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Abstract 
 
   Wave propagation in an infinitely long poroelastic composite hollow cylinder in is examined by employing Biot’s theory of 
wave propagation in poroelastic media.  A poroelastic composite hollow cylinder consists of two concentric poroelastic 
cylindrical layers both of which are made of different poroelastic materials with each poroelastic material as homogeneous and 
isotropic. The inner and outer boundaries of composite hollow poroelastic cylinder are free from stress. The frequency equation 
of flexural vibrations of poroelastic composite hollow cylinder is obtained. In addition some particular cases such as poroelastic 
composite hollow cylinder with rigid casing, poroelastic composite bore and poroelastic bore are discussed.  Non-dimensional 
phase velocity is computed as a function of non-dimensional wavenumber. The results are presented graphically for two types of 
poroelastic composite cylinders and then discussed.  
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1. Introduction 
 
   Gazis (1959) studied the propagation of free harmonic waves in elastic hollow circular cylinder. McNiven et al. (1963) discussed 
propagation of axially symmetric waves in composite elastic rods.  Soldatos and   Hadjigeorgiou (1990) have obtained a three-
dimensional solution for free vibration problem of homogeneous isotropic cylindrical shells and panels. Cui et al. (1997) and 
Abousleiman and Cui (1998) presented poroelastic solutions in an inclined borehole and transversely isotropic well-bore cylinders. 
Ahmed shah and Tajuddin (2009) discussed axially symmetric vibrations of finite composite poroelastic cylinders. Malla Reddy 
and Tajuddin (2010) studied axially symmetric vibrations of composite poroelastic cylinders. Sharma and Sharma (2010) analyzed 
free vibration in a homogeneous transradially isotropic thermoelastic sphere. Flexural wave propagation in coated poroelastic 
cylinders is presented by Ahmed shah (2011). Tajuddin (2011) et al. discussed axial shear vibrations in a poroelastic composite 
cylinder. Shanker et. al. (2012) studied radial vibrations in an infinitely long poroelastic composite cylinder.  
   In the present analysis, flexural vibrations in poroelastic composite hollow cylinder are investigated employing Biot’s (1956) 
theory of wave propagation in porous materials.  Biot’s model consists of an elastic matrix permeated by a network of 
interconnected spaces saturated with liquid.  The frequency equations of flexural vibrations are obtained for poroelastic composite 
hollow cylinder and as well for some particular cases i.e., poroelastic composite hollow cylinder with rigid casing, poroelastic 
composite bore and poroelastic bore each for pervious and impervious surfaces. Non-dimensional phase velocity as a function of 
non-dimensional wavenumber is computed in each case.  The results are presented graphically for two types of poroelastic 
composite cylinders and then discussed. The poroelastic constants of only two poroelastic materials (1. Sandstone saturated with 
water and 2. Sandstone saturated with kerosene) are available. So, the numerical work has been done only on these two materials. 
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2. Governing Equations, formulation and solution of the problem 
   The equations of motion of a homogeneous, isotropic poroelastic solid (Biot 1956) in the presence of dissipation b are: 
 

2
2

11 122
( ) ( ) ( )N A N e Q b

t t

∂ ∂∇ + + ∇ + ∇ = + + −
∂ ∂

u u U u Uε ρ ρ  

    
2

1 2 2 22
( ) ( )Q e R b

t t

∂ ∂∇ + ∇ = + − −
∂ ∂

u U u Uε ρ ρ                                         (1) 

where 2∇  is the Laplacian operator  u(u, v, w) and  U(U, V, W) are solid and liquid displacements ; e and ε  are the dilatations of 

solid and liquid. A, N, Q, R are all poroelastic constants and  11 12 22, ,ρ ρ ρ  are the mass coefficients following Biot (1956) such 

that the sums 11 12( )ρ ρ+ and 12 22( )ρ ρ+  are masses of solid and liquid, respectively, the parameter 12ρ  represents mass 

coupling between solid and liquid. The poroelastic constants A and N correspond to familiar Lame′ constants in a purely elastic 
solid.  The coefficient N represents the shear modulus of the solid.  The coefficient R is a measure of the pressure required on the 
liquid to force a certain amount of the liquid into the aggregate while the total volume remains constant.  The coefficient Q 
represents the coupling between the volume changes of solid to that of liquid. 

