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Abstract 
 
   An attempt has been made to study the unsteady MHD free convective flow past a vertical porous plate immersed in a porous 
medium with Hall current, thermal diffusion and heat source. Analytical  solution has been found depending on the physical  
parameters including the Hartmann number M, the Prandtl number Pr, the Grashof number for heat transfer Gr , the Grashof 
number for mass transfer Gc , the Schmidt number Sc , the Hall parameter m, the Soret number 0S , heat source S , frequency 
parameter Ω . The influence of these parameters on velocity, temperature, species concentration, and shearing stress at the plate 
are demonstrated graphically and the results obtained are discussed. It is found that the concentration at the plate-surface 
increases under Soret effect. Further, it is observed that the Soret effect causes the main-flow shear stress to rise and the cross-
flow shear stress to fall. It is also found that a decrease in the Soret effect leads to an increase in both the main flow and cross-
flow velocities. 
 
2000 Mathematics subject classification:  76 W 05 
Keywords: Free convection, MHD, thermal diffusion, Hall effect 

 
1. Introduction 
 
   In recent years, the analysis of hydromagnetic convection flow involving heat and mass transfer in porous medium has attracted 
the attention of many scholars because of its possible applications in diverse fields of science and technology such as – soil-
sciences, astrophysics, geophysics, nuclear power reactors etc. In geophysics, it finds its applications in the design of MHD 
generators and accelerators, underground water energy storage system etc. It is worth-mentioning that MHD is now undergoing a 
stage of great enlargement and differentiation of subject matter. These new problems draw the attention of the researchers due to 
their varied significance, in liquid metals, electrolytes and ionized gases etc. The MHD in the present form is due to contributions 
of several notable authors like Shercliff (1965), Ferraro and Plumpton (1966) and Crammer and Pai (1973). 
   The heat and mass transfer effects on a flow along a vertical plate in the presence of a magnetic field was investigated by 
Elbashbeshy (1997). The influence of combined natural convection from a vertical wavy surface due to thermal and mass diffusion 
was studied by Hossain and Ross (1999). Chen (2004) investigated the effects of heat and mass transfer in MHD free convection 
from a vertical surface. In addition, the applications of the effect of Hall current on the fluid flow with variable concentration have 
been seen in MHD power generators, astrophysical and meteorological studies as well as in plasma physics. The Hall effect is due 
merely to the sideways magnetic force on the drifting free charges. The electric field has to have a component transverse to the 
direction of the current density to balance this force. In many works on plasma physics, the Hall effect is disregarded. But if the 
strength of magnetic field is high and the number density of electrons is small, the Hall effect can not be ignored as it has a 
significant effect on the flow pattern of an ionized gas. Hall effect results in a development of an additional potential difference 
between opposite surfaces of a conductor for which a current is induced perpendicular to both the electric and magnetic field. This 
current is termed as Hall current. Model studies on the effect of Hall current on MHD convection flows have been carried out by 
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many authors due to application of such studies in the problems of MHD generators and Hall accelerators. Some of them are 
Aboeldhab (2001), Dutta et al. (1976), Acharya et al. (2001) and Biswal et al. (1994). In the above studies the effect of heat 
source/sink effect was not considered. The study of heat transfer problems in presence of heat source/sink is quite important in the 
field of industrial technology. Ostrach (1952, 1954, 1958), Raptis (1982) carried out a number of analytical studies for different 
types of heat transfer problems in presence of heat generators. The problem concerning MHD free convection and mass transfer 
flow with heat source and thermal diffusion was studied by Singh (2001). Recently, Sharma et al. (2007) have investigated the 
Hall effect on MHD mixed convective flow of a viscous incompressible fluid past a vertical porous plate immersed in a porous 
medium with heat source/sink. Recently, Nikodijevic et al. (2009) have studied the generalized similarity method in unsteady two-
dimensional MHD boundary layer on the body with time varying temperature. 
   In the above mentioned works, the thermal diffusion (Soret) effect was not taken into account in the species continuity equation. 
The flux of mass caused due to temperature gradient is known as the Soret effect or thermal diffusion. The experimental 
investigation of the thermal diffusion effect on mass transfer related problems was first performed by Charles Soret in 1879. There 
after its effect is termed as Soret effect in the honor of his name. In general the Soret effect is of smaller order of magnitude than 
the effect described in Fick’s law and is often ignored in mass transfer process. Though this effect is quit small, but the devices 
may be arranged to produce very sharp temperature gradient so that the separation of components in mixtures are affected. Eckert 
and Drake (1972) have emphasized that the Soret effect assumes significance in cases concerning isotope separation and in 
mixtures between gases with very light molecular weight ( 2H , eH ) and the medium molecular weight ( 2N , air). 
   Based on Eckert and Drake’s work (1972) many other investigators have carried out model studies on the Soret effect in 
different heat and mass transfer problems. Some of them are Dursunkaya and Worek (1992), Kafoussias and Williams (1995), 
Sattar and Alam (1994), Alam et al. (2005a, 2005b, 2006a, 2006b, 2006c and 2007), Raju et al. (2008). 
   In view of the significance of the Soret effect as well as Hall effect, we have proposed in the present paper to investigate the 
unsteady MHD free convective flow past a vertical porous plate in porous medium with Hall current, thermal diffusion and heat 
source. Here our main objectives are to study the effect of Soret number and Hall parameter on the flow and transport 
characteristics. Our work is an extension to the work done by Sharma et al. (2007) to consider the effect of thermal diffusion on 
the flow and heat and mass transfer. 
 
