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Abstract 
 
   An investigation of reflection and transmission phenomena of plane longitudinal wave from a plane interface between two 
distinct micropolar porous elastic solid half-spaces in welded contact has been made. Using the method of potentials, the 
appropriate boundary conditions at the interface are solved to obtain the amplitudes of various reflected and transmitted waves. 
It has been noticed that these amplitudes are complex valued and their absolute values depend upon the angle of incidence, 
frequency of the incident wave and on the elastic characteristics of the medium. Numerical computations for a peculiar model 
are also performed. The variation of modulus of amplitudes of various reflected and transmitted waves against the angle of 
incidence are computed for obliquely incident longitudinal displacement wave traveling at high frequency as well as at low 
frequency. At each angle of incidence, the energy balance law has been verified at the interface. 
 
Keywords: Micropolar, porous, reflection, longitudinal wave, amplitude, frequency. 
 
1. Introduction  
 
   A homogeneous isotropic micropolar elastic material is a material characterized by a continuum in which rigid grains of 
dumb-bell shaped and of infinitesimal size are uniformly distributed in the elastic solid. Eringen (1966, 68) developed the 
theory of micropolar elasticity which is a subclass of the non-linear theory of simple microelastic solids earlier developed by 
Eringen and his co-worker (Eringen and Suhubi, 1964; Suhubi and Eringen, 1964) and a generalization of the classical theory 
of elasticity. The basic difference between the Eringen's theory of micropolar elasticity and that of classical elasticity is the 
introduction of an independent microrotation vector. Thus, in the theory of micropolar elasticity, the motion in a body is 
characterized by six degrees of freedom, namely, three of translation and three of rotation, whereas, in classical elasticity 
theory, the motion is described by displacement vector only and hence, there are three degrees of freedom. The interaction 
between two parts of a micropolar body is transmitted not only by a force vector but also by a couple resulting in asymmetric 
force stress tensor and couple stress tensor. The force at a point of a surface element of micropolar elastic solid is completely 
known by a force stress vector and by a couple stress vector at that point. Parfitt and Eringen (1969) have shown that there can 
exist four waves in a micropolar elastic material, two of which disappear below a critical frequency dependent upon the 
property of the medium. 
   Material having small distributed voids containing nothing of physical significance is called porous material. Cowin and his 
coworker (Nunziato and Cowin, 1979; Cowin and Nunziato, 1983) developed non-linear and linear theories of elastic material 
with voids. In linear theory of elastic material with voids, the change in void volume fraction and the strain are taken as 
independent kinematic variables. Due to the introduction of this new variable, there exist a higher order stress called 
equilibrated force, intrinsic and extrinsic body forces and equilibrated inertia (see Goodman and Cowin, 1972; Cowin and 
Goodman, 1976). Puri and Cowin (1985) analyzed the frequency equation of plane harmonic waves in a linear elastic material 
with voids. They showed that there exist two dilational waves in porous elastic material with voids, one of them is 
predominantly the dilational wave of classical linear elasticity and the other is predominantly a wave carrying a change in the 
void volume fraction. Both these waves are found to attenuate in their direction of propagation. At large frequencies, the 
predominantly elastic wave propagates with the classical elastic dilational wave speed, but at low frequency it propagates at a 
speed less than the classical wave speed. Numerous problems of waves and vibrations concerning the micropolar elasticity and 
material with voids have been attempted by many researchers in the past, e.g., Chandersekhariah (1987), Wright (1998), Iesan 
and Nappa (2003), Golamhossen (2000), Dey et al. (2003), Midya (2004), Singh and Kumar (1998), Tomar and Gogna (1995a, 
95b) among several others. The problems of reflection and refraction of elastic waves from a plane interface are very 
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important in the inspection of geological materials, rocks and manufactured materials. Several classical problems addressing 
the reflection and refraction of elastic waves from interfaces between elastic media have been studied by considering different 
models and incorporating numerous possible parameters in them. Ciarletta and Sumbatyan (2003) discussed the reflection of 
obliquely incident plane transverse shear waves from the free boundary of a elastic half-space with voids. They showed that 
only the transverse shear wave can propagate without attenuation after having been reflected from the free boundary surface. 
They have also obtained the reflection coefficients asymptotically in closed form for high and low frequency cases. Recently, 
Tomar and Singh (2005) investigated the transmission of longitudinal waves through a plane interface between two dissimilar 
porous elastic solid half-spaces. 
   Recently, Tomar and Singh (2006) have discussed the propagation of plane waves in an infinite micropolar porous elastic 
solid. They encountered that there may exist five waves in an infinite micropolar porous elastic solid comprising of three 
longitudinal waves and two sets of coupled transverse waves. The three longitudinal waves are: a longitudinal microrotational 
wave travelling independently and not influenced with the presence of voids, a longitudinal displacement wave and a 
longitudinal volume fractional wave carrying the change in void volume fraction. The longitudinal microrotational wave and 
two sets of coupled transverse waves are same as earlier encountered by Parfitt and Eringen (1969) in micropolar elastic solid. 
They have also studied the reflection phenomenon of these plane waves from a free plane boundary of a micropolar porous 
elastic solid half-space. 
   In this paper, we have discussed the phenomena of reflection and transmission of a longitudinal displacement wave striking 
obliquely at a plane interface between two distinct micropolar porous elastic solid half-spaces in perfect contact. The 
appropriate boundary conditions at the interface are formulated and the amplitudes of various reflected and transmitted waves 
are obtained. It has been noticed that the amplitudes are complex valued and their absolute values depend upon the angle of 
incidence, frequency of the incident wave and on the elastic parameters. The variation of modulus of amplitudes against the 
angle of incidence of longitudinal displacement wave impinging at high frequency and at low frequency are also depicted 
graphically. The analytical expressions of energy ratios of various reflected and transmitted waves are also presented. It has 
been observed that there is no dissipation of energy at the interface during transmission. 
 
