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Abstract

We propose a biological economic model based on prey-predator dynamics where the prey species are continuously harvested
and predation is considered with type II functional response. The dynamic behavior of the proposed biological economic prey-
predator model is discussed. Continuous type gestational delay of predators is incorporated and its effect on the dynamical
behavior of the model system is analyzed. Through considering delay as a bifurcation parameter, the occurrence of Hopf
bifurcation of the proposed model system with positive economic profit is shown in the neighborhood of the co-existing
equilibrium point. Finally, some numerical simulations are given to verify the analytical results and the system is analyzed
through graphical illustrations.
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1. Introduction

The application of mathematical biology has an immense impact towards the development of commonly used biological
resources like fishery, wildlife and forestry. Recently Scientists and researchers give emphasis on the interaction between
mathematics and biology which initiate a new research area. Interactions of mathematics and biology can be divided into three
categories. The first class involves routine application of existing mathematical techniques to biological problems. Such
applications influence mathematics only when the importance to biological applications requires further developments. In other
cases, however, existing mathematical methods are insufficient, but it is possible to develop new mathematics within the
conventional frameworks. In the final class, some fundamental issues in biology appear to require new thoughts quantitatively or
analytically. Most of our biological theories evolve rapidly; therefore it is necessary to develop some useful mathematical models
to describe the consequences of these biological systems. It is observed that these newly developed mathematical models are
significantly influenced through the biological theories in the past and the consequent expansion of those theories in recent time.
For this purpose differential algebraic equations can be considered as an important tool for the analysis of a biological model.

A general prey predator model consists of the interactions between species, therefore the model includes competition, evolution
and dispersion between the species for the purpose of seeking resources to sustain their struggle for their own existence. Kar and
Matsuda (2006) represented the age of maturity through time delay, which leads to systems of retarded functional differential
equations. They considered a prey-predator model with Holling type of predation and harvesting of predator species and observed
that when the time delay is small both the prey and predator populations reach periodic oscillations around the equilibrium in finite
time then converges to their equilibrium values and in non-delay case harvesting effort has an effect of stabilizing the equilibrium.
Broer et al. (2005) investigated a two-dimensional predator-prey model with five parameters, adapted from the Volterra-Lotka
system by a non monotonic response function. They described various domains of structural stability and their bifurcations. The
effect of constant rate harvesting on the dynamics of predator-prey systems has been investigated by Dai and Tang (1998),
Myerscough et al. (1992) and Xiao and Ruan (1999), and they obtained very rich and interesting dynamical behaviours. Feng
(2007) considered a differential equation system with diffusion and time delays which models the dynamics of predator-prey
interactions within three biological species.
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Orosz (2004) presented a formal framework for the analysis of Hopf bifurcations in delay differential equations with a single
time delay. He determined closed-form linear algebraic equations and calculated the criticality of bifurcations by normal forms.
Cao and Freedman (1996) obtained the criterion of persistence and global attractivity for a predator-prey model with time-delay
due to gestation. Yafia et al. (2007) considered a model with one delay and a unique non trivial equilibrium. They studied the
dynamics of the model in terms of the local stability and of the description of the Hopf bifurcation at non trivial equilibrium. They
proved that delay (taken as a parameter of bifurcation) crosses some critical values and determined the direction of the Hopf
bifurcation and the stability or instability of the bifurcating branch of periodic solutions. Kar (2003) studied a Gauss-type prey
predator model with selective harvesting and introduce a time delay in the harvesting term. He concluded, in general, delay
differential equations exhibit much more complicated dynamics than ordinary differential equations since time delay could cause a
stable equilibrium to become unstable and cause the population to fluctuate.

Celik (2009) considered a ratio dependent predator-prey system with time delay where the dynamics is logistic with the carrying
capacity proportional to prey population. Broer and Gaiko (2010) analyzed the complete global qualitative of quartic ecological
model, particularly they studied the global bifurcations of singular points and limit cycles. Zhang and Zhang (2009) systematically
studied a hybrid predator prey economic model, which is formulated by differential-difference-algebraic equations. They proved
that this model exhibits two bifurcation phenomena at the intersampling instants. Lara and Martinet (2009) considered a discrete-
time control dynamical model with uncertainties, representing a bioeconomic system, proposed through stochastic viability
approach to manage natural resources in a sustainable way due to uncertainties, dynamics and conflicting objectives (ecological,
social, and economical). An efficient algorithm for individual-based, stochastic simulation of biological populations in continuous
time presented by Allen and Dytham (2009).

