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Abstract

This paper proposes a superior Mixed Integer bdwtuid Genetic Algorithm (MIGA) which inherits thadvantages of
binary and real coded Genetic Algorithm approache proposed algorithm is applied for the convemtiageneration cost
minimization Optimal Power Flow (OPF) problem amd fthe Security Constrained Optimal Power Flow pgob Here, the
main shortcoming with the conventional Genetic Aiton, the ‘Hamming CIliff’ problem is addressed wiMixed Genetic
Algorithm, which can overcome issues connectedh¢ocontinuous search space. The proposed algomithaels the continuous
variables using real values and discrete variab$ésg binary values. A novel concept of Progreséiliag is also presented
here for Mixed Integer GA, which heightens the alfpon. The proposed procedure is compared with maswentional
algorithms and validated on a test-bed of stanttalEdE 30 bus system with and without valve-pointdiog effect.

Keywords:Genetic Algorithm, Optimization Techniques, OptirRawer Flow, Power System Security.

1. Introduction

The restructuring of the electric power indusgtas brought in a paradigm shift in the real-timatod of power grids. Effective
dispatch is one of the important control activities Power System and Optimal Power Flow (OPF)dezs the most significant
technique for obtaining minimum cost generationtgras in a Power System together considering thasinission and
operational constraints. Classical Optimizatiorhtégues have usually considered OPF as minimizaifoem objective function
representing the generation cost and/or the trasssoni loss. The constraints involved are the phys@avs governing the power
generation-transmission systems and the operaimgafions of the equipment. But, effective OptimBbwer Flow is
characterized by its high dimensionality and theomplete domain dependent knowledge of Power Systagineers. The first
limitation is addressed by numerical optimizatiomgedures based on successive linearization ubieditst and the second
derivatives of objective functions and their coastts as the search directions or by linear progreng solutions to imprecise
models. The advantages of such methods are exisstitigeir mathematical underpinnings, but disadages also exist in the
sensitivity to problem formulation, algorithm sdiea and usually converge to a local minimum. Theeond limitation,
incomplete domain knowledge, precludes also thabiel use of expert systems where rule completeies®ot possible.
Therefore, an efficient and effective OPF procedsreeeded to help the operators to utilize the é?08ystem controls in a
realistic and optimal or near optimal manner. Femttore, when the valve-point loading effect orphehibited operating zones of
generator is considered, conventional techniquesheadly obtain the optimal solution, because thes@niques cannot offer
greater freedom in objective functions or the typesonstraints that may be used.

Dommel and Tinney (1968) has reported a detailedesuon Load flow algorithms, the first tributes foad flows (Carpentair,
1962) and earlier methods were basically of lirestiDC load flow models with many approximatiorishe proposal on secure
loading of power system (Wells, 1968) and worksrescheduling with security constraints (Kaltenbackli Hajdu, 1971) and
(She and Laughton, 1970) were the primary workpawer system security constrained optimizationségland Stott, 1974) in
early 1973 proposed a more accurate (earlier metinie DC approximate methods) method to incorpottae steady state
security constraints into OPF, which allowed to sidar the reactive power and voltage constraintsutage cases. Rodrigues
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al. (1994) proposed asynchronous method with dugblsin relaxation solution for the linearized SCOPRhwparallel
architecture processing for the preventive mod8@OPF. (Confortet al, 1996) proposed Parallel Gradient DistributioG [P
and Non-Linear Programming based OPF algorithm (1) contingencies with continuous security. Veditet al. (2001) was
the pioneer to include the dynamic constraintstag® stability with the static security constraimts., the flow and voltage
profile during normal and post contingency operaiocRamesh and Xuan (1997) put forward a decompiosedof Contingency
Constrained Optimal Power Flow (CCOPF) using Fuzagic where, the minimization of both the base cgwe-contingency)
operating cost and of the post-contingency comedimes which are conflicting, were accepted agygoals.