2. Basic equations and relations 
 
   In the absence of body force density and body couple density, the field equations in micropolar elastic material with voids 
are given by (see Iesan, 1985)  

 
(1)                                   ,)()2( * uKuKuK &&ρψβμμλ =∇+Φ×∇+×∇×∇+−⋅∇∇++  

(2)                                       ,2 )( Φ=Φ−×∇+Φ×∇×∇−Φ⋅∇∇++ &&JKuK ργγβα  

(3)                                                                   ,****2* Ψ=⋅∇−−−∇ &&Ku ρβψωψξψα  
 
whereλ and μ are Lame's constants; βα ,,K and γ  are the elastic constants of micropolarity; **** ,,, ωξβα  and *K  
are the elastic constants due to the presence of voids; ),( txu and ),( txΦ are the displacement and microrotation vectors, 
respectively; ψ  is the change in void volume fraction from that of in the reference state; J  is micro-inertia and ρ  is the 
density of the medium. The superposed dots on the right hand side of these equations represent the temporal derivatives. 
    For time harmonic plane wave propagation (i.e., }exp{ tiω−∝ ), the equations of motion (1) - (3) reduce to  
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The constitutive relations for the micropolar porous elastic solid are given by (see Iesan, 1985) 
 

)8(,)()( *
,,,, ψβδφεμδλ ijkijkijijjiijkkij uKuuut +−+++=  

)9(,,,, ijjiijkkijm γφβφδφα ++=  

(10)                                                                                         ,,
*

iih ψα=  
 
where ijij mt ,  and ih  are the force stress tensor, couple stress tensor and equilibrated force vector, respectively. 
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Introducing the scalar potentials ξ andq , the vector potentials Π andU , through the Helmholtz's decomposition of 
vectors as 

 
   (11)                                       ,0,, =Π⋅∇=⋅∇Π×∇+∇=Φ×∇+∇= UUqu ξ  

 
and employing these relations into equations of motion (4) – (6),  we obtain the following system of equations 
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(16)                                                  .0)( 2*2***2* =∇−++−∇ qKi βψωρωωξα  
 
  Following the procedure adopted by Tomar and Singh (2006) for plane waves advancing along the positive direction 
of a unit vector, we can obtain the dispersion relations giving the phase speeds of an independent longitudinal microrotational 
wave and two sets of coupled transverse waves along with the following dispersion equation giving the phase speeds of two 
longitudinal waves 
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The quantity S  is the speed of propagation of longitudinal displacement wave (see Parfitt and Eringen, 1969) and 

*H  is a coupling dimensionless number similar to that introduced earlier by Puri and Cowin (1985) and reduces to it in the 
absence of micropolarity. Also, equation (17) can be written as  
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Tomar and Singh (2006) have shown that the two roots of bi-quadratic equation (18) are given by 
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3. Reflection/refraction 
 
   We shall discuss the reflection and transmission phenomena of a longitudinal displacement wave incident obliquely at the 
plane interface between two distinct micropolar porous elastic solid half-spaces in perfect contact. 
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Figure 1: Schematic diagram of the problem. 
 

