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Abstract 
 
   We propose a biological economic model based on prey-predator dynamics where the prey species are continuously harvested 
and predation is considered with type II functional response. The dynamic behavior of the proposed biological economic prey-
predator model is discussed. Continuous type gestational delay of predators is incorporated and its effect on the dynamical 
behavior of the model system is analyzed. Through considering delay as a bifurcation parameter, the occurrence of Hopf 
bifurcation of the proposed model system with positive economic profit is shown in the neighborhood of the co-existing 
equilibrium point. Finally, some numerical simulations are given to verify the analytical results and the system is analyzed 
through graphical illustrations.   
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1. Introduction 
    
   The application of mathematical biology has an immense impact towards the development of commonly used biological 
resources like fishery, wildlife and forestry. Recently Scientists and researchers give emphasis on the interaction between 
mathematics and biology which initiate a new research area. Interactions of mathematics and biology can be divided into three 
categories. The first class involves routine application of existing mathematical techniques to biological problems. Such 
applications influence mathematics only when the importance to biological applications requires further developments. In other 
cases, however, existing mathematical methods are insufficient, but it is possible to develop new mathematics within the 
conventional frameworks. In the final class, some fundamental issues in biology appear to require new thoughts quantitatively or 
analytically. Most of our biological theories evolve rapidly; therefore it is necessary to develop some useful mathematical models 
to describe the consequences of these biological systems. It is observed that these newly developed mathematical models are 
significantly influenced through the biological theories in the past and the consequent expansion of those theories in recent time. 
For this purpose differential algebraic equations can be considered as an important tool for the analysis of a biological model. 
   A general prey predator model consists of the interactions between species, therefore the model includes competition, evolution 
and dispersion between the species for the purpose of seeking resources to sustain their struggle for their own existence. Kar and 
Matsuda (2006) represented the age of maturity through time delay, which leads to systems of retarded functional differential 
equations. They considered a prey-predator model with Holling type of predation and harvesting of predator species and observed 
that when the time delay is small both the prey and predator populations reach periodic oscillations around the equilibrium in finite 
time then converges to their equilibrium values and in non-delay case harvesting effort has an effect of stabilizing the equilibrium. 
Broer et al. (2005) investigated a two-dimensional predator-prey model with five parameters, adapted from the Volterra-Lotka 
system by a non monotonic response function. They described various domains of structural stability and their bifurcations. The 
effect of constant rate harvesting on the dynamics of predator-prey systems has been investigated by Dai and Tang (1998), 
Myerscough et al. (1992) and Xiao and Ruan (1999), and they obtained very rich and interesting dynamical behaviours. Feng 
(2007) considered a differential equation system with diffusion and time delays which models the dynamics of predator-prey 
interactions within three biological species. 
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   Orosz (2004) presented a formal framework for the analysis of Hopf bifurcations in delay differential equations with a single 
time delay. He determined closed-form linear algebraic equations and calculated the criticality of bifurcations by normal forms. 
Cao and Freedman (1996) obtained the criterion of persistence and global attractivity for a predator-prey model with time-delay 
due to gestation. Yafia et al. (2007) considered a model with one delay and a unique non trivial equilibrium. They studied the 
dynamics of the model in terms of the local stability and of the description of the Hopf bifurcation at non trivial equilibrium. They 
proved that delay (taken as a parameter of bifurcation) crosses some critical values and determined the direction of the Hopf 
bifurcation and the stability or instability of the bifurcating branch of periodic solutions. Kar (2003) studied a Gauss-type prey 
predator model with selective harvesting and introduce a time delay in the harvesting term. He concluded, in general, delay 
differential equations exhibit much more complicated dynamics than ordinary differential equations since time delay could cause a 
stable equilibrium to become unstable and cause the population to fluctuate. 
   Celik (2009) considered a ratio dependent predator-prey system with time delay where the dynamics is logistic with the carrying 
capacity proportional to prey population. Broer and Gaiko (2010) analyzed the complete global qualitative of quartic ecological 
model, particularly they studied the global bifurcations of singular points and limit cycles. Zhang and Zhang (2009) systematically 
studied a hybrid predator prey economic model, which is formulated by differential-difference-algebraic equations. They proved 
that this model exhibits two bifurcation phenomena at the intersampling instants. Lara and Martinet (2009) considered a discrete-
time control dynamical model with uncertainties, representing a bioeconomic system, proposed through stochastic viability 
approach to manage natural resources in a sustainable way due to uncertainties, dynamics and conflicting objectives (ecological, 
social, and economical). An efficient algorithm for individual-based, stochastic simulation of biological populations in continuous 
time presented by Allen and Dytham (2009). 
   It is observed that a numerous number of research articles of the population dynamics proposed the interaction between the 
species and the stability analysis of the population in presence of harvesting effort but quite a few number of articles considered 
the bioeconomic models to investigate the dynamical behavior of the ecosystem towards the positive economic profit. Again, for 
the long run sustainability of the ecosystem it is necessary to compare the static as well as dynamical effects of harvesting through 
considering the economic perspective of the model system. Thus to formulate a biological economic system from an economic 
point of view and investigate the realistic static and dynamical behavior of the model system we need to use differential algebraic 
equations. After going through the above literature survey we can not find any biological economic model system using 
differential algebraic equations where prey population is harvested and the dynamical behavior of such model system is studied 
through considering state feedback controller. 
   In this paper our objective is to examine the dynamical behavior of a biological economic prey predator model where prey 
population is harvested using differential algebraic and bifurcation theory. The continuous gestation delay of predator population is 
also incorporated in the model. We have divided the paper in two parts, in the first part we consider the model system with zero 
economic profit and singularity induced bifurcation is obtained at the interior equilibrium of the model system. To reduce the 
singularity induced bifurcation, state feedback controller is designed. But in the second part we consider the model system with 
positive economic profit and the occurrence of Hopf bifurcation is found at the interior equilibrium point through considering 
delay as a bifurcation parameter. It is also proved that the time delay can cause a stable equilibrium to become unstable. 
 