It is observed that a numerous number of research articles of the population dynamics proposed the interaction between the
species and the stability analysis of the population in presence of harvesting effort but quite a few number of articles considered
the bioeconomic models to investigate the dynamical behavior of the ecosystem towards the positive economic profit. Again, for
the long run sustainability of the ecosystem it is necessary to compare the static as well as dynamical effects of harvesting through
considering the economic perspective of the model system. Thus to formulate a biological economic system from an economic
point of view and investigate the realistic static and dynamical behavior of the model system we need to use differential algebraic
equations. After going through the above literature survey we can not find any biological economic model system using
differential algebraic equations where prey population is harvested and the dynamical behavior of such model system is studied
through considering state feedback controller.

In this paper our objective is to examine the dynamical behavior of a biological economic prey predator model where prey
population is harvested using differential algebraic and bifurcation theory. The continuous gestation delay of predator population is
also incorporated in the model. We have divided the paper in two parts, in the first part we consider the model system with zero
economic profit and singularity induced bifurcation is obtained at the interior equilibrium of the model system. To reduce the
singularity induced bifurcation, state feedback controller is designed. But in the second part we consider the model system with
positive economic profit and the occurrence of Hopf bifurcation is found at the interior equilibrium point through considering
delay as a bifurcation parameter. It is also proved that the time delay can cause a stable equilibrium to become unstable.

2. The model and its qualitative properties

In this section we consider a prey-predator model with Holling type of predation and continuously harvesting of prey species, the
ecological set up of which is as follows. It is assumed that the predator is not harvested and hence harvesting does not affect the
growth of the predator population directly. However, it is considered that the predators have competition among themselves for
their survival. Again there exists conflict between predators and harvesters for common resource i.e. prey species. The growth of
prey is assumed to be logistic. Let us assume x and y are respectively the size of the prey and predator population at time t. Thus,
the consequent model becomes

(D

where r is the intrinsic growth rate of the prey, K is the environmental carrying capacity of prey, « is the maximal relative increase
of predation, a is Michaelis-Menten constant, h(t)is the harvesting at time t, d is the death rate of predator, the predator consumes
prey at the rate f (we assume 0 < S <1, since the whole biomass of the prey is not transformed to the biomass of the predator).

Density dependent mortality rate yyz describes either a self limitation of consumers or the influence of predation. y is the intra-

specific coefficient of the predator population. Self limitation can occur if there is some other factor (other than food) which
becomes limiting at high population densities.
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The functional form of harvest is generally considered using the phrase catch-per-unit-effort (CPUE) hypothesis (Clark, 1990) to
describe an assumption that catch per unit effort is proportional to the stock level. Thus we consider

h(t) = gEX, 2)

where E is the harvesting effort used to harvest prey population and q is the catchability co-efficient of prey population.

The Antarctic krill-whale community is a good example of the present model. Krill is a main source of food of whales and the
Antarctic krill population is being increasingly harvested. On the other hand, the moratorium imposed by IWC on killing of whales
continues. Large catches from the lower trophic level (krill) can have serious implications for production at both the lower trophic
level (krill) and the higher trophic level (whale). It is, therefore, necessary to regulate harvesting at the lower trophic level.

Let us extend our model by considering the following algebraic equation

(Pgx-¢)E-s =0, A3)
where ¢ is the constant fishing cost per unit effort, p is the constant price per unit biomass of landed fish and s is the total economic

rent obtained from the fishery.
Thus, using (2) & (3) system (1) becomes

dt K) a+x

d X

DD gy, @)
t a+X

(pgx-¢)E-s =0,

Let us now consider this harvested prey predator system with continuous time delay due to gestation. Here the predator
population consumes the prey population at a constant rate S, but the reproduction of predators after predating the prey population

is not instantaneous thus it will be incorporated by some time lag required for gestation of predators. Suppose the time interval
between the moments when an individual prey is killed and the corresponding biomass is added to the predator population is
considered as the time delayz. Let us take the entire past history of prey biomass, which is to be measured

1 1 . . . L .

by—exp(——(t -7, )j, where 7, <tis considered as a particular time in the past and t represents the present time. Thus the prey
T T

biomass in predator's equation is replaced by the following form

t

2(t) = j X(t)%exp[—% (t—7, )jd 7. (5)

Under this assumption the final system becomes

dt K) a+x

dy  pyz 2

L= dy—wy?,

d a+z =N (6)
dz 1

—=—(x-12),

dt z'( )

(pgx-c)E-s=0.