The literatures states that the main constraintthaisthe problem tends to settle in a global optimas security constraints are
difficult to be included in the line security corahts into fithess function. Lat al (1997) proposed a Binary Coded Improved
Genetic Algorithm approach for the normal and auoygint condition of the system with a simulated wircoutage.
(Somasundararet al, 2004) put forward an evolutionary programmingédzhsolution for the SCOPF problem which was soperi
and robust technique using the first and seconaiares of objective function or constraints asdridependent of the nature of
the search space. The difficulties due to the ‘hargraliff’ problem has been well reported in Zhostgal. (2001)

2. Problem Formulation

A load flow method usually determines the statealdes such as voltage magnitudes and phase aofjlesses except at
slack/swing/reference bus, for a given loading dod Several hundreds of load flow solutions agguired to arrive at an
optimal power flow solution with enforcement of afjuality and inequality constraints.

If the security constraints such as transmissigraciy limit & the bus voltage limits are takendréccount, the corresponding
OPF is termed as Security Constrained Optimal PéW@ax (SCOPF). The generalized fuel cost minimaatbbjective function
can be put forward as,

F(O=> (A +B,P,*+C P58/ @)
The quadratic cost model for generation of powdlrlva utilized and P@Es the amount of generation in megawatts at gémera
‘i and Ng is the number of generators. When thiveroint loading effect of thermal units is alskén into consideration, the
fuel cost will be of the form
Ng 2 .
F0=3 (A +B.P,+C PO *|d sn(e (P, . - P/ &
where, A B; and G are the cost coefficients of unit i. Ng is the fi@mof generators. The sinusoidal term added tdudle
cost function which models the valve-point effestréduces ripples to heat-rate curve and thereftreducing more local
minima to the search space andcud eare the value point loading constants, which abddssinusoidal ripples due to the opening
of each steam value in the system.

2.1 Equality ConstraintsThe equality constraints of the OPF reflect thegptsy of the power system as well as the desired
voltage set points throughout the system. The dycgaof the Power System are enforced through theepfiow equations which
require that the net injection of real and reacfioever at each bus sum to zero.

Pe-Puw -V 2V (G,sn 5, +B,sng,=0 K

Qg\_QLoam _V'iivJ(GUSind‘J_B‘Jcosd‘J:O )(4

2.2 Inequality ConstraintsThe inequality constraints of the OPF reflect lihgts on physical devices in the power system as
well as the limits created to ensure system sgcupihysical devices that require enforcement oftéirmclude generators, tap
changing transformers, and phase shifting trangfsmGenerators have maximum and minimum outputepowand reactive
powers which add to the inequality constraints.

2.3 Variables:Practically the variables in OPF problem can bédéd into two as continuous variables and discvetéables.
Continuous variables are generation of generai@)s Generator bus voltage magnitudes (V) and VARGtpn values of SVC.
Discrete Variables are transformer tap setting,(VAR injection values of switchable shunt capacifreactor (V) and phase
shifter angle positions. In practical operationcdugse the reactive power injection of switched shi@vice depends on the bus
voltage, the specified VAR-injection value of swiédl shunt device (such as shunt capacitor ban#jffisult to adjust. The
solution to the problem is to select the switchbdn$ admittance as the discrete control associafttd the switched shunt
devices; it will be capable of obtaining good cohtevel.
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2.4 Hamming CIiff ProblemConventional modeling of chromosomes in Geneticofithm suffers from the severe drawback of
taking some large number of mutative steps frone@uivalent decimal value to the other. The EleatrRower Flow problem
being highly convex, non-linear and consists oftcmous and discrete variables (Generator PoweNanlihge being continuous
and Transformer and shunt settings are discreithave a higher probability to settle in a locaihima instead of global minima
due to the Hamming Cliff Problem. Here in this papke novel hybrid approach of using Mixed Inte@ resolves this as the
variables are modeled using its most adaptive igquerdepending on the nature of the behavior itself

2.5 Security Constraintsby adding the security constraints in the objectiunction, OPF problem is expressed as a mixed
integer non-convex programming. Contingency anslisicarried out by Inverse Lemma Technique. Heraie of the lines is
selected for outage study to test the securith@kiystem and is compared with the normal condition

3. Proposed M ethod

Genetic Algorithm has been fascinating researcf@réong and a first credit is given to John HotlarGenetic Algorithm, a
stochastic routine, delivers quality solution franrandom search space and population, where eawtragen undergoes
transformation using Genetic operators to imprdwent. Genetic Algorithm transvers multiple peakpanallel, assuring global
solutions and has the advantage of modeling discagid continuous variables together which is natilavle with other
algorithms. Much variants and developments in Gerdgorithm has been discussed in (ChaiyaratambzZaizala, 1997).

