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Abstract 
 
   The Job-Shop Scheduling Problem (JSSP) is one of the most difficult problems, as it is classified as NP-Hard problem. The 
main objective of the JSSP is to find a schedule of operations that can minimize the maximum completion time (called 
makespan) that is the completed time of carrying total operations out in the schedule for n jobs and m machines. In many cases, 
the combination of goals and resources exponentially increases the search space, and thus the generation of consistently good 
scheduling is particularly difficult, because we have a very large combinatorial search space and precedence constraints between 
operations. Exact methods such as the branch and bound method and dynamic programming take considerable computing time 
to obtain the optimum solution. In order to overcome this difficulty, it is more sensible to obtain a good solution near the optimal 
one. Stochastic search techniques such as evolutionary algorithms can be used to find a good solution. In this paper we proposed 
a new method for solving job-shop scheduling problem using hybrid Genetic Algorithm (GA) with Simulated Annealing (SA). 
This method introduces a reasonable combination of local search and global search for solving JSSP. 
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1. Introduction 
 
   Several problems in various industrial environments are combinatorial. This is the case for numerous scheduling and planning 
problems. Generally, it is extremely difficult to solve this type of problems in their general form. Scheduling can be defined as a 
problem of finding an optimal sequence to execute a finite set of operations satisfying most of the constraints. The problem 
formulated is extremely difficult to solve, as it comprises of several concurrent goals and several resources which must be 
allocated to lead to our goals, which are to maximize the utilization of machines and to minimize the time required to complete the 
entire process being scheduled (Mesghouni et al., 2004).  
   Therefore, the exact methods such as the branch and bound method, dynamic programming and constraint logic programming 
need a lot of time to find an optimal solution. So, we expect to find an optimal solution using the heuristic methods. Realistically, 
we are satisfied by obtaining a good solution near the optimal one. New search techniques such as genetic algorithms, simulated 
annealing or Tabu search are able to solve the job-shop scheduling problem.  
   Scheduling is broadly defined as the process of assigning a set of tasks to resources over a period of time (Pinedo et al., 1999). 
Effective scheduling plays a very important role in today’s competitive manufacturing world. Performance criteria such as 
machine utilization, manufacturing lead times, inventory costs, meeting due dates, customer satisfaction, and quality of products 
are all dependent on how efficiently the jobs are scheduled in the system. Hence, it becomes increasingly important to develop 
effective scheduling approaches that help in achieving the desired objectives. 
   Several types of manufacturing shop configurations exist in real world. Based on the method of meeting customer’s requirements 
they are classified as either open or closed shops. In an open shop the products are built to order where as in a closed shop the 
demand is met with existing inventory. Based on the complexity of the process, the shops are classified as single-stage, single-
machine, parallel machine, multi-stage flow shop and multi-stage job shop (Lawler et al. 1993). The single-stage shop 
configurations require only one operation to be performed on the machines. In multi-stage flow shops, several tasks are performed 
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for each job and there exists a common route for every job. In multi-stage job shops, an option of selecting alternative resource sets 
and routes for the given jobs is provided. Hence the job shop allows flexibility in producing a variety of parts.  
   The processing complexity increases as we move from single stage shops to job shops. Various methods have been developed to 
solve the different types of scheduling problems in these different shop configurations for the different objectives. These range 
from conventional methods such as mathematical programming and priority rules to meta-heuristic and artificial intelligence-based 
methods (Holland, 1992). 
   Job shop scheduling is one of the widely studied and most complex combinatorial optimization problems. A vast amount of 
research has been performed in this particular area to effectively schedule jobs for various objectives. A large number of small to 
medium companies still operate as job shops (Lin et al. 2009). Despite the extensive research carried out it appeared that many 
such companies continue to experience difficulties with their specific job shop scheduling problems. Therefore developing 
effective scheduling methods that can provide good schedules with less computational time is still a requirement. Most of the real 
world manufacturing companies aim at successfully meeting the customer needs while improving the performance efficiency. 
   Sivanandam et al. (2008) gave an idea to use the genetic algorithm (GA) to solve JSSP in an efficient manner. This book 
presents a basic knowledge and use of various genetic operators in our real world problems. Lin et al. (2009) proposed a new 
hybrid swarm intelligence algorithm consists of particle swarm optimization, simulated annealing technique and multi-type 
individual enhancement scheme is presented to solve the job-shop scheduling problem. And also it described about the basics of 
job-shop scheduling problem. 
   Huiyuan et al. (2009) established a dual resource (machines and moulds) constrained job shop scheduling problem model, 
according to the actual factors of mass injection molding processing job shop scheduling. A heuristic active algorithm combined 
with priority rules is employed to give the solution. Bozejko et al. (2009) developed a Job Shop Scheduling Problem using Parallel 
Simulated Annealing Technique. 
   Juang (2004) proposed a hybrid of genetic algorithm and particle swarm optimization for recurrent network design. In this paper 
the author described how the hybridization of GA with PSO overcomes each other’s disadvantages. This paper gives an idea to 
hybrid the genetic algorithm with simulated annealing to solve the JSSP.  
   Ge et al.  (2007)  presented a new hybrid algorithm based on particle swarm optimization and simulated annealing for job shop 
scheduling problem. Beasley (1990) was developed an OR-Library and it is a collection of test data sets for a variety of Operations 
Research (OR) problems. The benchmark problems are taken from this OR-Library. Several researchers have addressed the 
importance of solving Job-shop Scheduling Problems, which will help in solve real world problems in industries and to schedule 
their jobs perfectly.  
   In the presented work we hybrid the genetic algorithm with simulated annealing to solve the job-shop scheduling problems. GA 
has a strong ability finding the most optimistic result. SA has a strong ability of finding the local optimistic result. And it can avoid 
the problem of local minimum. Combining GA and SA, learning from other’s strong points to offset one’s weaknesses each other, 
this is the basic idea of our proposed algorithm.  
    GA is a computational abstraction of biological evolution that can be used to solve optimization problem. In its simplest form, a 
GA is an iterative process applying a series of genetic operators such as selection, crossover and mutation to a population of 
elements. These elements, called chromosomes or individuals represent possible solutions to the problem (Watanabe et al. 2005).  
   Simulated annealing (SA) is a kind of global optimization technique based on annealing of metal. It can find the global minimum 
using stochastic searching technology from the means of probability. Simulated annealing algorithm has a strong ability to find the 
local optimistic result and it can avoid the problem of local minimum (Triki et al., 2005).  
 
