficiency.

Nomenclature

GT: Group Technology. CM: Cellular Manufacturing. CMS: Cellular Manufacturing System. CF/CFP: Cell Formation Problem. TS: Tabu Search. EA: Evolutionary Algorithm. ACO: Ant Colon Optimization. PSO: Particle Swarm Optimization. SA: Simulated Annealing. GA: Genetic Algorithm. EEs: Exceptional Elements. LP: Linear Programming. EP: Evolutionary Programming. GP: Genetic Programming. DE: Differential Evolution. SS: Scatter Search. MA: Memetic Algorithm. WIP: Work in Process. C&R: Chandrasekharan and Rajagopalan. V&N: Venugopal and Narendran. B&B: branch & bound. LSH: local search heuristic. MO: multi-objective. NPEA: niched Pareto evolutionary algorithm. GAM: GA model. ANOVA: Analysis of Variance. MOGGA: Multi-Objective Grouping Genetic Algorithm. VSM: Volume Sensitivity Model. MGA: Modified Genetic Algorithm. ART: Adaptive Resonance Theory. NSGA II: Non-Dominated Sorting Genetic Algorithm II. IAECLP: Intra-cell And Inter-Cell Layout Problem. EnGGA: Enhanced Grouping Genetic Algorithm. SPEA: Strength Pareto Evolutionary Algorithm. PGA: Parallel Genetic Algorithm. GGA: Grouping Genetic Algorithm. SLCA: Single Linkage Clustering Algorithm. GMPG: General Machine-Part Grouping. EOG: Evolutionary Optimization of Granules. IQP: integer quadratic programming. CLP: Cell Layout Problem.

MOGA: Multi-Objective Genetic Algorithm. Pc: probability of crossover. Pm: probability of mutation. GH: greedy heuristic. RES: roulette–elitist strategy. GN: generation number. PS: population size. LSOT: large scale optimization technique.