The conventional GA suffers from the difficulty ihe hamming cliffs associated with certain strirfggtin which a transition to
a neighboring solution (in real space) and requinesalteration of many bits. Hamming cliffs pretsena binary coding cause
artificial hindrance to a gradual search in thetitmous search space. The other difficulty is thebility to achieve any arbitrary
precision in the optimal solution. In binary codé@'’s, the string length must be chosen a prioret@ble GAs to achieve a
certain precision in the solution. The more theumesgl precision, then the larger is the string thndror large strings, the
population size requirement is also large, theii@byeasing the computational complexity of the alpmn. Since a fixed coding
scheme is used to code the decision variablesghlarbounds must be such that they bracket thenaptivalues.

Since real parameters are used directly (withoutsaiing coding), solving real parameter optimiaatproblems is a step easier
when compared to the binary coded GAs. Unlike enltinary coded GAs, decision variables can be tyresed to compute the
fitness values. Since the selection operator wuiikis the fitness value, any selection operator usil binary coded GAs can
also be used in real parameter GA’s. Another diffic arises with the search operators. In the liraoded GA's, decision
variables are coded in finite length strings anchexging portions of two parent strings easiemplément and visualize. Simply
flipping a bit to perform mutation is also convetti@and resembles a natural mutation event. In pasameter GA'’s, the main
challenge is how to use a pair of real parameteisiba variable vectors to a mutated vector in amiggful manner. As in such
cases the term, crossover is not that meanindfiely tan be best described as blending operatorse¥dw, most blending
operators in real parameter GA’s are known as ok@ssoperators. In most of the evolutionary aldoris, the final solution
depends on the initial generation of populationepiag the above in view, we proposed a method @¢a8eccessive Filling
Approach’ (SFA) for initial generation of genetic populatjomhich will guide to better optimal solution with less number of
iterations, which is described in the later sectiohthis paper.

3.1 Constraint HandlingConstraints are handled by using penalty functippreach when and most commonly we encounter
while trying to solve a minimization problem is thenexistence of a feasible solution. Essentidilg theans that too many
constraints have been added to the problem andlatio® exists which obeys all of the constraif@s.e way to avoid this issue is
to implement soft inequality constraints in thenfoof penalty functions. The word “soft” signifiekat the constraint is not
absolutely enforced. The soft constraint only emages the solution to meet the constraint by enfgra penalty if the constraint
is not met. In the OPF problem, soft equality caaists are not used, because of the nature ofghaliy constraints in the OPF
problem. The power flow equations cannot be vialaas they are imposed by physics, and the genesatquoints of a Power
System are normally not moved around frequently. the inequality constraints, the penalty functi@ifer a viable option.
Ideally, a penalty function will be very small, mealimit and increase rapidly as the limit is @tdd more. The quadratic penalty
function used here has the ability to control hawdhor soft to make the constraint. If an individ8ais a feasible solution and
satisfies all constraints, its fithess will be m@asby taking the reciprocal of the fuel cost fumetelse it need to be penalized.

3.2 Successive Filling Approacht: is a new method proposed herein to generatenpiatéanitial population before iteration
process is initiated. This aspect offers significeeduction in computational burden. In any heigigéchnique, the number of
iterations taken for convergence condition depermm the initial generation of population and watlsuperior initial population,
the problem tends to converge in a fewer numbéetdtions and consumes low computational time.

3.3 Fitness Evaluation: PMIGA has two arithmetic crossover schemes whicheangloyed to treat the continuous & discrete
variables and to produce two types of substringspectively .The typical value of probability obssover (B used here is about
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90%. The arithmetic crossover schemes of the comtisidiscrete variables are as follows. For disnoots variables, the

crossover is applied with a probability iA the range of 0.8 to 0.9. Here, the objectiva iminimization problem and hence the
fitness is the reciprocal of evaluated objectivacfion. Proper penalty factors are to be seleatéitiously by the operator as
operators experience & suitability of the seleqiedalty factors will have significant influence thre speed of convergence.