 The stresses klσ  and the liquid pressure s of the poroelastic solid are   
           2 ( ) ,k l k l k lN e A e Qσ ε δ= + +     ( , , , )k l r zθ=    

                                 ,s Q e R ε= +                         (2)

 where klδ
 
is the well-known Kronecker delta function and kle are strain components of poroelastic solid. 

 

Let (r, θ , z ) be cylindrical polar co-ordinates. Consider a poroelastic composite hollow cylinder whose inner (core) and outer 
(casing) shells are made of different poroelastic materials with each poroelastic material as homogeneous and isotropic and whose 
axis is in the direction of z-axis. The inner radius of core is 1r , outer radius of casing is 2r  and ‘a’ is the interface radius.  The 

prefixes j =1, 2 are used to denote two cylinders related to poroelastic composite cylinder.  The quantities with prefix (1) refer to 
the core, while the prefix (2) refers to the casing.    

 The displacements of solid ( , , )j j j ju v wu  which can readily be evaluated from field equation (1) are  
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and 1 2 3 4 5 6, , , ,  and j j j j j jC C C C C C are constants, ω is frequency of wave, k is wavenumber, Jn and Yn are Bessel functions of 

first and second kind, respectively, each of order n, 
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1 2,j jV V are dilatational wave velocities of first and second kind, respectively, and 3jVis shear wave velocity.   

 

By substituting the displacements in equations (2), the relevant stresses pertaining to outer cylinder and inner 
cylinder are  
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3. Boundary conditions and frequency equation 

   We assume that the outer surface of casing and inner surface of core are free from stress and there is a perfect bonding at the 
interface, thus the boundary conditions for stress-free vibrations of a poroelastic composite hollow cylinder in case of a pervious 
surface are  

 1 1 1 1 ;    ( ) 0,   ( ) 0,  ( ) 0rr rz rat r r s= + = = =θσ σ σ  

 2 2 2 2 ;   ( ) 0,   ( ) 0,   ( ) 0rr rz rat r r s= + = = =θσ σ σ      

 
( ) ( ) ( ) ( )1 2 1 2 1 1 2

1 2 1 2

 ;    ,  , ( ) 0,  ,

                 ,   
rr rr rz rz rat r a s s u u

v v w w

= + = + = = =
= =

θσ σ σ σ σ
 

            1 2 1 2 ,  and  ;      0,at r r r a s s= = =                     (8) 

while the boundary conditions in case of an impervious surface are 

 1 1 1 1 ;    ( ) 0,   ( ) 0,  ( ) 0rr rz rat r r s= + = = =θσ σ σ  

 2 2 2 2 ;   ( ) 0,   ( ) 0,   ( ) 0rr rz rat r r s= + = = =θσ σ σ      
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Eqs. (3), (6) and (8) results in a system of sixteen homogeneous equations in constants 

1 2 3 4 5 6, , , , , ,j j j j j jC C C C C C ( )7 8 and    = 1, 2j jC C j  such a homogeneous system has non-trivial solution only if the 

determinant of the coefficients of the unknowns vanishes identically. Thus by eliminating the constants, the frequency equation of 
flexural vibrations for poroelastic composite hollow cylinder for a pervious surface is                 

      0  for  , =1,2,....16i jC i j=                 (10) 

where  
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In case of an impervious surface, equations (3), (6) and (10) gives the frequency equation as  

          

  0 for i, j=1,2,....16,i jD =                     (12) 

where 
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Motions having infinite wavelength 
   When the wavelength is infinite or the wavenumber is zero, the frequency equation (10) of poroelastic composite hollow 
cylinder for a pervious surface reduces to  
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where the elements ( )j lmM r are defined in eqs. (4) and (7) for k = 0. From eq. (14) it is clear that either A1 = 0 or A2 = 0. The 

equation  
   
            A1 = 0                     (16) 
  
is the frequency equation of plane-strain vibrations of a poroelastic composite hollow cylinder for infinite wavelength in case of a 
pervious surface.  The frequency equation  
 