2. The model and its qualitative properties 
 
   In this section we consider a prey-predator model with Holling type of predation and continuously harvesting of prey species, the 
ecological set up of which is as follows. It is assumed that the predator is not harvested and hence harvesting does not affect the 
growth of the predator population directly. However, it is considered that the predators have competition among themselves for 
their survival. Again there exists conflict between predators and harvesters for common resource i.e. prey species. The growth of 
prey is assumed to be logistic. Let us assume x and y are respectively the size of the prey and predator population at time t. Thus, 
the consequent model becomes 
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where r is the intrinsic growth rate of the prey, K is the environmental carrying capacity of prey,α is the maximal relative increase 
of predation, a is Michaelis-Menten constant, )(th is the harvesting at time t, d is the death rate of predator, the predator consumes 
prey at the rate β  (we assume 10 << β , since the whole biomass of the prey is not transformed to the biomass of the predator). 

Density dependent mortality rate 2yγ describes either a self limitation of consumers or the influence of predation. γ is the intra-
specific coefficient of the predator population. Self limitation can occur if there is some other factor (other than food) which 
becomes limiting at high population densities. 
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   The functional form of harvest is generally considered using the phrase catch-per-unit-effort (CPUE) hypothesis (Clark, 1990) to 
describe an assumption that catch per unit effort is proportional to the stock level. Thus we consider 

 
,)( qExth =                     (2) 

 
where E is the harvesting effort used to harvest prey population and q is the catchability co-efficient of prey population. 
   The Antarctic krill-whale community is a good example of the present model. Krill is a main source of food of whales and the 
Antarctic krill population is being increasingly harvested. On the other hand, the moratorium imposed by IWC on killing of whales 
continues. Large catches from the lower trophic level (krill) can have serious implications for production at both the lower trophic 
level (krill) and the higher trophic level (whale). It is, therefore, necessary to regulate harvesting at the lower trophic level. 
Let us extend our model by considering the following algebraic equation 