References

- Al-Sultan, K.S. and Fedjki, C.A. 1997. A genetic algorithm for the part family formation problem. *Production Planning & Control*, Vol.8.No.8, pp.788-796.
- Altiparmak, F., Gen, M., Lin, L. and Paksoy, T. 2006. A genetic algorithm approach for multi-objective optimization of supply chain networks. *Computers & Industrial Engineering*, Vol. 51, No. 1, pp.196-215.
- Bari, A., Wazed, S., Jaekel, A. and Bandyopadhyay, S. 2009. A genetic algorithm based approach for energy efficient routing in two-tiered sensor networks. *Ad Hoc Networks*, Vol. 7, No. 4, pp.665-676.
- Bianchi, L., Dorigo, M., Gambardella, L.M. and Gutjahr, W.J. 2009. A survey on metaheuristics for stochastic combinatorial optimization. *International Journal of Natural Computing*, Vol.8.No.2, pp.239-287.
- Boulif, M. and Atif. K. 2006. A new branch-&-bound-enhanced genetic algorithm for the manufacturing cell formation problem. *Computers & Operations Research*, Vol.33, pp.2219–2245.
- Boulif, M. and Atif. K. 2008. A new fuzzy genetic algorithm for the dynamic bi-objective cell formation problem considering passive and active strategies. *International Journal of Approximate Reasoning*, Vol.47, pp.141-165.
- Brown, E.C. and Sumichrast, R.T. 2001. CF-GGA: a grouping genetic algorithm for the cell formation problem. *International Journal of Production Research*, Vol.39, No.16, pp.3651-3669.
- Bullock, G.N., Denham M.J., Parmee, I.C. and Wade, J.G. 1995. Developments in the use of the genetic algorithm in engineering design. *Design Studies*, Vol. 16, No. 4, pp.507-524.
- Burbidge, J.L. 1963. Production flow Analysis. Production Engineer, Vol.42.No.12, pp.742-752.
- Burbidge, J.L. 1971. Production flow Analysis. Production Engineer, Vol.50, pp.139-152.
- Burbidge, J.L. 1975. The introduction of group technology. London: Heinemann Press.
- Cao, D., Defersha, F.M. and Chen, M. 2009. Grouping operations in cellular manufacturing considering alternative routings and the impact of run length on product quality. *International Journal of Production Research*, Vol.47.No.4, pp.989-1013.
- Car, Z. and Mikac, T. 2006. Evolutionary approach for solving cell-formation problem in cell manufacturing. Advanced Engineering Informatics, Vol.20, pp.227–232.
- Chan, F.T.S., Lau, K.W. and Chan, P.L.Y. 2004. A holistic approach to manufacturing cell formation: incorporation of machine flexibility and machine aggregation. *Journal of Engineering Manufacture*, Vol.218.No.B, pp.1279-1296.
- Chan, F.T.S., Lau, K.W., Chan, P.L.Y. and Choy, K.L. 2006. Two-stage approach for machine-part grouping and cell layout problems. *Robotics and Computer-Integrated Manufacturing*, Vol.22, pp.217–238.
- Chan, F.T.S., Lau, K.W., Chan, L.Y. and Lo, V.H.Y. 2008. Cell formation problem with consideration of both intracellular and intercellular movements. *International Journal of Production Research*, Vol.46.No.10, pp.2589–2620.
- Chandrasekharan, M.P., and Rajagopalan, R. 1987. ZODIAC—an algorithm for concurrent formation of part-families and machine-cells. *International Journal of Production Research*, Vol.25.No.6, pp.835 850.
- Chi, S.-C. and Lin, I. 2002. Cellular formation based on evolutionary optimization of granules. *Proceedings of IIE Annual Conference*, pp.1-6.
- Chi, S.-C. and Yan, M.-C. 2004. A fuzzy genetic algorithm for high-tech cellular manufacturing system design. *IEEE Annual Meeting of the Fuzzy Information*, Vol.2, pp.907-912.
- Chu, C.-H. and Chang-Chun-Tsai. 2001. A Heuristic Genetic Algorithm for Grouping Manufacturing Cells. *IEEE Proceedings of the 2001 congress on Evolutionary Computation*, Vol.1, pp.310-317.
- Darwin, C. 1929. The Origin of Species by Means of Natural Selection or the Preservation of Favored Races in the Struggle for Life. The Book League of America, (originally published in 1859).
- Defersha, F.M. and Chen, M. 2006. Machine cell formation using a mathematical model and a genetic-algorithm-based heuristic. *International Journal of Production Research*, Vol.44.No.12, pp.2421–2444.
- Defersha, F.M. and Chen, M. 2008a. A parallel genetic algorithm for dynamic cell formation in cellular manufacturing systems. *International Journal of Production Research*, Vol.46.No.22, pp.6389–6413.
- Defersha, F.M. and Chen, M. 2008b. A linear programming embedded genetic algorithm for an integrated cell formation and lot sizing considering product quality. *European Journal of Operational Research*, Vol.187, pp.46–69.
- Deljoo, V., Al-e-hashem, S.M.J.M., Deljoo, F. and Aryanezhad, M.B. 2010. Using genetic algorithm to solve dynamic cell formation problem. *Applied Mathematical Modelling*, Vol.34, pp.1078–1092.