        A2 = 0                    (17) 
     
involves only shear wave velocity, hence it is the frequency equation of longitudinal shear  vibrations of a poroelastic composite 
hollow cylinder for infinite wavelength in case of a pervious surface. Eq. (14) shows that the plane-strain vibrations and 
longitudinal shear vibrations of  poroelastic composite hollow cylinder for a pervious surface are uncoupled when wavelength is 
infinite. 
  Similarly, the frequency equation (12) of vibrations in poroelastic composite hollow cylinder for an impervious surface 
reduces to 
     B1B2 = 0,                 (18) 

with 
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1 37 1 1 38 1
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( ) ( ) 0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 ( ) ( )
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B

N a N a N a N a

N r N r

=          (19) 

where the elements ( )j lmN r  are defined in eq. (7) and (13) and are calculated for k = 0.  

 From eq. (18) it is clear that B1 = 0 or B2 = 0. Equation  

                                                            B1=0            (20) 

is the frequency equation of plane-strain vibrations of poroelastic composite hollow cylinder for an impervious surface when 
wavelength is infinite, whereas the equation  

                B2=0                                         (21) 
 is the frequency equation of longitudinal shear vibrations of  poroelastic composite hollow cylinder for an impervious surface 
when wavelength is infinite.  Eq. (18) shows that the plane-strain vibrations and longitudinal shear vibrations of poroelastic 
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composite hollow cylinder for an impervious surface are uncoupled. Also, we see that the equations A2=0 and B2=0 are same, 
hence the frequency equation of longitudinal shear vibrations of poroelastic composite hollow cylinder is independent of nature of 
surface for infinite wavelength. 
 
4. Particular cases   
 
   Under suitable boundary conditions the poroelastic composite hollow cylinder reduces to the following particular cases 
4.1  Poroelastic composite hollow cylinder with rigid casing, 
4.2  Poroelastic composite bore. 
 
4.1  Poroelastic composite hollow cylinder with rigid casing 
   When shear modulus of the casing is larger than that of core, we can assume that casing is perfectly rigid.  Letting the shear 

modulus of the casing approaches to infinity i.e., 
(2)N → ∞, then the shear wave velocity of casing approaches to infinity and 

hence (2)
3ξ →0.  Under this limiting condition, the frequency equation (10) of vibrations of poroelastic composite hollow cylinder 

for a pervious surface reduces to 
      
             C1 C2 = 0                        (22) 

with           
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                      (23) 
where 

2 2 2 2 2 1
2 11 2 2 2 1 2 2 2 1 2 1 0 2 1 1 2 1

2 2 2 2 2 1
2 12 2 2 2 1 2 2 2 1 2 1 0 2 1 1 2 1

2 2 2 2 2 2
2 13 2 2 2 2 2 2 2 2 2 2 0 2 2 1 2 2

2
( ) {( ) ( ) 2 } ( ) ( ),

2
( ) {( ) ( ) 2 } ( ) ( ),

2
( ) {( ) ( ) 2 } ( ) ( ),

A r Q R k Q R J r J r
r

A r Q R k Q R Y r Y r
r

A r Q R k Q R J r J r
r

= + + + − +

= + + + − +

= + + + − +

αα α α ξ α

αα α α ξ α

αα α α ξ α
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2 2 2 2 2 2
2 14 2 2 2 2 2 2 2 2 2 2 0 2 2 1 2 2

2 15 2 3 0 2 3 1 2 3

2 16 2 3 0 2 3 1 2 3

2
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( ) 2 ( ) ( ),

2
( ) 2 ( ) ( ),
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=
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α ξ ξ α ξ ξ
α ξ ξ α ξ ξ

 

and 
2

2 2 2
2

2 2 12 2 2 22

2
  for 1,2 and 3.i

i

V R
i

R k Q k

−−= =
−

α
                         (24) 

   From eq. (22) it is clear that the physical parameters in the determinants C1, C2 are, respectively, related to core and casing. 
Hence, the vibrations of poroelastic composite hollow cylinder related to core and casing for a pervious surface are uncoupled 
when the solid in casing is rigid, also we obtain C1= 0 or C2= 0. The equation  

 
      C1= 0,                                         (25) 
 
represents the frequency equation of vibrations of poroelastic core for a pervious surface when it is clamped along its outer 
surface, whereas the equation   

 
C2 = 0,                                                                        (26)  

 
represents the frequency equation of vibrations of hollow rigid casing for a pervious surface when the boundaries are free from 
stress. 
 