The differential algebraic system (6) can be expressed in the following way,
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rx(l—ij—a—xy—qu
fl(X,E,S) K a+ X
FXGES) = hGES) =] 2K dy-py?
a+x
fi(X,E,s
5( ) l(x—z)
T

g(xs E,S):(qu-C)E-SIO,

where X=(xy,2)".

Let us now consider two cases separately with zero economic profit and with positive economic profit.

3. The model with zero economic profit

Fors = 0, the system (6) becomes

ax _ rx(l_ij_a_xv_qu,

dt K) a+x

dy  pyz 5

at a+z YN @)
dz 1

—=—(X-2),

dt z'( )

(pgx-c)E=0.

Equilibrium points: existence and stability
The following lemma represents all possible non negative equilibrium points of system (7).

Lemma 1
System (7) has two equilibrium points P,(0,0,0,0)and P, (K,0,K,0) for any positive set of parameters. The third boundary

equilibrium point P, (X,0,Z, E) exists if and only ifc < Kpg where X :L,T :L, E :Lqur. The interior equilibrium

a’ pg Kpg?
point Py(x*,y",z",E") of the system (7) exists if ¢ >cd+adpgand r+ pqa(cd +adp2q—cﬂ) > " When these conditions
(c+apa)“y Kpg

are satisfied x*, y*, z" and

(c+apa)y ~~  pa’ g Kpg ( ¢ j '
a+%)q (c+apq)y
From system (7) we have the following matrix
M =Dy f ~Dg f(Dgg) ™' Dy g

E” are given by x :L’y* _ —cd —adpg+ch ;=% g _1 cr _ a(-cd —adpg+cp)

2
p_2xr @y o PAEX —ox 0
K (a+x)2 pgx—c a+x
- 0 P g oy,
a+z (a+z)2
1 0 _1
T T

The characteristic polynomial of the matrix M is given by

13 v (X Ey? +ay (X, E)u+ag (X, E)=0,
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where

_ 1 2 cEq aya 173
a =d+—+ r(—1+?")+m+m—m+2yy,
a2:—£+ﬂ+L“2+d l+r(—l+%j+ cEq ayoz2 Lp B ayzza/}

7 Kz r@@a+x) T C—pax (a+x) a+z r(a+z) K@+2) (a+x)*(a+2)
2 —_—
—oryy+ 2yy N 4rxyy . 2ay“ay N CEq(a+z—zfz+2awyy +2wyzy) ’
T K (a+x)? 7(C— pgx)(a+2)

a3:l q r(_1+%)+cEqu+ aya . rzg  2rxzf . axyapf B ayzap —2ry;/+4rxy7

T PX@a+x)?) a+z K(@+z) (a+x)a+2)? (@a+x?(@+z) K

. 2ay’ay L CEaC-fz+2y@@+2)y) |
(a+x)? (c—pgx)(a+2)

The stability of the boundary equilibrium points P, (0,0,0,0) and P, (K,0,K,0) of system (7) is given in the following lemma.
Lemma 2

The boundary equilibrium point P, (0,0,0,0) is unstable and P, (K,0, K,0) is locally asymptotically stable if g < d(l +%}

The eigen values of the characteristic polynomial at the boundary equilibrium point P, (0,0,0,0) are —d,r,—. Thus the boundary
T
equilibrium point P, (0,0,0,0) is unstable. Again the eigen values of the characteristic polynomial at the boundary equilibrium point

R (K,0,K,0) are—r,_l’w
T a+K

. a
if f< d[l+?].

Let us now study the dynamic behavior of the differential algebraic model system (7). The local stability of the boundary

. It is clearly observed that the boundary equilibrium point P,(K,0,K,0)) is stable

equilibrium point, P,(X,0,7, E) and the interior equilibrium point, P, (x*,y",2",E”) can be investigated using the singularity
induced bifurcation phenomena. Here, we are interested to discuss the local stability of the model system (7) at the interior
oge . . * * * * . . . . .
equilibrium point, P;(X ,y ,z ,E ) through bifurcation phenomena. For this purpose total economic rent is assumed to be the
bifurcation parameter i.e., u =S.
Consequently we have the following theorem

Theorem 1
The differential algebraic system (7) has a singularity induced bifurcation at the interior equilibrium point

P,(x",y",z",E").When the bifurcation parameter s increases through zero the stability of the interior equilibrium point

P,(x",y",z",E") changes from stable to unstable.
Proof. Itisevident that D g = pgx—c has a simple zero eigen value. Thus, we can define A(X,E,s)=Dgg = pgx—c.