- Dimopoulos, C. 2006. Multi-objective optimization of manufacturing cell design. *International Journal of Production Research*, Vol.44.No.22, pp.4855-4875.
- Dimopoulos, C. and Mort, N. 2001. A hierarchical clustering methodology based on genetic programming for the solution of simple cell-formation problems. *International Journal of Production Research*, Vol.39.No.1, pp.1-19.
- Fan, J., Cao, M. and Feng, D. 2010. Multi-objective dual resource-constrained model for cell formation problem. *Proceedings of the IEEE ICMIT*, pp.1031-1036.
- Filho, E.V.G. and Tiberti, A.J. 2006. A group genetic algorithm for the machine cell formation problem. *International Journal of Production Economics*, Vol.102, pp.1–21.
- Fisher, R. A. 1930. The genetical theory of natural selection. Oxford: Clarendon Press.
- Fravolini, M.L., Ficola, A. and Cava, M.L. 2003. Predictive reference shaping for constrained robotic systems using evolutionary algorithms. *Applied Soft Computing*, Vol. 3, No. 4, pp.325-341.
- Gen, M. and Cheng, R. 2000. Genetic Algorithms and Engineering Optimization. John Wiley & Sons.
- Ghosh, T., Sengupta, S., Chattopadhyay, M. and Dan, P.K. 2010. Meta-heuristics in cellular manufacturing: A state-of-the-art review. *International Journal of Industrial Engineering Computations*, DOI: 10.5267/j.ijiec.2010.03.005.
- Goldberg, D.E. 1989. Genetic Algorithms in Search Optimization & Machine Learning. Addison Wesley.
- Goncalves, J.F. and Resende, M.G.C. 2004. An evolutionary algorithm for manufacturing cell formation. *Computers & Industrial Engineering*, Vol.47, pp.247–273.
- Gravel, M., Nsakanda, A.L. and Price, W. 1998. Efficient solutions to the cell-formation problem with multiple routings via a double-loop genetic algorithm. *European Journal of Operational Research*, Vol.109, pp.286-298.
- Gupta, Y., Gupta, M., Kumar, A. and Sundaram, C. 1996. A genetic algorithm-based approach to cell composition and layout design problems. *International Journal of Production Research*, Vol.34.No.2, pp.447-482.
- Holland, J. H. 1975. Adaptation in natural and artificial systems. Ann Arbor: The University of Michigan Press.
- Hsu, C.-M. and Su. C.-T. 1998. Multi-objective machine-component grouping in cellular manufacturing: a genetic algorithm. *Production Planning & Control*, Vol.9.No.2, pp.155-166.
- Hu, L. and Yasuda, K. 2005. Minimizing material handing cost in cell formation with alternative processing routes by grouping genetic algorithm. *International Journal of Production Research*, Vol.44.No.11, pp.2133-2167.
- Hwang, H. and Sun, J.-U. 1996. A genetic algorithm-based heuristic for the GT cell formation problem. *Computers & Industrial Engineering*, Vol.30.No.4, pp.941-955.
- James, T.L., Brown, E.C. and Keeling, K.B. 2007. A hybrid grouping genetic algorithm for the cell formation problem. *Computers & Operations Research*, Vol.34, pp.2059–2079.
- Joines, J.A., Culbreth, C.T. and King, R.E. 1996. Manufacturing cell design: an integer programming model employing genetic algorithms. *IIE Transactions*, Vol.28, No.1, pp.69–85.
- Kazerooni, M.L., Luong, H.S. and Abhary, K. 1997. A genetic algorithm based cell design considering alternative routing. International Journal of Computer Integrated Manufacturing Systems, Vol.10.No.2, pp.93–107.
- Kor, H., Iranmanesh, H., Haleh, H. and Hatefi, S.M. 2009. A multi-objective genetic algorithm for optimization of cellular manufacturing system. *International Conference on Computer Engineering and Technology*, Vol.1, pp.252-256.
- Lee-Post, A. 2000. Part family identification using a simple genetic algorithm. *International Journal of Production Research*, Vol.38. No.4, pp.793-810.
- Mahapatra, S.S. and Sudhakara Pandian, R. 2008. Genetic cell formation using ratio level data in cellular manufacturing systems. *International Journal of Advanced Manufacturing Technology*, Vol.38, pp.630-640.
- Mahdavi, I., Paydar, M.M., Solimanpur, M. and Heidarzade, A. 2009. Genetic algorithm approach for solving a cell formation problem in cellular manufacturing. *Expert Systems with Applications*, Vol.36, pp.6598–6604.
- Mak, K.L. and Wong, Y.S. 2000. Genetic design of cellular manufacturing systems. Human Factors and Ergonomics in Manufacturing, Vol.10.No.2, pp.177–192.
- Mak, K.L., Wong, Y.S. and Wang, X.X. 2000. An Adaptive Genetic Algorithm for Manufacturing Cell Formation. *International Journal of Advanced Manufacturing Technology*, Vol.16.No.7, pp.491-497.
- Man, Z., Wei, T., Xiang, L. and Lishan, K. 2008. Research on Multi-project Scheduling Problem Based on Hybrid Genetic Algorithm. *International Conference on Computer Science and Software Engineering*, Vol.1, pp.390-394.
- Mansouri, S.A., Moattar-Husseini, S.M. and Zegordi, S.H. 2003. A genetic algorithm for multiple objective dealing with exceptional elements in cellular manufacturing. *Production Planning & Control*, Vol.14.No.5, pp.437-446.
- Markowska-Kaczmar, U., Kwasnicka, H. and Szczepkowski, M. 2008. Genetic Algorithm as a Tool for Stock Market Modelling. Artificial Intelligence and Soft Computing – ICAISC, 5097, pp.450-459.
- Ming, L.C. and Ponnambalam, S.G. 2008. A hybrid GA/PSO for the concurrent design of cellular manufacturing system. *IEEE International Conference on Systems, Man and Cybernetics*, pp.1855-1860.
- Moon, C. and Gen, M. 1999. A genetic algorithm-based approach for design of independent manufacturing cells. *International Journal of Production Economics*, Vol.60–61, pp.421–426.
- Morad, N. and Zalzala, A.M.S. 1996. Formulations for cellular manufacturing and batch scheduling using genetic algorithms. *UKACC International Conference on Control*, Vol.1.No.427, pp.473-478.