In a similar way, when the solid in casing is rigid, the frequency eq. (12) of vibrations of poroelastic composite hollow cylinder for 
an impervious surface reduces to 
 

                              D1 D2 = 0,                                                  (27)   

with         
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 D1 =       
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where 
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r
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                    (29) 

and ( )j lmN r are defined in eqs.(7) and (13) and 2 ( )lmA r  are defined in eq. (24). 

  
   As in the case of a pervious surface, the vibrations of poroelastic composite hollow cylinder related to core and casing for an 
impervious surface are uncoupled when the solid in casing is rigid. From eq. (27) it is clear that D1= 0 or D2= 0. The equation  
 

 D1= 0,                         (30) 
 
represents the frequency equation of vibrations poroelastic core for an impervious surface when it is clamped along its outer 
surface, whereas the equation  
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 D2 = 0,                       (31) 
  

represents the frequency equation of vibrations of  hollow rigid casing for an impervious surface when the boundaries are free 
from stress. 
4.2  Poroelastic composite bore 

When the outer radius 2r  of casing tends to, the frequency equation (10) of poroelastic composite hollow cylinder for a pervious 

surface reduces to  

      E1 = 0,               (32) 

where 
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                                (33) 
where the elements lmj M are defined in eq. (8). 

Eq. (32) is the frequency equation of flexural vibrations in poroelastic composite bore for a pervious surface. 

  Similarly, the frequency equation of flexural vibrations in poroelastic composite bore for an impervious surface can be 
obtained as 

      F1 = 0,                     (34) 
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where
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  (35) 

where the elements lmj N are defined in eqs. (7) and (13). 

 
For infinite wavelength, the frequency equation E1 = 0 of flexural vibrations of poroelastic composite bore for a pervious surface 
reduces to  
     E2 E3 = 0,        (36) 

with 
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and 
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M r M r

E M M a M a
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=                                (37) 

where the elements lmj M are defined in eq. (7) and are evaluated for k = 0. 

From eq. (36), it is clear that either E2 = 0 or E3 =0.  In particular, 

     E2 = 0,                 (38) 

is the frequency equation of plane-strain vibrations of poroelastic composite bore for a pervious surface, whereas the equation 

     E3= 0,                 (39) 
is the frequency equation of longitudinal shear vibrations of poroelastic composite bore for a pervious surface.  Eq. (36) shows that 
the plane-strain vibrations and longitudinal shear vibrations of poroelastic composite bore for a pervious surface are uncoupled. 
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In a similar way, for infinite wavelength, the frequency equation F1 = 0 of vibrations of poroelastic composite bore for an 
impervious surface reduces to  
     F2 F3 = 0,                  (40) 

with 
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=                                         (41) 

where the elements lmj N are defined in eq. (13) and are evaluated for k = 0. 

From eq. (40), clearly F2 = 0 or F3 =0.  In particular, 

     F2 = 0,                 (42) 

is the frequency equation of plane-strain vibrations of poroelastic composite bore for an impervious surface.  

 The equation 

     F3= 0,                 (43) 
is the frequency equation of longitudinal shear vibrations of poroelastic composite bore for an impervious surface which is same as 
equation E3=0 using (13), hence the frequency equation of longitudinal shear vibrations of poroelastic composite bore is 
independent of nature of surface for infinite wavelength.  Eq. (40) shows that the plane-strain vibrations and longitudinal 
vibrations of poroelastic composite bore for an impervious surface are uncoupled for infinite wavelength. 
 