2. Job-shop scheduling problem 
 
   Job-Shop Scheduling Problem (JSSP) is among the hardest combinational problems and it has been the subject of a significant 
amount of literature in the Operations Research areas. The JSSP consists of n jobs and m machines. Each job must go through m 
machines to complete its work. We consider one job consists of m operations. Each operation uses one of m machines to complete 
one job’s work for a fixed time interval. Once one operation is processed on a given machine, it cannot be interrupted before it 
finishes the job’s work. The sequence of operations of one job should be predefined and may be different for any job. In general, 
one job being processed on one machine is considered as one operation noted as Oji (means jth job being processed on ith machine, 
1 ≤ j ≤ n,1 ≤ i′ ≤ m) (Garey et al. 1976 and Lawler et al. 1993). Each machine can process only one operation during the time 
interval. The objective of JSSP is to find an appropriate operation permutation for all jobs that can minimize the makespan Cmax, 
i.e., the maximum completion time of the final operation in the schedule of n×m operations. 
   For an n×m JSSP, the problem can be modeled by a set of m machines, denoted by M={1,2,…,m}, to process a set of n×m 
operations, denoted by O = {0,1,2,…,(n×m)-1} (Lin et al. 2009). The notations are as follows: 
 

n :  number of jobs 

m :  number of operations for one job 
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Oi :  completed time of operation i (i=0,1,2,……(n×m)-1)

ti :  processing time of operation i on a given machine 

Cmax :  makespan 
 
   The JSSP has n jobs to be processed on m machines and we assume the following: 

1. No machine may process more than one job at a time; 
2. No job may be processed by more than one machine at a time; 
3. The sequence of machines which a job visit is completely specified and has a linear precedence structure; 
4. Processing times are known; 
5. All jobs must be processed in each machine only one time. 
 