 
0,s-c)E-(pqx =                     (3)

  
where c is the constant fishing cost per unit effort, p is the constant price per unit biomass of landed fish and s is the total economic 
rent obtained from the fishery. 
   Thus, using (2) & (3) system (1) becomes 
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   Let us now consider this harvested prey predator system with continuous time delay due to gestation. Here the predator 
population consumes the prey population at a constant rate ,β but the reproduction of predators after predating the prey population 
is not instantaneous thus it will be incorporated by some time lag required for gestation of predators. Suppose the time interval 
between the moments when an individual prey is killed and the corresponding biomass is added to the predator population is 
considered as the time delay .τ  Let us take the entire past history of prey biomass, which is to be measured 

by ,)(1exp1
0 ⎟
⎠
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⎜
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ττ
t where t<0τ is considered as a particular time in the past and t represents the present time. Thus the prey 

biomass in predator's equation is replaced by the following form 
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Under this assumption the final system becomes 
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The differential algebraic system (6) can be expressed in the following way, 
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0,s-c)E-(pqx),,( ==sEXg  
 
where   .z)y,(x,X t=  
   Let us now consider two cases separately with zero economic profit and with positive economic profit. 
 
3. The model with zero economic profit 
 
For 0,s = the system (6) becomes 
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Equilibrium points: existence and stability  
   The following lemma represents all possible non negative equilibrium points of system (7). 
 
Lemma 1 
System (7) has two equilibrium points )0,0,0,0(0P and )0,,0,(1 KKP  for any positive set of parameters. The third boundary 
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From system (7) we have the following matrix 
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The characteristic polynomial of the matrix M is given by 
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The stability of the boundary equilibrium points )0,0,0,0(0P  and )0,,0,(1 KKP of system (7) is given in the following lemma. 
 
Lemma 2 
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   Let us now study the dynamic behavior of the differential algebraic model system (7). The local stability of the boundary 
equilibrium point, )~,~,0,~(2 EzxP  and the interior equilibrium point, ),,,( ****

3 EzyxP  can be investigated using the singularity 
induced bifurcation phenomena. Here, we are interested to discuss the local stability of the model system (7) at the interior 
equilibrium point, ),,,( ****

3 EzyxP  through bifurcation phenomena. For this purpose total economic rent is assumed to be the 
bifurcation parameter i.e., .s=μ  
   Consequently we have the following theorem 
 
Theorem 1 
The differential algebraic system (7) has a singularity induced bifurcation at the interior equilibrium point 
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(i) It follows from Lemma1 that 
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(ii) It can be proved using Lemma1 that 
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   It is observed from (i)-(iii) that all the conditions for singularity induced bifurcation (Venkatasubramanian et al., 1995) are 
satisfied. Hence the differential algebraic system (7) has a singularity induced bifurcation at the interior equilibrium point 
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3 EzyxP  and the bifurcation value is s=0. 

Again, it is noted that 
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   Hence, it can be concluded from (Venkatasubramanian et al., 1995) that when s increases through zero, one eigenvalue of the 
model system (7) moves from −C to +C along the real axis by diverging through .∞ Consequently the stability of the model system 
(7) is influenced through this behavior i.e., the stability of the system at the interior equilibrium point ),,,( ****