4. Simulation and Validation

The effectiveness of the MIGA method is tested regjatiwo other real coded Algorithms PSO & DE usétgndard IEEE-30
bus test system in terms of solution quality andl@ionary computing efficiency. The network comsief 6 Generator buses, 21
load buses & 41 lines, of which 4 lines are dugajp setting transformers. Buses 10, 12, 15, 1722023, 24 & 29 have been
selected as shunt compensation buses. The totldpnathe network is 283.4 MW. Five generator actiever outputs, Six
generator-bus voltage magnitudes, four transfota@isettings & nine shunt susceptances, which sdor24 control variables.

The gene length for unit active power outputs ihit& generator voltage magnitude is 8 bits, awith lof them are treated as
continuous control variables. As the transformer dattings can take 17 discrete values each oemcisded using 5 bits & the
step size is 0.0125 p.u. The bus shunt susceptamceake 6 discrete values each one is encoded 8bits, & the step size is
0.01 p.u. (on system MVA basis). Thus, the totahgtlength tends to be 155.

The established population size is 60 with a unif@rossover probability of 0.9. The string lengthlb5 bits, mutation and
elitism probability (R) of 0.05 & 0.2 respectively with a scaling factdr0.6. PSO, the swarm size is 60 and the sizexdgigte is
24. The acceleration constants areC1=C2=2.05,iangveight (W) is 1.2 and Constriction Factor (K)Us7295. For DE, the
population size is 60; vector length is 24, Scafaggor of 0.8 with a crossover rate of 0.7.
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Figure 1. Flow Chart of the Proposed Algorithm
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Table 1. Control Variables with and without Value Pointdding and Contingency state

Control Base ALGORITHM
Variable | Case SGA PSO DE PF-MIGA
WO * + WO * + WO * + WO * +
vPL W VPL | WCA vPL W VPL | WCA VPL* W VPL WCA VPL* W VPL | WCA
Sé?]csk - 175.99| 189.479 168.38 1765 177.2p2 149 177.850.574 | 168.715| 178.68] 175.751 168
(&(\3/\2/) 80.0 | 49.34 20.176| 48.61p 48.8B 25.487 485 48|47 20 48.163 48.631 26.869 48.87
PGy 50.0 21.93 49.068 23.84p 21.18 31.483 2118 20(78 .48860| 20.934 21.936 31.661 22.9p
PGg 20.0 | 22.96 10.433| 29.30p 20.2f 18.2p 26|5 20|66 10 26.044 21.409 12.194] 25.01
PGy, 20.0 | 12.78 10.762| 12.88p 12.3f 14.783 157 10[00 10 16.031 10.00 16.462) 14.3"
PGy3 20.0 | 12.10 12.602| 12.78p 12.8p 12.501 14}4 1477 1P 14.833 12.00 17.331] 16.74
VG;(pu) 1.0 1.05 1.05 1.05 1.05 1.05 1.0 1.06 1.06 1.5 051. 1.05 1.05
VG, 1.0 1.01 1.005 1.002 1.044 1.034 1.0 0.95 0.95 761.d 1.041 1.019 1.026
VGs 1.0 1.09 1.021 1.049 1.043 0.993 0.9p 1.09 1.1 21.00 1.035 1.062 1.011
VGg 1.0 1.04 - 1.09 1.0 - 1.07 1.10 - 1.1 0.95 - 0.9p6
VG 1.0 1.08 1.046 0.956) 1.02 1.037 1.0p 1.05 0.97 1.95 0.95 1.052 0.995
VGi3 1.0 1.02 0.956 0.979 1.01 1.064 1.0p 0.98 1.1 0.9p1 0.95 1.007 1.033
Teo(pu) 1.0 0.96 0.963 0.988 0.9 0.9 0.9 0.90 0.9 0. 0.90 0.9 0.9
Te10 1.0 1.05 1.025 0.925 1.1 1.1 1 1.08 1.1 1.1 1.013 051 1.0
Tatr 1.0 1.012 1.063 0.989 1.0 1.025 0.9B 0.93 1.05 0.9 0.963 1.075 1.025
Ty 08 1.0 1.02 1.038 1.038 1.02% 1.05 1.0p 1.01 1.063 88.. 0.938 0.988 1.0
Sio(pu) 0.00 0.02 0.02 0.03 0.02 0.01 0.0B 0.12 0.0p 0.4dJ6 .030 0.04 0.06
Si» 0.00 0.03 0.02 0.02 0.03 0.05 0.0B 0.06 0.1p 041 .060 0.08 0.08
Sis 0.00 0.02 0.05 0.02 0.05 0.04 0.03 0.0R 0.0p 0.1 .060 0.1 0.03
Si7 0.00 0.01 0.01 0.01 0.03 0.03 0.06 0.06 0.0p 0.q1 .010 0.06 0.06
Sy 0.00 0.02 0.01 0.02 0.04 0.06 0.0B 0.08 0.1p 046 .020 0.1 0.08
S, 0.00 0.04 0.02 0.05 0.04 1.037 0.0¢ 0.06 0.97 0.06 0.01 1.052 0.04
Sy3 0.00 0.02 - 0.02 0.03 - 0.02 0.08 - 0.04 0.05 - 20.0
S 0.00 0.05 0.03 0.05 0.02 0.03 0.03 0.06 0.1p 0.4 .040 0.1 0.05
Sy 0.00 0.04 0.04 0.03 0.01 0.05 0.0% 0.06 0.1 0.4 020. 0.02 0.08
(F:‘:gt - 802.81| 1302.97] 816.5 801.58 1301.92 81492 1.0301.95| 812.27] 801.114 1301.5139 816/98
"WO-VPL: without Value Point Loading
"WVPL: with Value Point Loading
"WCA: with contingency analysis
Table 2. Comparison of Algorithms for Best Optimized Cdiuti
FUEL cost L ossEs TIME/ITER I TERATIONS
TECHNIQUE WO W +| wo . +| wo W +] wo W +
VPL' vpL® | WCA vpls | WVPL | WCAT L p vpL® | WCA VPL' vpL® | WEA
SGA (wo-vpP) | 802.359 | 1302.97 816.5B 9.60 9.121 121 0.488 0/820.31 40 24 64
PSO 802.667 | 1301.92 814.9p 9.59 8.870 1247 1.787 1]810.48 70 86 78
DE 801.114 | 1301.9§ 812.2F 9.54 9.164 12B2  1.286 1/430.74 46 23 53
PF-MIGA 800.801 | 1301.89 816.9B  9.23 8.824 123  0.6p0 0/720.48 37 21 43