Let the interface be along −x axis and −z axis be taken along the direction pointing vertically downward. We take the 
lower half-space as medium ]0[ >zM  and denote the elastic constants and density in this medium by 

, and,,,,,,,,,,, ***** ρωξβαγβαμλ KJK while the upper half-space as medium ]0[/ <zM  and the corresponding 

elastic parameters therein are denoted by //*/*/*/*/*///////  and,,,,,,,,,,, ρωξβαγβαμλ KJK . The complete 
geometry of the problem is shown in Figure 1.  

We consider a two-dimensional problem in zx −  plane by taking 
 )19().,(),0,,0(),,0,( 231 zxuuu ψψφ ==Φ=  

Let a unit amplitude plane longitudinal displacement wave propagating with wavenumber 1k  and making an angle 1θ  with the 
normal be incident at the interface 0=z . We postulate the appearance of following reflected and transmitted waves to satisfy 
the boundary conditions at the interface: 
 
Reflected waves: 
(i) A longitudinal displacement wave of amplitude 1A  making angle 1θ  with the normal,  

(ii) A longitudinal volume fractional wave of amplitude 2A  making an angle 2θ  with the normal, 

(iii) Two sets of coupled transverse waves of amplitudes 4,3A  propagating with speeds 4,3V  and making angles 4,3θ  with 
the normal.  

 
 

Transmitted waves: 
(i) A longitudinal displacement wave of amplitude /

1A  making angle /
1θ  with the normal.  

(ii) A longitudinal volume fractional wave of amplitude /
2A  making an angle /

2θ  with the normal. 

(iii)  Two sets of coupled transverse waves of amplitudes /
4,3A  propagating with speeds /

4,3V  and making angles /
4,3θ  with 

the normal. 
The expressions of speeds 4,3V  are given earlier in Tomar and Singh (2006). The expressions of speeds /

4,3V  are similar to the 

expression of speeds ,4,3V  with appropriate dashes. 
        The full structure of the wave field consisting of incident, reflected and transmitted waves are given as: 
In medium ,M  
 

Unit amplitude 
Incident wave  (A2, Θ2) 

(A3, Θ3) 

(A4, Θ4) 
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1, Θ/
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2, Θ/

2) 

x 

z 

(A/
3, Θ/

3) 

(A/
4, Θ/

4) 

Θ1 

(A1, Θ1) 

O 

M: [λ, µ, K, α, β, γ, ρ, 
J, α*, β*, ξ*, ω*, K*] 

M/: [λ/, µ/, K/, α/, β/, γ/, ρ/, 
J/, α*/, β*/, ξ*/ ω*/, K*/] 
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and in medium ,/M  
 

(21)                                    ,,,
4,3

///
2

4,3

///
2

2,1

/// ∑∑∑
=

−

=

−

=

−
===

i
iii

i
ii

i
ii PAPAUPAq ηφ    

where },ti)zcosx(sinikexp{P 11111 ωθθ −−=− },tii)zicosxi(siniikexp{iP ωθθ −+=+

},t/
ii)z/

icosx/
i(sin/

iikexp{/
iP ωθθ −−=
−

)( iii Vk=ω  and  )( ///
iii Vk=ω are the frequencies of the respective 

waves. The amplitudes iA  and )4,3,2,1(/ =iAi  can be determined using appropriate boundary conditions at the interface 

.0=z  The quantities 4,3η  are the coupling parameters between 2U  (the −y component of vector U ) and ,2φ  are given 
already by Parfitt and Eringen (1969) and can be rewritten as follows  
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The quantities /
4,3η  are the coupling parameters between /

2U  and /
2φ  and their expressions are similar to 4,3η  by putting 

appropriate dashes.  
Using equations from (11) into equations (8) – (10), we can write the requisite components of stresses and displacements 

into potential form. The requisite components of stresses are given by 
 

,)2()2( *
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and the requisite components of displacements are given by 
 
                        ., ,2,3,2,1 xzzx UquUqu +=−=  
 
The expressions of stresses //// ,,, zzyzxzz hmtt  and displacements /

1u  and /
3u  in medium /M  can be written similarly by 

putting appropriate dashes, e.g., /
,2

//
zzym φγ=  and ,/

,2
/
,

/
1 zx Uqu −=  etc. The comma in the subscript denotes the spatial 

derivative. 
     At the interface between two micropolar porous elastic solid half-spaces, the appropriate mechanical boundary conditions 
are: (i) continuity of force stresses, (ii) continuity of couple stresses, (iii) continuity of equilibrated force vector, (iv) continuity 
of displacement, microrotation and change in void volume fraction.  
Mathematically, these boundary conditions can be written as: 
At the interface ,0=z  

 
,,,, ////
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/
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   Using constitutive relations given in (22) and the expressions of potentials /
2