(i) It follows from Lemmal that
trace(Dg f adj(Dg9)Dy 9)p, =—pg°x E” 0.

(i1) It can be proved using Lemmal that
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2 aay _
r—%—m—qE -2 0 —gx
P apy
DX f DEf _ 0 m—d—zy}/ (a+z)2 0
DXg DEg P, l 0 _l 0
T T
pqE 0 0 pax—cj,
3

2 * & ¥
xyE
_PAxXyEY £0.
T
(iii) It can also be shown using Lemmal that

2 aay -

I’—%— (a+x)? A Fai 0 ¥ 0
Jid agy

Dyf Dgf D,f 0 072V oF 0
Dxg Deg D,9f = 1 0 1 0 0
Ps pqE 0 0 pgx-c -1

Pq 0 0 0 Op

3

2k %
_PAxXyr._,
T
It is observed from (i)-(iii) that all the conditions for singularity induced bifurcation (Venkatasubramanian et al., 1995) are
satisfied. Hence the differential algebraic system (7) has a singularity induced bifurcation at the interior equilibrium point

P, (X*, y*, z"E *) and the bifurcation value is s=0.
Again, it is noted that

M, =-trace(Dg f adj(Dg 9)Dx 9)p, = pa’x E",

-1
MzlelA—(DXA DEA)[DXf DEfJ [Dﬂf]] = l*.

Dxg Deg D,g E

3
Consequently from Lemmal we have,

M * *
—L = pg®’x"E 250.
M,

Hence, it can be concluded from (Venkatasubramanian et al., 1995) that when s increases through zero, one eigenvalue of the
model system (7) moves from C ™ to C ™ along the real axis by diverging through co. Consequently the stability of the model system
(7) is influenced through this behavior i.e., the stability of the system at the interior equilibrium point P; (", y*, 7", E*) changes

from stable to unstable.

In consequence to the above theorem it is clear that the differential algebraic model system (6) becomes unstable when the
economic interest of the harvesting is considered to be positive. If we consider economic perspective of the fishery it is obvious
that fishery agencies are interested towards the positive economic rent earned from the fishery. It is also noted that an impulsive
phenomenon can occur through singularity induced bifurcation in prey predator ecosystem which may lead to the collapse of the
sustainable ecosystem of the prey predator fishery.

Therefore, it is necessary to reduce the impulsive phenomenon from the prey predator ecosystem to resume the sustainability of
the ecosystem and stabilize the model system when positive economic interest is considered for fishery managers.

Thus, to stabilize the model system (6) in case of positive economic interest a state feedback controller, (Dai, 1989) can be

designed of the form w(t) = u(E(t)-E"),
where u stands for net feedback gain.
Let us introduce the state feedback controller to the model system (6) and rewrite model system as follows:



19 Karand Chakraborty / International Journal of Engineering, Science and Technology,
Vol. 2, No. 1, 2010, pp. 13-34

dt K a+x

dy pyz 2

Lo gy—

at arz YT (8)
dz 1

—=—(Xx-2),

dt 2'( )

(pgx -¢)E-s+U(E(t)—E") =0.
Consequently, we have the following theorem:

Theorem 2
The differential algebraic model system (8) is stable at the interior equilibrium point, P3(x*, y*,z",E"), of the model system (7),
if

2 * *
M. x E
00’ E" pg*x'y E'y+ P =
U > max — , 5 L ,
rx X a N 1 * ok * % * * % *
?_%ﬁyﬂf XYy xy ey ™ _ xya Y7
(@a+x") T K (@+xH? Kr @+xH’r 7
2 * * *
pa'x y E'y
T

* % * % * %2
ax y aoff +rxy;/_xy ay
@+xH)@a+z)*r Kz (a+x")’r

Proof. For the differential algebraic model system (8), we can obtain the following Jacobian at the interior equilibrium
point Py (X*, y*, z", E*), of the model system (7),

B * % % 2 * % « 7]
E _
X y*a &Jr pg—Xx ax* 0
(a+x)2 K u a+x
. apy”
Jp, = 0 - L*z
(a+z)
1 0 _1
T T