5. Non-dimensionalization of frequency equation 
 
   The natural frequency will be real when the dissipation coefficient is zero i.e. b = 0. For the sake of numerical work the 
dissipation coefficient ‘b’ is taken as zero and hence we obtained only real frequency. To analyze the frequency equations of 
vibrations of poroelastic composite hollow cylinders, it is convenient to introduce the following non-dimensional parameters: 
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              (44) 
where m is non-dimensional phase velocity and  

2 21 1
1 1 1 1 1 1 11 1 12 1 22 1 0 1 0

1 1

2 ,   2 ,    ,    .
N H

H P Q R C Vρ ρ ρ ρ
ρ ρ

= + + = + + = =                             (45) 

 
   Non-dimensional phase velocity is calculated for two types of composite cylinders, namely composite cylinder-I and composite 
cylinder-II each for a pervious and an impervious surface. Composite cylinder-I consists of core made up of sandstone saturated 
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with water (Yew and Jogi, 1976) and casing is made up of sandstone saturated with kerosene (Fatt, 1957), where as in composite 
cylinder-II, the core is sandstone saturated with kerosene and casing is sandstone saturated with water. The physical parameters of 
these poroelastic composite materials following equation (44) are given in Table 1.          

 
Table - 1 Physical parameters of poroelastic composite materials 

Material 
Parameters 

a1 a2 a3 a4 d1 d2 d3 x2 y2 z2 

Composite 
Cylinder-I 0.445 0.034 0.015 0.123 0.887 -0.001 0.099 1.863 8.884 7.183 
Composite 
Cylinder–II 1.819 0.011 0.054 0.780 0.891 0 0.125 0.489 2.330 1.142 

 
b1 b2 b3 b4 g1 g2 g3 x1 y1 z1 

0.960 0.006 0.028 0.412 0.877 0 0.123 0.913 4.347 2.129 

0.843 0.065 0.028 0.234 0.901 -0.001 0.101 0.999 4.763 3.851 
 
6. Results and Discussion 
 
   For given poroelastic parameters, the frequency equations when non-dimensionalized   using equation (44), constitute a relation 
between non-dimensional phase velocity and non-dimensionalized wavenumber.  Different values of a/r1 and r2/a, viz., 1.1 and 3 
are taken for numerical computation.  For a poroelastic shell made of single material, the value (ratio of outer radius to inner 
radius) 1.1 represents thin poroelastic shell, whereas the value 3 represents thick poroelastic shell.   
   Figures 1-4 depict phase velocity of vibrations of poroelastic composite hollow cylinders I and II for different combinations of 
thin and thick shells for a pervious and an impervious surfaces. In Fig.1, phase velocity for thin core and thin casing has been 
plotted. The phase velocity of pervious and impervious surfaces for each of the cylinders I and II is almost same. The phase 
velocity of cylinder II is more than that of cylinder I when wave number is between 0 and 4.  It is clear that the phase velocity of 
cylinder I is steady. Fig. 2 shows the phase velocity for thin core and thick casings. The phase velocity is same for both pervious 
and impervious surfaces in case of composite cylinder I, whereas for cylinder II it is true when wave number is greater than 3. The 
variation of phase velocity for thin casing and thick core is shown in Fig. 3. The phase velocity is same for pervious and 
impervious surfaces when the wave number is less than 2 and greater than 7 in case of cylinder I, whereas in case of cylinder II it 
is true when the wave number is greater than 2.  Fig. 4 shows the phase velocity for thick core and thick casings. The phase 
velocity is same for pervious and impervious surfaces in case of cylinder I, whereas in case of cylinder II the phase velocity of 
impervious surface is slightly more than that of pervious surface. 
   Figures. 5-6 depict phase velocity for poroelastic casing when the solid is rigid. In particular, thin casing is considered in Fig.5, 
whereas thick casing is considered in Fig. 6. In case of thin casing, the phase velocity is more for cylinder I when the wave number 
is between 0 and 4. The phase velocity is constant for an impervious surface for both the cylinders when the wave number is 
greater than 4. There is a sudden increase in phase velocity when wave number is 8 for cylinder I in case of thick casing. The 
variation in phase velocity for poroelastic core when it is clamped along its outer surface is shown in Figs. 7-8. In particular, thin 
core is considered in Fig.7, whereas thick core is considered in Fig.8. From Fig. 7, it is clear that the phase velocity is same for 
both cylinders for each pervious and impervious surface. The phase velocity is same for both cylinders when wave number is 
between 0 and 2. Also, the phase velocity is maximum when wave number is 1. In case of thick core, phase velocity is same for 
both cylinders when wave number is between 0 and 1.   
   The variation in phase velocity for poroelastic composite bore is shown in Figs. 9-10. In particular, composite bore with thin core 
is considered in Fig. 9, whereas composite bore with thick core is considered in Fig.10. From Fig. 9, it is clear that the phase 
velocity for composite bore I higher than that of cylinder II when wave number is less than 4.5 for an impervious surface. Also, the 
maximum phase velocity is observed when wave number is 8 for an impervious surface for composite bore I. 
 