- Mucientes, M., Moreno, D.L., Bugarín, A. and Barro, S. 2007. Design of a fuzzy controller in mobile robotics using genetic algorithms. *Applied Soft Computing*, Vol. 7, No. 2, pp.540-546.
- Nelson, A.L., Barlow, G.J. and Doitsidis, L. 2009. Fitness functions in evolutionary robotics: A survey and analysis. *Robotics and Autonomous Systems*, Vol. 57, No. 4, pp. 345-370.
- Neto, A.R.P. and Filho, E.V.G. 2010. A simulation-based evolutionary multiobjective approach to manufacturing cell formation. *Computers & Industrial Engineering*, Vol.59, pp.64–74.
- Nsakanda, A.L., Diaby, M. and Price, W.L. 2006. Hybrid genetic approach for solving large-scale capacitated cell formation problems with multiple routings. *European Journal of Operational Research*, Vol.171, pp.1051–1070.
- Onwubolu, G.C. and Mutingi, M. 2001. A genetic algorithm approach to cellular manufacturing systems. *Computers & Industrial Engineering*, Vol.39, pp.125-144.
- Pai, P.F., Chang, P.-T. and Lee, S.-H. 2005. Part-machine family formation using genetic algorithms in a fuzzy environment. *International Journal Advanced Manufacturing Technology*, Vol.25, pp.1175–1179.
- Pailla, A., Trindade, A.R., Parada, V. and Ochi, L.S. 2010. A numerical comparison between simulated annealing and evolutionary approaches to the cell formation problem. *Expert Systems with Applications*, Vol.37, pp.5476–5483.
- Papaioannou, G. and Wilson, J.M. 2010. The evolution of cell formation problem methodologies based on recent studies (1997–2008): Review and directions for future research. *European Journal of Operational Research*, Vol.206.No.3, pp.509-521.
- Pierreval, H. and Plaquin, M.-F. 1998. An evolutionary approach of multi criteria manufacturing cell formation. *International Transactions in Operational Research*, Vol.5.No.1, pp.13-25.
- Pillai, V.M. and Subbarao, K. 2007. A robust cellular manufacturing system design for dynamic part population using a genetic algorithm. *International Journal of Production Research*, Vol.46.No.18, pp.5191-5210.
- Plaquin, M.-F. and Pierreval, H. 2000. Cell formation using evolutionary algorithms with certain constraints. *International Journal of Production Economics*, Vol.64, pp.267-278.
- Ponnambalam, S.G., SudhakaraPandian, R., Mohapatra, S.S. and Saravanasankar, S. 2007. Cell formation with workload data in cellular manufacturing system using genetic algorithm. *Proceedings of the IEEE IEEM*, pp.674-678.
- Rajagopalan, R. and Fonseca, D.J. 2005. Volume sensitivity analysis for manufacturing cells: A genetic algorithm approach. *Journal of Advanced Manufacturing Systems*, Vol.4.No.2, pp.167–183.
- Rajagopalan, R. and Fonseca, D.J. 2006. A genetic algorithm approach for machine cell formation. *Journal of Advanced Manufacturing Systems*, Vol.5.No.1, pp.27-44.
- Rajendran, I. and Vijayarangan, S. 2001. Optimal design of a composite leaf spring using genetic algorithms. *Computers & Structures*, 79(11), pp.1121-1129.
- Rango, F.D., Tropea, M., Santamaria, A.F. and Marano, S. 2007. An enhanced QoS CBT multicast routing protocol based on Genetic Algorithm in a hybrid HAP–Satellite system. *Computer Communications*, Vol. 30, No. 16, pp.3126-3143.
- Rogers, D.F. and Kulkarni, S.S. 2005. Optimal bivariate clustering and a genetic algorithm with an application in cellular manufacturing. *European Journal of Operational Research*, Vol.160, pp.423–444.
- Selim, M.S., Askin, R.G. and Vakharia, A.J. 1998. Cell formation in group technology: review evaluation and directions for future research. *Computers & Industrial Engineering*, Vol.34.No.1, pp.3-20.
- Shaw, K.J., Nortcliffe, A.L., Thompson, M., Love, J., Fleming, P.J. and Fonseca, C.M. 1999. Assessing the performance of multiobjective genetic algorithms for optimization of a batch process scheduling problem. *Proceedings of the Congress on Evolutionary Computation*, Vol.1, pp.37-45.
- Solimanpur, M., Vrat, P. and Shankar, R. 2004. A multi-objective genetic algorithm approach to the design of cellular manufacturing systems. *International Journal of Production Research*, Vol.42.No.7, pp.1419-1441.
- Tariq, A., Hussain, I. and Ghafoor, A. 2009. A hybrid genetic algorithm for machine-part grouping. Computers & Industrial Engineering, Vol.56, pp.347–356.
- Tavakkoli-Moghaddam, R., Aryanezhad, M.B., Safaei, N. and Azaron, A. 2005. Solving a dynamic cell formation problem using metaheuristics. *Applied Mathematics and Computation*, Vol.170, pp.761–780.
- Tavakkoli-Moghaddam, R., Aryanezhad, M.B., Safaei, N., Vasei, M. and Azaron, A. 2007. A new approach for the cellular manufacturing problem in fuzzy dynamic conditions by a genetic algorithm. *Journal of Intelligent & Fuzzy Systems*, Vol.18, pp.363–376.
- Tunnukij, T. and Hicks, C. 2009. An enhanced grouping genetic algorithm for solving the cell formation problem. *International Journal of Production Research*, Vol.47.No.7, pp.1989-2007.
- Venugopal, V. and Narendran, T.T. 1992. A genetic algorithm approach to the machine-component grouping problem with multiple objectives. *Computers & Industrial Engineering*, Vol.22. No.4, pp.469-480.
- Vin, E., Lit, P.D. and Delchambre, A. 2005. A multi-objective grouping genetic algorithm for the cell formation problem with alternative routings. *Journal of Intelligent Manufacturing*, Vol.16, pp.189–205.
- Wu, X., Chu, C.-H., Wang, Y. and Yan, W. 2002. A genetic algorithm for integrated cell formation and layout decisions. *IEEE Proceedings of the 2002 congress on Evolutionary Computation*, Vol.2, pp.1866-1871.
- Wu, X., Chu, C.-H. Wang, Y. and Yan, W. 2006. Concurrent design of cellular manufacturing systems: a genetic algorithm approach. *International Journal of Production Research*, Vol.44. No.6, pp.1217-1241.