Therefore, the characteristic polynomial of the matrix J is given

13 W (X E) e +wo (X, E) g+ w3 (X, E) =0,

* 2 * % I
x E X % 1

where w, X M - *az tYyr+—,
K u (@a+x) T

* % * ok _ % P—) * P * % *
oYy pa?XY'Ey XyTay n pa?X'ET xy'a vy
K u (a+x")? Kz ur (@a+x)’r 7

W,

P O PANE T x %2
ax'y'ap  nyy patxyEy Xy ay

W; = * * * N
(@a+xYa+z)*r Kr ur (@a+x")r
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According to the Routh Hurwitz criterion it can be concluded that the model system (8) is stable at the interior equilibrium
point, P; (X* R y* .2 E° ), of the model system (7) if the net feedback gain u satisfies the following condition:

2k ok
* * * X E
2 *E* pq2X y E}/+L
y pa’x .
> max| — — , . ,
XY a1ty *yt * £ .
K Al Tyt XYy Xy ey X Xya Y7V
(@a+x") T K (@a+x)?* Kr (a+x")’r
2k w
pg°x y Ey
T

* % * % * %2
ax y aff +rxy7_xy ay
(a+xH)a+z)’z Kz (a+x")*r

Hence, it is possible to eliminate singularity induced bifurcation which is responsible for impulsive phenomenon in a sustainable
ecosystem, using a suitably designed net feedback gain. Again, the economic interest of fishery managers can also be achieved

using the state feedback controller function i.e., the stability can be resumed for the model system (8) when positive economic
interest is considered.

4. The model with positive economic profit

In this section we consider the model system with positive economic profit i.e., S # 0. Here we investigate the system behavior
for two separate cases with and without time delay.

4.1 The model without time delay
The model system (6) without time delay can be written as

%: rx(l—i]—a—xy—qu,

K) a+x
d
Y_PY g e ©)
dt a+x
(pgx-c)E-s=0.

The interior equilibrium point of the system (9) is P(X,y,E)

K-d@+x) —

where y= ——, E =——— and Xsatisfies the following equation
y(@a+Xx) pgx —c
CoX* +C,X? +C,X* +C3X+C, =0, (10)
where Cy = pary,

C, =—cry+2apqry — Kpary,

C, =-dKpge + Kpgaf —2acry + cKry + a’ pary —2aKpqry + Kgsy,
C, =cdKa —adKpga —cKaf —a’cry + 2acKry —a*Kpgry + 2aKgsy,
C, =acdKa +a’cKry +a?Kgsy.

From system (9) we have the following matrix

Xya X PA2XE  _ox%
N = (a+i)2 K pox —c a+Y.
agy =

(a+Xx)
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Thus, the characteristic polynomial of the matrix N at E(i, Y, E) is given by
% +by (X, E)u+by (X, E)=0,

- oo 2=
where b, = X  Xya pg“XE =

+y y’

K (ayp? POR-c

L _&XyaB Xyr_ Xy’ay pa’xEyy
2 - _ . .
@+x’ K @ix?  pox-c
2= —
We find thatb, > 0 andb, > 0if— > PEE Y&
PIX—C  (a+%)?

Hence, the interior equilibrium point P (X, , E ) of system (9) is asymptotically stable if

2= _
LIS pq_ E e
K= pix-¢c (a:+%)2

In particular, if we consider intra-specific coefficients of the predator population is zero i.e., = 0 then the interior equilibrium of
the model system (9) becomes P(x", y*, E’ ),

where X" = ad s
pB-d
242 2 _ _
y*:i ar— asd’r adr N a“dr  aq(-ds+sp) N adq(—ds +sp) and
a Kd-p?* d-p Kd-p) cd+adpg—-cg (d-p)(cd +adpg—cp)
£ sp—ds

- cd +adpg-cp

It is noted that for the existence of the interior equilibrium point, P(X*, y*, E*), it is necessary £ >d, cd +adpqg > cf and
K — 2
rK > adr + ps(d =/5) .
B-d  (B-d)cd +adpg—-cp)

In this particular case the characteristic polynomial of the matrix N at P(x* s y*, E" ), is reduced to,

p? 4 p (X, E)r+ py (X, E) =0,

(11)
" xX'y'a  pg*xE’
where pp=—- T " ,
K (a+x) pgx —c
2:M>0.
(a+x)