3 EzyxP changes 
from stable to unstable. 
   In consequence to the above theorem it is clear that the differential algebraic model system (6) becomes unstable when the 
economic interest of the harvesting is considered to be positive. If we consider economic perspective of the fishery it is obvious 
that fishery agencies are interested towards the positive economic rent earned from the fishery. It is also noted that an impulsive 
phenomenon can occur through singularity induced bifurcation in prey predator ecosystem which may lead to the collapse of the 
sustainable ecosystem of the prey predator fishery. 
   Therefore, it is necessary to reduce the impulsive phenomenon from the prey predator ecosystem to resume the sustainability of 
the ecosystem and stabilize the model system when positive economic interest is considered for fishery managers. 
   Thus, to stabilize the model system (6) in case of positive economic interest a state feedback controller, (Dai, 1989) can be 
designed of the form ),)(()( *EtEutw −=  
where u stands for net feedback gain. 
   Let us introduce the state feedback controller to the model system (6) and rewrite model system as follows: 
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   Consequently, we have the following theorem: 
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Proof. For the differential algebraic model system (8), we can obtain the following Jacobian at the interior equilibrium 
point ),,,,( ****

3 EzyxP of the model system (7), 
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   According to the Routh Hurwitz criterion it can be concluded that the model system (8) is stable at the interior equilibrium 
point, ),,,,( ****

3 EzyxP of the model system (7) if the net feedback gain u satisfies the following condition: 
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   Hence, it is possible to eliminate singularity induced bifurcation which is responsible for impulsive phenomenon in a sustainable 
ecosystem, using a suitably designed net feedback gain. Again, the economic interest of fishery managers can also be achieved 
using the state feedback controller function i.e., the stability can be resumed for the model system (8) when positive economic 
interest is considered. 
 
4. The model with positive economic profit 
 
   In this section we consider the model system with positive economic profit i.e., .0≠s Here we investigate the system behavior 
for two separate cases with and without time delay. 
 
4.1 The model without time delay 
The model system (6) without time delay can be written as 
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   The interior equilibrium point of the system (9) is ),,( EyxP  
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   Thus, the characteristic polynomial of the matrix N at ),,( EyxP  is given by 
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   In particular, if we consider intra-specific coefficients of the predator population is zero i.e., 0=γ then the interior equilibrium of 
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   In this particular case the characteristic polynomial of the matrix N at ),,,( *** EyxP  is reduced to, 
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   Again, it is observed that for ,
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   Hence by the Hopf bifurcation theorem (Hassard et al., 1981), the system (9) enters into a Hopf type small amplitude periodic 
solution at *ss = in absence of γ near the positive interior equilibrium point ).,,( *** EyxP  
 
4.2 The model with time delay 
   In this section we consider the model system (6). It is evident that the coordinates of the interior equilibrium 
point, )ˆ,ˆ,ˆ,ˆ( EzyxP of model system (6) is as follows: EEyy == ˆ,ˆ and zx ˆˆ = where x̂ satisfying the equation (10) thus x̂ can be 
evaluated from equation (10). 
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   Now we have the following theorem which ensures the local stability of the interior equilibrium point, )ˆ,ˆ,ˆ,ˆ( EzyxP of the model 
system (6). 
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that .0)( 321 >−= dddA τ Hence by Routh Hurwitz criterion, the theorem follows.  
 
Bifurcation analysis 
 
   Prey-predator models with constant parameters are often found to approach a steady state in which the species coexist in 
equilibrium. But if parameters used in the model are changed, other types of dynamical behavior may occur and the critical 
parameter values at which such transitions happen are called bifurcation points. 
Now we analyze the bifurcation of the model system (6) assumingτ  as the bifurcation parameter. 
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Proof. The characteristic equation of the model system (6) at )ˆ,ˆ,ˆ,ˆ( EzyxP  is given by 
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   The equation (12) has two purely imaginary roots if and only if 321 ddd =  for a unique value of τ (say *τ ) at which we have a 

Hopf bifurcation. Thus in the neighborhood of *τ the characteristic equation (12) can't have real roots. For *ττ = we 
have .0))(( 12
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   The roots are of the following form 
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   To apply Hopf bifurcation theorem as stated in Liu's criterion (Liu,1994) we need to verify the transversality condition, 
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   Thus, it can be concluded that the interior equilibrium point, )ˆ,ˆ,ˆ,ˆ( EzyxP  is locally asymptotically stable for 

.*ττ < Furthermore, according to the Liu's criterion a simple Hopf bifurcation occurs at *ττ = and for ,*ττ >  the interior 
equilibrium point, )ˆ,ˆ,ˆ,ˆ( EzyxP  approaches to a periodic solution. 
Hence the theorem follows.  
 