- Wu, X., Chu, C.-H., Wang, Y. and Yan, W. 2007. A genetic algorithm for cellular manufacturing design and layout. *European Journal of Operational Research*, Vol.181, pp.156–167.
- Xing, Y., Chen, Z., Sun, J and Hu, L. 2007. An Improved Adaptive Genetic Algorithm for Job-Shop Scheduling Problem. *Third International Conference on Natural Computation*, Vol.4, pp.287-291.
- Yasuda, K., Hu, L. and Yin, Y. 2005. A grouping genetic algorithm for the multi-objective cell formation problem. *International Journal of Production Research*, Vol.43. No.4, pp.829-853.
- Zhao, C. and Wu, Z. 2000. A genetic algorithm for manufacturing cell formation with multiple routes and multiple objectives. *International Journal of Production Research*, Vol.38. No.2, pp.385-395.
- Zhao, L., Tsujimura, Y. and Gen, M. 1996. Genetic algorithm for fuzzy clustering. *Proceedings of IEEE International Conference* on Evolutionary Computation, pp.716-719.
- Zhengying, W., Bingxin, S. and Erdun, Z. 2001. Bandwidth-delay-constrained least-cost multicast routing based on heuristic genetic algorithm. *Computer Communications*, Vol. 24, No. 7-8, pp.685-692.
- Zolfaghari, S. and Liang, M. 2003. A new genetic algorithm for the machine/part grouping problem involving processing times and lot sizes. *Computers & Industrial Engineering*, Vol.45, pp.713–731.
- Zolfaghari, S. and Liang, M. 2004. Comprehensive machine cell/part family formation using genetic algorithms. *Journal of Manufacturing Technology Management*, Vol.15. No.6, pp.433-444.