3. Genetic algorithm 
 

   The genetic algorithm (GA) is a search technique based on the mechanics of natural genetics and survival of the fittest 
(Goldberg, 1989). GA simulates the biological processes that allow the consecutive generations in a population to adapt to their 
environment. The adaptation process is mainly applied through genetic inheritance from parents to children and through survival 
of the fittest. The genetic algorithm object determines which individuals should survive, which should reproduce, and which 
should die. It also records statistics and decides how long the evolution should continue. Figure 1 illustrates the simple genetic 
algorithm (Premalatha et al., 2009). 
 
 
  

 

 

 

 

 

 

  

 

 

  

 

 
Figure1: Simple genetic algorithm (Premalatha et al., 2009) 

 
   To successfully apply a GA to solve a problem one needs to determine the following (Premalatha et al., 2009): 

1. The representation of possible solutions, or the chromosomal encoding. 
2. The fitness function which accurately represents the value of the solution. 
3. Genetic operators (selection, crossover and Mutation) have to employ and the parameter values (population size, 

probability of applying operators, etc.), that are suitable. 
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Evolutionary operators 
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4. Simulated annealing 
 
   Annealing is an operation in metal processing (Kirkpatrick et.al., 1983). Metal is heated up very strongly and then cooled slowly 
to get a very pure crystal structure with a minimum of energy so that the number of fractures and irregularities becomes minimal. 
first the high temperature accelerates the movement of the particles. During the cooling time they can find an optimal place within 
the crystal structure. While the temperature is lowered the particles subsequently lose the energy they were supplied with in the 
first stage of the process. Because of a thermodynamic, temperature-dependent random component some of them can reach a 
higher energy level regarding the level they were on before. These local energy fluctuations allow particles to leave local minima 
and reach a state of lower energy. 
   Simulated annealing is a relatively straight forward algorithm through which includes metropolis Monte Carlo method .the 
metropolis Monte Carlo algorithm is well suited for simulated annealing, since only energetically feasible states will be sampled at 
any given temperature. The simulated annealing algorithm is therefore a metropolis Monte Carlo simulation that starts at a high 
temperature. The temperature is slowly reduced so that the search space becomes smaller for the metropolis simulation, and when 
the temperature is low enough the system will hopefully have settled into the most favorable state.  
   Simulated Annealing can also be used to search for the optimum solution of the problems by properly determining the initial 
(high) and final (low) effective temperatures which are used in place of kT (where k is a Boltzmann's constant) in the acceptance 
checking, and deciding what constitutes a Monte Carlo step (Wang et al., 2004). 
   The initial and final effective temperatures for a given problem can be determined from the acceptance probability. In general, if 
the initial Monte Carlo simulation allows an energy (E) increase of dEi with a probability of Pi, the initial effective temperature is 
kTi = -dEi/ln(Pi). If at the final temperature an increase in the cost of 10 should only be accepted with a probability of 0.05 (5%), 
the final effective temperature is kTf = -10/ln(0.05) = 3.338. 
 
Algorithm 
 
Start with the system in a known configuration, at known energy E 
T=temperature =hot; frozen=false; 
While (! frozen) { 
      repeat { 
  Perturb system slightly (e.g., moves a particle) 
           Compute E, change in energy due to perturbation 
  If(∆E < 0 ) 
      Then accept this perturbation, this is the new system config 
  Else accept maybe, with probability =   exp(-∆E/KT) 
        } until (the system is in thermal equilibrium at this T) 
       If(∆E still decreasing over the last few temperatures) 
                  Then T=0.9T//cool the temperature; do more perturbations 
                   Else frozen=true 
} 
return (final configuration as low-energy solution) 
 
5. Proposed system 
 
5.1 Problem representation 

 
   Consider the following 3x3 Job-Shop Scheduling Problem. The Operation times and machine ordering is shown in the following 
tables. 

Table1. 3x3 JSSP          Table2. Machine Allocation              Table 3. Operation Times 
 
 

 
 

 

 
 
    
 
The feasible Schedule for the above JSSP is 1,4,7,5,2,8,3,6,9. That is the operations are performed in the machines as of in the 
above schedule gives the makespan as 17, which is feasible result for the give JSSP. The Gantt chart of the schedule 1, 4, 7, 5, 2, 8, 
3, 6, 9 is given in Fig 2. In the proposed method we have taken the schedules as the chromosomes to solve the JSSP. 