/
22 ,,,, UqUq φ and /

2φ  from equations (20) 
and (21) into the equations in (23), we obtain the following system of eight simultaneous non-homogeneous equations after 
employing the Snell's law given by 
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and assuming that all frequencies are same at the interface, as follows 
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These equations enable us to provide the formulae for the amplitudes iA  and )4,3,2,1( / =iAi  of various reflected and 

transmitted waves at the plane interface .0=z  
 

 4. Energy partitioning 
 
   Now, we consider the energy partitioning between various reflected and refracted waves at the interface z = 0. The rate of 
energy transmission per unit area is given by  

     (33)                                                                                          .213
* φ&&& zyzxzz mututP ++=  

 
The energy l

incE  of incident longitudinal displacement wave is given by  
 

]}.)cos(sin[2exp{cos 11111
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The energy ratios )8...,,3,2,1( =iEi  of reflected longitudinal displacement wave, reflected longitudinal volume fractional 
wave, reflected sets of coupled transverse waves, refracted longitudinal displacement wave, refracted longitudinal volume 
fractional wave, refracted sets of coupled transverse waves to the incident wave are given by 
 

,2
11 AE =  
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5. Numerical discussion 

 
   In order to study the problem in greater detail, we shall solve equations (25) – (32) numerically to find the nature of 
dependence of these amplitudes of various reflected and transmitted waves with angle of incidence for low as well as for high 
frequency. For this purpose, we have taken the following numerical values of relevant physical parameters occurring in this 
problem. 

 
Symbol Value Symbol Value Unit 
λ  111055.7 ×  'λ  11105.5 ×  dyne/cm2 

μ  111019.6 ×  'μ  111014.2 ×  dyne/cm2 

K  1110145.0 ×  'K  1110129.0 ×  dyne/cm2 

γ  111086.2 ×  'γ  111088.1 ×  dyne 

J  0212.0  'J  0166.0  cm2 
ρ  6.2  'ρ  2.2          gm/cm3 

*ξ  111012×  '*ξ  111010×  dyne/cm2 

*β  111010×  '*β  11108×  dyne/cm2 

*ω  111002.0 ×  '*ω  111001.0 ×  dyne s/cm2 

*α  1110004.0 ×  '*α  1110002.0 ×  dyne 

 
Matrix inversion method is used to solve equations (25) – (32) for amplitudes of various reflected and transmitted waves. 
Figures 2 and 3 depict the variation of modulus of amplitudes of various reflected and transmitted waves with respect to the 
angle of incidence, when a longitudinal displacement wave is incident obliquely at the interface with frequency 

,10 1−= sradω  (i.e., when 12 <<ωl ). We found that all the amplitudes are complex valued at each angle of incidence. 
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               Figure 2: (Low frequency case) Variation of reflection      

coefficients with the angle of incidence (Curve-I: 1A , Curve-

II: 13
2 10×A , Curve-III: 15

3 10×A , Curve -IV: 4A )      

Figure 3: (Low frequency case) Variation of refraction 
coefficients with angle of incidence (Curve-I: /

1A , Curve-II: 

12
2 10×/A , Curve-III: 15/

3 10×A , Curve -IV: /
4A ) 

 
In Figure 2, we have plotted the modulus of amplitudes of various reflected waves against the angle of incidence. It has 

been noticed that the amplitude 2A  of the reflected volume fractional wave and the amplitude 3A  corresponding to the set 

of coupled transverse waves propagating with speed 3V  are quite small in comparison to the amplitudes 1A  and 4A . 

Therefore, these amplitudes 2A  and 3A  have been plotted after magnifying their original values by the factors of 1310  and 

,1015  respectively. The amplitude 1A  begins with the value 0.3358 near the normal incidence, it decreases till ,420
1 =θ  

and afterwards it increases very slowly upto 0
1 56=θ . Beyond ,560

1 =θ  the amplitude 1A  decreases very smoothly till 
0

1 68=θ  and thereafter it increases frequently and attains the maximum value, i.e., unity at the grazing incidence. The 

amplitude 2A  decreases throughout in the entire range with increase of 1θ . The amplitudes 3A  and 4A  begin with value 

zero at normal incidence. The value of amplitude 3A  increases with increase in the angle of incidence till 0
1 50=θ  and then, 

it gradually decreases to the value zero at grazing incidence. The value of amplitude 4A  increases slowly with increase of 

angle of incidence till ,330
1 =θ  then its value decreases till 0

1 72=θ . After ,720
1 =θ  the amplitude 4A  again increases 

very slowly with angle of incidence till a certain angle and thereafter it decreases and vanishes at 0
1 90=θ . 