2 % %
Wefindthat  p, >0if>PIE Y&
pax ¢ (a+x")2

2% %
Hence, the interior equilibrium point P(x",y",E"), of system (9) is asymptotically stable if I > Pa”E ya

pox"—¢  (a+x")2
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_ r(adpg+c(d - 8)° (K(d - p)+a(d + )
Kg(c+apa)(d - B)°

characteristic equation (11) become purely imaginary and they are conjugate to each other. Also we have

Again, it is observed that fors=s" = p, =0and hence the roots of the

_ dg(c+apg)(d - B3)>
P(x"y E" T 25" >
(x,yL,E ) ds—g (adpg+c(d =) g

i traceN
ds

Hence by the Hopf bifurcation theorem (Hassard et al., 1981), the system (9) enters into a Hopf type small amplitude periodic
solution ats = s in absence of v near the positive interior equilibrium point P(x",y",E").

4.2 The model with time delay
In this section we consider the model system (6). It is evident that the coordinates of the interior equilibrium

point, P(%, ¥, 2, E) of model system (6) is as follows: § = ¥, E = E and X = 2 where % satisfying the equation (10) thus X can be
evaluated from equation (10).
From the model system (6) we have the following matrix

& PCER —ex
(a+>”<)2 K pgk-c a+Xx
. apy
(a+7)2
1 0 _1
T T

Thus, the characteristic polynomial of the matrix R is given by

3 +d (X B +dy (X, E)u+dy (X, E) =0,

where
n 2 A,
% axy pg Ex .
dl:ﬁ_ o T Yrt—,
K (a+>‘<)2 pgx—c
o B oy pa’ENy gy %’y
27 Kr (pgk-¢)r K @+5)2c PR-C 1 qig)2]
g__ AP %y a’r  pg’ERy
Pr@+i)a+d)? Kt aex)2 (PaR-o)r
2. .
It is noted thatd, >0and d; >0 it qu E + yof >
K pagx-c (a+%)

Letusassume  A(r)=d,d, —d;.

Then, A(r):Lz(tlr2 +t,7+t3),
T
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where

LRy DOERNy 2Ry a9 00 ey @RSy
k2 (pgk—c)2  (PAR-OK (a+%)’K (a+%)2(pgk—c) (a+R)*

L Pt a%yy

K pgR—-¢c  (a+%)>’
N & p’a*E’%®  2pg’rEx>  2ra R’y 2pq*ERYa +a2>”<2§/2_ aa B 5§
2T K2 (pgr-c)? (PR-OK (a+%)’K (a+%)*(pgR-c) (a+%)* (@+R)@a+2)’

L2097 200°ERy 2087y oo
K PgR—C  (a+%X)> ’
n 2 A

L aX Ex .

ty = y_ ™ Tyr.

K (a+>2)2 pgx —c

Now we have the following theorem which ensures the local stability of the interior equilibrium point, P(X, ¥, Z, é) of the model

system (6).
Theorem 3
oaa .1 pg’E Yo 5 .
If P(X,9,2,E) exists with— >——+ sand {77 +t,7+t5 >0, then P(X, ¥, Z, E) is locally asymptotically stable.
K poXx-c (a+X)
2L ~
Proof. The condition — > qu E T implies that d, >0 and d; >0. Finally, t,z?+t,z+t; >0implies
K pak-c (a+%)?

that A(r) =d,d, —d; > 0.Hence by Routh Hurwitz criterion, the theorem follows.

Bifurcation analysis

Prey-predator models with constant parameters are often found to approach a steady state in which the species coexist in
equilibrium. But if parameters used in the model are changed, other types of dynamical behavior may occur and the critical
parameter values at which such transitions happen are called bifurcation points.

Now we analyze the bifurcation of the model system (6) assuming 7 as the bifurcation parameter.

Theorem 4

N . . 2 o\ 3
If P(X,9¥,2,E) exists wnth%> Y% andr< 7(6}+X)

- > , then a simple Hopf bifurcation occurs at the positive
pgx—-c (a+X) aXapf

unique valuer = 7"
Proof. The characteristic equation of the model system (6) at P(X, ¥, Z, Ié) is given by

12 +d (@p? +dy (Dp+dy(0) =0, (12)

The equation (12) has two purely imaginary roots if and only ifd,d, = d; for a unique value of 7 (say ") at which we have a

Hopf bifurcation. Thus in the neighborhood of 7" the characteristic equation (12) can't have real roots. Forr=7" we

have ( yz +d,)(u+d;)=0. This equation has two purely imaginary roots and a real root as,

py =iydy, gy =—iyJd; and 3 = —d;.
The roots are of the following form

#y(z) = P(2)+10(2), (1) = () —iq(z) and p5(7) = —d, (7).