Jobs Operations 
J1 O1 O2 O3 
J2 O4 O5 O6 
J3 O7 O8 O9 

Machine Allocation 
M1 M2 M3 
O1 O3 O2 
O5 O4 O6 
O8 O9 O7 

Jobs Operation Times 
J1 (O1,O2,O3) 2 3 4 
J2 (O4,O5,O6) 1 5 2 
J3 (O7,O8,O9) 4 6 4 
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 Time Slot 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
M1 O1/2 O5/5 O8/6         
M2 O4/1             O3/4     O9/4 
M3 O7/4 O2/3 O6/2                 

 

Figure.2. Gantt chart for Feasible Schedule 
 
   The searching space is created in n×m dimensions space for n jobs on m machines Job-Shop Scheduling Problem. The problem 
solution is represented as a chromosome in Genetic Algorithm. The positions of a chromosome consists of n×m dimensions and is 
represented with n×m real numbers. In order to simulate an operation permutation sequence of JSSP, the n×m real numbers are 
transformed into an integer series from 1 to n×m. Each integer number represents one operation index (Oji,1 j n,1 i′ m) 
according to its ordering in all n×m real numbers. Fig. 3 illustrates an example of a representation of Chromosome for a 3×2 JSSP. 

 

Figure 3. Problem representation 
5.2 Objective function 
   The main objective of the JSSP is to find a schedule of operations that can minimize the maximum completion time (called 
makespan), that is the completed time of carrying total operations out in the schedule for n jobs and m machines. The Objective or 
fitness function takes the input as the number of jobs, number of Operations, Chromosome, Operation time Sequence and Machine 
Sequence of the corresponding operation. Each chromosome genes are assigned by an integer number (πk) by ranking the genes 
(real numbers) in ascending order. And then perform (πk mod No. of Jobs) +1 operation to each πk to get the corresponding 
operation sequence of a chromosome. The fitness function produces the output as a makespan value for the corresponding 
operation sequence.  
 
5.3 Algorithm 

The proposed algorithm for solving JSSP is as follows 
1. Initialize temperature T to a particular value. 
2. Initialize the N number of chromosomes by generating n×m real numbers for each chromosome. 
3. Find the Operation time sequence and Machine sequence for N chromosomes. 
4. Find the makespan value for each and every chromosome using the objective function and also find the minimum 

makespan value (best) among N makespan values. 
5. Select N/2 chromosomes using the Roulette - Wheel selection from N chromosomes 
6. Crossover the selected chromosomes with the probability as 0.9 and Mutate the new chromosomes with the 

probability as 0.3 to get new chromosomes. 
7. Find the makespan values for newly generated chromosomes using the objective function. 
8. Choose the N best chromosomes which have the minimum makespan values from the newly generated and also from 

old chromosomes. 
9. Find the minimum makespan value (best) among the N best chromosomes. 
10. If best chromosome is not changed over a period of time 

a. Find a new chromosome using temperature. 
11. Accept the new chromosome as best with probability as exp-(∆E/T), even though current position is worse. Here ∆E 

is the difference between current best chromosome’s makespan and new chromosome’s makespan value. 
12. Reduce T. 
13. Terminate if the maximum number of iterations is reached or optimal value is obtained. 

Chromosome 10.2 2.5 7.5 6.7 1.3 5.3 

       

Integer Series (πk) 6 2 5 4 1 3 

       

(πk mod 3)+1 1 3 3 2 2 1 

       

Operation Sequence O11 O31 O32 O21 O22 O12 
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14. Go to step 3. 
 