7. Conclusion 
 
   A study on vibrations in a poroelastic composite hollow cylinder and composite bore has been done, also the effects of rigidity 
and infinite wavelength have been observed, and these lead to the following conclusions: 
 (i)     Plane-strain vibrations and longitudinal shear vibrations of poroelastic composite hollow cylinder are uncoupled when  
          wavelength is infinite each for a pervious and an impervious  surface.  Similar observation has been found in the case of  
          composite bore. 
 (ii)   The frequency equation of longitudinal shear vibrations of poroelastic composite hollow cylinder is independent of nature of  
         surface for infinite wavelength. 
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(iii)   The vibrations of poroelastic composite hollow cylinder related to core and casing for pervious surface are uncoupled when  

          the solid in casing is rigid. In particular, in case of  core the vibrations are observed when it clamped along its outer surface. 
(iv)   The phase velocity of poroelastic composite hollow cylinder is almost same for pervious and impervious surfaces for both  
         cylinders I and II in cases of thin core and thin casing as  well as thin core and thick casing. Thus, the phase velocity is  
          independent of nature of surface when the core is thin. 
(v)    Variations in phase velocity is more in thick core than thin core when core is clamped along its outer surface. 
The thermal effect on composite cylinder can be discussed; also similar study can be done on composite cylinders and finite 
composite poroelastic cylinders in various dimensions and on composite spheres. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
       
 
                 

      Fig.1 Variation of phase velocity  with the wave number  –  poroelastic composite hollow cylinder –  
Thin core and thin casing 

 
 

             

           Fig.2 Variation of phase velocity  with the wave number  –  poroelastic composite hollow cylinder –  
Thin core and thick casing 



Kumar et al. / International Journal of Engineering, Science and Technology, Vol. 8, No. 1, 2016, pp. 13-33 

 

28 

 

 

 

 

               

  Fig.3 Variation of phase velocity  with the wave number  –  poroelastic composite hollow cylinder –  
Thick core and thin casing 

 

 

               

 Fig.4 Variation of phase velocity  with the wave number  –  poroelastic composite hollow cylinder –  
Thick core and thick casing 
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Fig. 5  Variation of phase velocity  with the wave number  –  poroelastic rigid casing – Thin shell 

 

 

 

Fig. 6  Variation of phase velocity  with the wave number  –  poroelastic rigid casing – Thick shell 
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Fig.7 Variation of phase velocity  with the wave number  –  poroelastic shell clamped along its outer surface  
– Thin shell 

 

 

 

   Fig. 8 Variation of phase velocity  with the wave number  –  poroelastic shell clamped along its outer surface  
– Thick shell 
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Fig.9 Variation of phase velocity  with the wave number  –  poroelastic composite bore – 
Thin core 

 
 
 

                        

  Fig.10 Variation of phase velocity  with the wave number  –  poroelastic composite bore –  
Thick core 

 

Nomenclature 
1 1 1 1

2 2 2 2

, , ,

, , ,

A N Q R

A N Q R





– Poroelastic constants         

             a – iterface radius 
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                          b – dissipation coefficient 
                          e – dilatation of solid 
            Jn – Bessel function of first kind of order n    
            r1 – inner radius of core 
                         r2 – outer radius of casing 
                          s – liquid pressure 
                          t – time 
           U – liquid displacement 
            u – solid displacement 
          

1 1, 2 1V V  – dilatational wave velocities of first kind 

               
1 2 , 2 2V V  – dilatational wave velocities of second kind 

                        Yn – Bessel function of second kind of order 

  1 11 1 12 1 22

2 11 2 12 2 22

, ,

, ,

ρ ρ ρ
ρ ρ ρ





– mass coefficients 

              
1 ,2ij ijσ σ  – stresses 

                          ε – dilatation of liquid  
                          k –  wavenumber 
                         m – non-dimensional phasevelocity 
         2∇ – Laplacian operator        
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