WO-VPL: without Value Point Loading
"WVPL: with Value Point Loading
"WCA: with contingency analysis
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Figure 4. Transformer Tap Settings on various Conditiongigure 5. Voltage Profile (with VPL) in SGA, DE, PSO and
PF-MIGA

It is observed that the total number of iteratidaken for the problem to converge is more when wdopm contingency
analysis. At the same time the fuel cost & the egponding total losses are also increased. Takjeorts the details of the control
variables using SGA, PSO, DE and MIGA on differstdtes like with and without value point loadingdasn contingency
analysis. It is found that using MIGA the fuel té@r normal condition, with value point loadingdawith Contingency analysis
were 801.114$, 1301.89% and 816.98% respectivadpleTl Il compares the performance of MIGA with othen Fuel Cost,
Computation time, Losses etc and it is found thatMRGA is 2.3 times faster than other algorithmsciaise of contingency
analysis and 3.5 times faster in case of normalegpdow without value point loading effect. Fig.illustrates the complete
process flow chart, Fig. 2 illustrates the busagét profile in various algorithms, Fig. 3 illusgatthe convergence characteristics
in normal cases, Fig. 4 exemplifies the voltagdfilraf MIGA in contingency and normal conditionBig. 5 demonstrates the
effect on tap settings in various settings like malr power flow with and without value point loadirgffect and during
contingency analysis. Fig. 6 shows the voltagdilprof PF-MIGA with valve point loading and usingrious algorithms.

5. Conclusions

An approach has been made in this paper to dewelgw algorithm for the security constrained optipwwver flow. The new
proposed algorithm offers the flexibility to modbe continuous variable using real values and eiscrariables using the binary
coding and an innovative approach in the initialeration is adopted. The algorithm is found to helmsuitable for Contingency
analysis and offers 3.5 times faster solution tbémer methods. The proposed method is compared atftar conventional
algorithms like Differential evolution, Genetic alithm and Particle swarm optimization for provihg supremacy.
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