To apply Hopf bifurcation theorem as stated in Liu's criterion (Liu,1994) we need to verify the transversality condition,
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[dp(r)} 0
dz r=r" .

Substituting () = p(r)+iq(r),in the equation (12) and differentiating the resulting equation w.rt. 7,and
setting p(z) = 0 and q(7) = 4/d, , we get the transversality condition at 7 = T as

[dpm} _|_dy(dids —dj+djd,)
dr T=T 2(d22+d12d2) -

Thus from the expressions of d,,d, and d; we find,

v2227*+2v(>z+>zyyr*)+y(2y— axafz +9721*]

A aN2 ~A\3
a+xX)a+1z
[dp(r)} _ 2( )@a+17) >Oifr<27(a}+x) ,
dr Jor o (A . lj VR 9y | w3 axaf
AVXYy +HVX+Yy+— | +—(+ |7
T T T
2.2 ~
where V:L— pqﬂ E__JYa

Thus, it can be concluded that the interior equilibrium point, P(X,YV,Z, é) is locally asymptotically stable for
r <7 . Furthermore, according to the Liu's criterion a simple Hopf bifurcation occurs at 7 = 7 and for 7>7", the interior
equilibrium point, P(X, §,7, E) approaches to a periodic solution.

Hence the theorem follows.

5. Numerical simulations and discussion

In this section we assign numerical values to the parameters of the model system (6) and compute some simulations using those
values. For the purpose of simulation experiments we mainly use the software MATLAB 7.0 and MATHEMATICA 5.2. This
section can be classified into two categories. First category consists of the results where the total economic profit is considered to
be zero. In the second category, numerical simulations are represented with positive economic profit.

5.1 Simulation when total economic profit is zero

In order to ensure the analytical result of theorem1 numerically let us assign the following numerical values to the parameters of
the model system (6); « =0.95,r=2, #=0.75,K =100,q =0.5,a =30, d=0.002,y=0.05,p=15,c=1,7=2.

It is noted that whens = 0, the interior equilibrium point of the model system (6) is P(X, ¥, 7, E) = P(0.133, 0.026,0.133,3.993).
Again, it is observed that whens=-0.1the eigen values of the characteristic polynomial of the model system (6)
are—77.7359,—0.5,—0.00123587 and the eigen values become 81.7046,-0.5,-0.00140128 whens =0.1.

Therefore it is clear from the above result that when s increases through zero two eigen values of the characteristic polynomial of
the model system (6) remain same but one eigenvalue of the model system (6) moves fromC ™ toC ™" along the real axis by
diverging throughoo . Hence, the stability of the model system (6) at the interior equilibrium point P(X, ¥, Z, é) changes from

stable to unstable.
To stabilize the model system (6) in case of positive economic interest, let us consider a state feedback controller of the
formw(t) = u(E(t) —3.993), consequently we have got the differential algebraic model system (8) as follows,
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xS X _M_o_sEx,
dt 100) 30+x

Gy _ 0752 h02y-0.05y2.
dt  30+z

dz 1

= =—(x-2),

a2

(15%0.5x -1)E -s + U(E(t) —3.993) = 0.

It is possible to evaluate the numerical value of net feedback gain from theorem 2. For the above model system we have
gotu > max(3.96146,501.873,420.653). Considering u =510, we find the interior equilibrium point of the model system (8) as
(0.133642,0.0265247,0.133642,3.99298) when s=0and the interior equilibrium point of the model
becomes (0.11794,0.0187393,0.11794, 3.9941) whens =0.1.

It is evident from Figurel&2 that the differential algebraic model system (8) is clearly stable when s increases through zero i.e.,

singularity induced bifurcation phenomenon is eliminated from the differential algebraic model system (6) at the interior
equilibrium point when net economic profit increases through zero.

system  (8)

u =510 and s=0
0.16

Prey biomass
77777 Predator biomass
0.14

0.12

0.1

xX&y

0.08

0.06

0.04 - !

0.02

| = | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
t

Figure 1. Variation of prey and predator biomass with the increasing time when u= 510 and s = 0.
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u =510 and s=0.1
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Figure 2. Variation of prey and predator biomass with the increasing time when u =510 and s =0.1.