5. Numerical simulations and discussion 
 
   In this section we assign numerical values to the parameters of the model system (6) and compute some simulations using those 
values. For the purpose of simulation experiments we mainly use the software MATLAB 7.0 and MATHEMATICA 5.2. This 
section can be classified into two categories. First category consists of the results where the total economic profit is considered to 
be zero. In the second category, numerical simulations are represented with positive economic profit. 
 
5.1 Simulation when total economic profit is zero 
   In order to ensure the analytical result of theorem1 numerically let us assign the following numerical values to the parameters of 
the model system (6);  30,a 0.5,q 100,K 0.75, 2,r 0.95, ====== βα  2. 1,c 15,p 0.05, 0.002,d ===== τγ  
   It is noted that when 0,s = the interior equilibrium point of the model system (6) is 3.993).0.133,0.026,(0.133,)ˆ,ˆ,ˆ,ˆ( PEzyxP =  
Again, it is observed that when 0.1-s = the eigen values of the characteristic polynomial of the model system (6) 
are 00123587.0,5.0,7359.77 −−− and the eigen values become 0.00140128.5,-81.7046,-0  when 0.1.s =  
   Therefore it is clear from the above result that when s increases through zero two eigen values of the characteristic polynomial of 
the model system (6) remain same but one eigenvalue of the model system (6) moves from −C to +C along the real axis by 
diverging through∞ . Hence, the stability of the model system (6) at the interior equilibrium point )ˆ,ˆ,ˆ,ˆ( EzyxP  changes from 
stable to unstable. 
   To stabilize the model system (6) in case of positive economic interest, let us consider a state feedback controller of the 
form ),993.3)(()( −= tEutw consequently we have got the differential algebraic model system (8) as follows, 
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It is possible to evaluate the numerical value of net feedback gain from theorem 2. For the above model system we have 
got 420.653).6,501.873,max(3.9614u > Considering 510,u = we find the interior equilibrium point of the model system (8) as 

.99298)0.133642,30.0265247,(0.133642, when 0s = and the interior equilibrium point of the model system (8) 
becomes .11794,.0187393,0(0.11794,0  3.9941) when 0.1.s =  
   It is evident from Figure1&2 that the differential algebraic model system (8) is clearly stable when s increases through zero i.e., 
singularity induced bifurcation phenomenon is eliminated from the differential algebraic model system (6) at the interior 
equilibrium point when net economic profit increases through zero. 
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Figure 1. Variation of prey and predator biomass with the increasing time when u = 510 and s = 0. 
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Figure 2. Variation of prey and predator biomass with the increasing time when u = 510 and s = 0.1. 

 
5.2 Simulation when total economic profit is positive 
   In order to ensure the existence of Hopf bifurcation let us consider the parameters of the model system (6) as 

 2.s2,c 12,p 0.002, 0.0025,d 36,a 0.05,q 100,K 0.08, 0.2,r 0.6, =========== γβα Then the critical value of the 

bifurcation parameter 7.4563.* =τ If we consider the value of 2.7=τ then it is observed from the figure1&2 that )ˆ,ˆ,ˆ,ˆ( EzyxP  is 
locally asymptotically stable and the populations x and y converge to their steady states in finite time. Now if we gradually 
increase the value of ,τ keeping other parameters fixed, then by theorem3 we have got a critical value 7.4563* =τ such that 