Biographical notes

Tamal Ghosh is a Graduate Student in the Department of Industrial Engineering & Management, West Bengal University of Technology, India. He has also obtained his Bachelor of Technology (B.Tech) in Computer Science and Engineering from National Institute of Technology Calicut, India. His current research area is application of Particle Swarm Optimization Techniques in Cellular Manufacturing.

Dr. Pranab K Dan is a Reader in the Department of Industrial Engineering & Management, West Bengal University of Technology, India. He has obtained his PhD in Production Engineering in 1996 from Jadavpur University, India. He has obtained his Bachelor of Engineering and Master of Engineering in Mechanical Engineering from Bengal Engineering College, Shibpore affiliated to Calcutta University, India in the year 1980 and 1982 respectively and His research and professional experience is in the area of Industrial Engineering.

Sourav Sengupta is a Graduate Student in the Department of Industrial Engineering & Management, West Bengal University of Technology, India. He has also obtained his Bachelor of Technology (B.Tech) in Information Technology from West Bengal University of Technology, India. His current research area is application of soft-computing in Cellular Manufacturing.

Manojit Chattopadhyay is an Assistant Professor in the Department of Computer Application, Pailan College of Management and Technology India. He has obtained his M.Phil in Operations, Technology and Management from West Bengal University of Technology. He has also obtained an MBA from Visva Bharati University in Systems Management and an M.Sc from Darjeeling Govt. College, India. His research and professional experience is in the area of Information Technology.

Received August 2010 Accepted August 2010 Final acceptance in revised form August 2010