5.2 Simulation when total economic profit is positive
In order to ensure the existence of Hopf bifurcation let us consider the parameters of the model system (6) as
a=0.6,r=0.2,4=0.08,K=100,q=0.05,a=36,d =0.0025, =0.002,p=12,c=2,s =2. Then the critical value of the

bifurcation parameter 7" =7.4563.1f we consider the value of 7 =7.2then it is observed from the figure1&2 that P(X,V,Z, Ié) is
locally asymptotically stable and the populations x and y converge to their steady states in finite time. Now if we gradually
increase the value ofz, keeping other parameters fixed, then by theorem3 we have got a critical value r" =7.4563 such that

P(X,9,1, E) loses its stability as 7 passes through i Figure3&4 clearly show the result. It is also noted that if we consider the
value of 7 = 7.8, then it is evident from figure5&6 that the positive equilibrium P(X, ¥, Z, é) is unstable and there is a periodic

orbit near P(X, 9,2, E).
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Figure 3. Variation of prey and predator biomass with the increasing time whenz =7.2<7".
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Figure 4. Phase space trajectories of prey and predator biomass beginning with different initial levels when 7 =7.2<7".
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Figure 5. Variation of prey and predator biomass with the increasing time whenz = 7.4563 =7 .

18

17+

16 -

15+

14+

> 13

12 -

11+

10

8 L L 1 1 1 L 1 1 1
5 10 15 20 25 30 35 40 45 50 55

Figure 6. Phase space trajectories of prey and predator biomass beginning with different initial levels when 7 =7.4563 = T
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Figure 7. Variation of prey and predator biomass with the increasing time when 7=7.8>7".
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Figure 8. Phase space trajectories of prey and predator biomass beginning with different initial levels when 7 =7.8>7".

The aforesaid Hopf bifurcation can also be illustrated if we consider another set of numerical values to the parameters of the model
system (6).
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Let us consider the following set of parameters:
a=0.8,r=0.25,4=0.08,K=100,q=0.5,a=40,d =0.003, » =0.002,p=13.5,c =3,s = 2.
For this set of parameters the critical value of the bifurcation parameter 7" =10.678.1t is clearly observed that a simple Hopf
bifurcation occurs at 7 =7 and for 7>~ the interior equilibrium point, P(X, YV, Z, é) approaches to a periodic solution.
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Figure 9. Variation of prey and predator biomass with the increasing time whenz =10 < T,
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Figure 12. Phase space trajectories of prey and predator biomass beginning with different initial levels whenz =10.678 =7 .
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Figure 13. Variation of prey and predator biomass with the increasing time whenz =11.5>7".

18

17+

16 -

15+

14}

> 13+

12 -

11+

10+

8 1 L L 1 1 L
0 10 20 30 40 50 60 70

X

Figure 14. Phase space trajectories of prey and predator biomass beginning with different initial levels whenz =11.5>7".
6. Concluding remarks

The paper analyzes the dynamical behavior of a prey predator model using differential-algebraic systems theory. In general,
delay differential equations exhibit much more complicated dynamics than ordinary differential equations thus we have studied the
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effects of continuous time-delay on the dynamics of prey predator system. It is found that singularity induced bifurcation takes
place when net economic revenue of the fishery is considered to be positive. In consequence to the aforesaid bifurcation, an
impulsive phenomenon occurs and the system becomes unstable. The most important realistic feature of the paper is the state
feedback controller which is designed to stabilize the model system when positive economic rent is taken into consideration.
Numerical simulations are used to show that state feedback controller can be designed to resume the stability of a model system in
case of positive economic profit. In the second part of the paper we have discussed the behavior of the model system with positive
economic profit, here we have divided our discussion in two parts with and without time delay. In case of without time delay it is
observed that though the model system is stable but it is possible to get a critical value of total economic profit so that the model
system becomes unstable when total economic profit passes through the critical value and the model system enters into Hopf type
small amplitude periodic solution. It is noted that continuous time delay also plays an important role to the dynamics of the model
system. It is evident from the obtained results that the time delay can cause a stable equilibrium to become unstable and even a
simple Hopf bifurcation occurs when the time delay passes through its critical value.

The entire study of the paper is mainly based on the deterministic framework. On the other hand it will be more realistic if it is
possible to consider the model system in the stochastic environment due to some ecological fluctuations and other factors. Thus, a
future research problem would be considered in stochastic environment. Again, to achieve the commercial purpose of the fishery it
is also possible to determine optimal harvesting strategies using game theory.
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