)ˆ,ˆ,ˆ,ˆ( EzyxP  loses its stability asτ passes through .*τ Figure3&4 clearly show the result. It is also noted that if we consider the 

value of ,8.7=τ then it is evident from figure5&6 that the positive equilibrium )ˆ,ˆ,ˆ,ˆ( EzyxP  is unstable and there is a periodic 

orbit near ).ˆ,ˆ,ˆ,ˆ( EzyxP  
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Figure 3. Variation of prey and predator biomass with the increasing time when .2.7 *ττ <=  
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Figure 4. Phase space trajectories of prey and predator biomass beginning with different initial levels when .2.7 *ττ <=  
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Figure 5. Variation of prey and predator biomass with the increasing time when .4563.7 *ττ ==  
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Figure 6. Phase space trajectories of prey and predator biomass beginning with different initial levels when .4563.7 *ττ ==  
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Figure 7. Variation of prey and predator biomass with the increasing time when .8.7 *ττ >=  
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Figure 8. Phase space trajectories of prey and predator biomass beginning with different initial levels when .8.7 *ττ >=  

 
The aforesaid Hopf bifurcation can also be illustrated if we consider another set of numerical values to the parameters of the model 
system (6).  
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Let us consider the following set of parameters:  
2.s3,c 13.5,p 0.002, 0.003,d 40,a 0.5,q 100,K 0.08, 0.25,r 0.8, =========== γβα   

For this set of parameters the critical value of the bifurcation parameter 10.678.* =τ It is clearly observed that a simple Hopf 
bifurcation occurs at *ττ = and for *ττ >  the interior equilibrium point, )ˆ,ˆ,ˆ,ˆ( EzyxP approaches to a periodic solution. 
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Figure 9. Variation of prey and predator biomass with the increasing time when .10 *ττ <=  
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Figure 10. Phase space trajectories of prey and predator biomass beginning with different initial levels when .10 *ττ <=  
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Figure 11. Variation of prey and predator biomass with the increasing time when .678.10 *ττ ==  
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Figure 12. Phase space trajectories of prey and predator biomass beginning with different initial levels when .678.10 *ττ ==  
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Figure 13. Variation of prey and predator biomass with the increasing time when .5.11 *ττ >=  
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Figure 14. Phase space trajectories of prey and predator biomass beginning with different initial levels when .5.11 *ττ >=  

 
6. Concluding remarks 
 
   The paper analyzes the dynamical behavior of a prey predator model using differential-algebraic systems theory. In general, 
delay differential equations exhibit much more complicated dynamics than ordinary differential equations thus we have studied the 
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effects of continuous time-delay on the dynamics of prey predator system. It is found that singularity induced bifurcation takes 
place when net economic revenue of the fishery is considered to be positive. In consequence to the aforesaid bifurcation, an 
impulsive phenomenon occurs and the system becomes unstable. The most important realistic feature of the paper is the state 
feedback controller which is designed to stabilize the model system when positive economic rent is taken into consideration. 
Numerical simulations are used to show that state feedback controller can be designed to resume the stability of a model system in 
case of positive economic profit. In the second part of the paper we have discussed the behavior of the model system with positive 
economic profit, here we have divided our discussion in two parts with and without time delay. In case of without time delay it is 
observed that though the model system is stable but it is possible to get a critical value of  total economic profit so that the model 
system becomes unstable when total economic profit passes through the critical value and the model system enters into Hopf type 
small amplitude periodic solution. It is noted that continuous time delay also plays an important role to the dynamics of the model 
system. It is evident from the obtained results that the time delay can cause a stable equilibrium to become unstable and even a 
simple Hopf bifurcation occurs when the time delay passes through its critical value. 
   The entire study of the paper is mainly based on the deterministic framework. On the other hand it will be more realistic if it is 
possible to consider the model system in the stochastic environment due to some ecological fluctuations and other factors. Thus, a 
future research problem would be considered in stochastic environment. Again, to achieve the commercial purpose of the fishery it 
is also possible to determine optimal harvesting strategies using game theory.  
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