      In Figure 3, we have shown the variation of modulus values of amplitudes of various refracted waves with the angle of 
incidence. We observed that the amplitudes /

1A  and /
2A  of transmitted longitudinal displacement wave and volume 

fractional wave attain their maximum values at normal incidence and then their values decrease gradually to zero at the 
grazing incidence. Both the amplitudes /

3A  and /
4A  have value zero near normal incidence, then both of them increase with 

increase in angle of incidence and attain their maximum values near 0
1 60=θ . Thereafter, they decrease and vanish at grazing 

incidence. However, the maximum value of /
4A  is greater than the maximum value of /

3A . Also, it is noted that the modulus 

of /
1A  corresponding to the transmitted longitudinal displacement wave propagating with velocity /

1V  is contributing 

significantly as compared to all other amplitudes of transmitted waves which are very small. The variation of /
2A  and /

3A  

with angle of incidence are plotted after magnifying their original values by the multiples of 1210  and ,1015  respectively. 
   Figures 4 and 5 show the variation of modulus values of amplitudes of various reflected and transmitted waves with respect 
to angle of incidence, when a longitudinal displacement wave is incident obliquely at the interface with frequency 

,500 1−= sradω  (i.e., when 12 >>ωl ).  In Figure 4, we have plotted the amplitudes of various reflected waves against 

angle of incidence. It can be seen that the amplitude 1A  and 2A  begin with some finite values at normal incidence. 
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Thereafter, the value of amplitude 1A  decreases with increase in angle of incidence till 0
1 52=θ  and thereafter, its value 

increases sharply to approach to unity as 1θ  approaches to ,900  while the value of amplitude 2A  decreases monotonically 

in the range 0
1

0 900 ≤<θ  and attains the value zero at grazing incidence. The variation of 3A  and 4A  is similar as in the 

later cases. We have plotted the amplitudes 2A  and 3A  after multiplying their original values by 1610  and ,107  
respectively. 
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Figure 4: (High frequency case) Variation of reflection 
coefficients with the angle of incidence (Curve-I: 1A , Curve-

II: 16
2 10×A , Curve-III: 7

3 10×A , Curve-IV: 4A ) 
 
 

Figure 5: (High frequency case) Variation of refraction 
coefficients with angle of incidence (Curve-I: /

1A , Curve-

II: 15/
2 10×A , Curve-III: 7/

3 10×A , Curve -IV: /
4A ) 

      Figure 5 shows the variation of amplitude of transmitted waves with angle of incidence of longitudinal displacement wave 
traveling with speed .1V  It has been noticed from this figure that the pattern of variation of amplitudes is similar as for low 

frequency case as is shown in Figure 3. Here, we have magnified the values of amplitudes /
2A  and /

3A  by 1510  and ,107  

respectively. 
     Numerically, it has been verified that the sum of real (imaginary) parts of the energy ratios of various reflected and 
transmitted waves is equal to unity (zero), at each angle of incidence at the interface, in both the cases of low and high 
frequency. In both the cases of low and high frequency incident longitudinal displacement wave, we note that the significant 
amount of incident energy goes along the reflected and transmitted longitudinal displacement waves and along the reflected 
and transmitted sets of coupled transverse waves at angle 4θ  and ./

4θ  This is because the energy carried by a wave is 
proportional to the square of the modulus of amplitude of that wave. Since the modulus of amplitudes of reflected and 
transmitted volume fractional waves and reflected and transmitted sets of coupled transverse waves with angles 3θ  and /

3θ  
are very small, so their squares are obviously very-very small and hence the energy carried by these waves is small enough. 

 
6. Conclusions 

 
   In this paper, we have studied the phenomena of reflection and transmission of incident longitudinal displacement wave at a 
plane interface between two different micropolar porous elastic solid half-spaces in perfect contact. Using the appropriate set 
of boundary conditions, the system of simultaneous equations giving the amplitudes of various reflected and transmitted waves 
are obtained. The expressions of energy ratios are also presented. We conclude that 
 
(i) The amplitudes of various reflected and transmitted waves are found to be complex valued. 
(ii) The modulus of amplitudes of various reflected and transmitted waves depend upon angle of incidence, frequency and 

elastic properties of the medium. 
(iii) Maximum amount of incident energy is carried along the reflected and transmitted longitudinal displacement waves. 
(iv) The algebraic sum of the real (imaginary) parts of the energy ratios is equal to unity (zero) at each angle of incidence 

showing that there is no dissipation of energy at the interface during transmission. 
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