6. Experimental results 

 
   In this paper, we have used 21 instances that are taken from the OR-Library (Beasley, 1990) as benchmarks to test our new 
proposed algorithm. In this algorithm we have taken 200 chromosomes as the initial population and temperature T as 5000.  
   We have used the Intel Pentium Core 2 Duo 3GHz Processor and 2 GB RAM configuration system with Windows XP as the 
platform to run this algorithm and achieved the following results. The CPU time is the time to find the optimal schedule for the 
benchmark JSSPs from using the above configuration machine. The proposed work gives the optimal solution for most of the 
benchmark problems in considerable amount of CPU time. 
   Goncalves et al. (2005) gives optimal Solution for most of the benchmark problems. But our proposed algorithm gives the 
optimal solution within a minimum considerable amount of time. We can’t compare the computation times of Goncalves et al. 
(2005) with our proposed work, because the system configuration is not unique. Goncalves et al. (2005) gives 907 as a makespan 
for the Instance LA 20, but it is not an optimal solution. But our proposed algorithm gives the optimal solution (902).   

 
Table.4. Experimental results 

S No Instance 
Name 

Instance 
Size 

(n × m) 

Best 
Known 
Value 

Obtained Values 
from  the JSSP 
using Simple 

Genetic 
Algorithm  

Goncalves 
et al. 

(2005) 

Obtained 
Values from  
the Proposed 

Algorithm 

CPU Time (in 
Milliseconds) 

for the 
proposed 
Algorithm 

Relative 
Error 

1. FT06 6 × 6 55 55 55 55 72789 0.00 

2. LA01 10 × 5 666 686 666 666 64887 0.00 

3. LA02 10 × 5 655 739 655 655 1689748 0.00 

4. LA03 10 × 5 597 670 597 597 12564254 0.00 

5. LA04 10 × 5 590 634 590 590 10458265 0.00 

6. LA05 10 × 5 593 593 593 593 17344 0.00 

7. LA06 15 × 5 926 956 926 926 92072 0.00 

8. LA07 15 × 5 890 994 890 890 3939717 0.00 

9. LA08 15 × 5 863 906 863 863 102010 0.00 

10. LA09 15 × 5 951 956 951 951 39050 0.00 

11. LA10 15 × 5 958 958 958 958 30947 0.00 

12. LA11 20 × 5 1222 1267 1222 1222 50394 0.00 

13. LA12 20 × 5 1039 1071 1039 1039 155259 0.00 

14. LA13 20 × 5 1150 1188 1150 1150 173347 0.00 

15. LA14 20 × 5 1292 1292 1292 1292 17087 0.00 

16. LA15 20 × 5 1207 1383 1207 1207 12435098 0.00 

17. LA16 10 × 10 945 1080 945 945 13008994 0.00 

18. LA17 10 × 10 784 906 784 784 13072238 0.00 

19. LA18 10 × 10 848 976 848 848 12407916 0.00 

20. LA19 10 × 10 842 1021 842 842 13038003 0.00 

21. LA20 10 × 10 902 1072 907 902 18945246 0.00 
 

7. Conclusion and future work 
 

   In this paper, the hybridization of genetic algorithm with simulated annealing is used to solve the NP-hard JSSP. This algorithm 
adopts the real space as the search space and the chromosome represents the permutation of all operations of all jobs. Combining 
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genetic algorithm and simulated annealing can narrow the field of search and speed up the rate of convergence continually in the 
optimizing process. It has higher searching efficiency. It can also escape from the local minimums. 
   In the proposed algorithm, the problem representation is simple and easy when compared with other heuristic methods. Also this 
algorithm reduces the computational complexity. The experiment is conducted for population of size 200 chromosomes, and the 
optimal solution (Best Known Solution) in the search space is obtained for the benchmark problems with the above mentioned 
system configuration. The proposed algorithm gives optimal result for most of the benchmark problems when compared with JSSP 
using simple genetic algorithm which is shown in Table 4. 
   In the proposed algorithm, it is assumed that each operation of a job is to be completed on a single machine. The future works 
may be 

1. To find the methods to solve multi machine environment and the dynamic Job-Shop Scheduling Problem. 
2. Very high configuration machines are used to obtain the optimal solutions in the minimum time period. 
3. Grid based algorithms will be found to find the makespan of the Job-Shop Scheduling Problem. It will reduce the 

computational complexity and increase the performance and quality of the scheduling. 
4. Other hybridization heuristic methods are to be used to solve the Job-Shop Scheduling Problem. 
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