2.  Basic equations 
 
   The equations governing the motion of an incompressible viscous electrically conducting fluid in presence of a magnetic field 
are- 
the equation of continuity: 

.v 0∇ =
r r

                                                                    (1) 

the momentum equation: 

2v (v. )v p J B g v v
t k

μρ ρ μ⎡ ⎤
⎢ ⎥⎣ ⎦

∂ + ∇ = −∇ + × + + ∇ −
∂

r r r r r rr r r r
                                                                          (2) 

the energy equation: 
2

2
p p

T JC (v. )T T C S(T T )
t

κρ φ ρ
σ ∞

⎡ ⎤
⎢ ⎥⎣ ⎦

∂ + ∇ = ∇ + + + −
∂

rr
                                                              (3) 

the species continuity equation: 

 2 2
T

C (v. )C D C D T
t

∂ + ∇ = ∇ + ∇
∂

rr
                                                                            (4) 

the Kirchhoff’s first law: 

 .J 0∇ =
r r

                                                                                                    (5) 

the general Ohm’s law, taking Hall effect into account 

e e
e

e0

1J (J B) (E v B p )
B e
ω τ σ

η
+ × = + × + ∇
r r r r r rr

                                                                                        (6) 

the Gauss’s law of magnetism: 

.B 0∇ =
r r

                                                                                                    (7) 
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   We now consider an unsteady flow of an electrically conducting fluid past an infinite vertical porous flat plate coinciding with 
the X-axis y = 0, taking into account the thermal diffusion, Hall current and heat source in presence of a uniform transverse 
magnetic field. Our investigation is restricted to the following assumptions: 

(i) All the fluid properties except the density in the buoyancy force term are constant. 
(ii) The plate is electrically non-conducting. 
(iii) The magnetic Reynolds number is so small that the induced magnetic field may be neglected. 
(iv) ep  is constant. 

(v) E 0=
r

. 

   We introduce a coordinate system (x, y, z) with X-axis vertically upwards, Y-axis normal to the plate directed into the fluid 

region and Z-axis along the width of the plate. Let ˆ ˆ ˆv ui vj wk= + +
r  be the velocity, x y z

ˆ ˆ ˆJ J i J j J k= + +
r

 be the current density at 

the point P(x, y, z, t)  and 0
ˆB B J=

r r
 be the applied magnetic field, ˆ ˆ ˆi, j, k  being unit vectors along X- axis, Y-axis and Z-axis 

respectively. Since the plate is of infinite length in X and Z- direction, therefore all the quantities except possibly the pressure are 
independent of x and z. 

Primary flow 
direction 

Secondary flow 
direction 

u

w

v

g î  

ĵ  

k̂  

 y = 0 
 
 
 u = 0 
 w = 0  
 

i tae ωθ =
 

i tC be ω∗ =
 
 
      
 
 

Transverse magnetic field 

Suction velocity 

y →∞  
 
 

0u →  
0w→  

 
 

0θ →  
 

0C∗ →  

X 

Y 

0
ˆB j  

0V  

Z

Figure 1: Flow configuration 
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Now,  
The equation (1) gives 

                                         v 0
y
∂ =
∂

                                                      (8) 

which is trivially satisfied by 
                                         0v V= −                                                       (9) 

where 0V  is a constant and 0V 0〉  
Therefore the velocity vector vr  is given by  

                                          0
ˆ ˆ ˆv ui V j wk= − +r

                                                                             (10) 
Again the equation (7) is satisfied by 

                                           0
ˆB B j=

r r
                                                                              (11) 

Also the equation (5) reduces to  

                                           yJ
0

y
∂

=
∂

                                                           

which shows that                     yJ = constant                                                                   (12) 

     Since the plate is non-conducting, yJ 0=  at the plate and hence yJ = 0 at all points in the fluid. 
Thus the current density is given by 
                                           x z

ˆ ˆJ J i J k= +
r

                                                                (13) 
Under the assumption (iv) and (v), the equation (6) takes the form 

                                                 
0

mJ (J B) (v B)
B

σ+ × = ×
r r r rr

                                                               (14) 

Where e em ω τ=  is the Hall parameter. 
The equations (10), (11), (13), and (14) yield, 

                               

0
x 2

0
z 2

BJ (mu w)
1 m

BJ (u mw)
1 m

σ

σ

⎫
⎪⎪
⎬
⎪
⎪⎭

= −
+

= +
+

                                                                              (15) 

          With the foregoing assumptions and the usual boundary layer and Boussinesq approximation, the equations (2), (3) and (4) 
reduce to the following:  
 

22
0

2 2
B (u mw)u u u uv g (T T ) g (C C )

t y ky (1 m )
σ υυ β β
ρ

∗
∞ ∞

+∂ ∂ ∂+ = − + − + − −
∂ ∂ ∂ +

                                                              (16) 

22
0

2 2
B (mu w)w w w wv

t y ky (1 m )
σ υυ
ρ

−∂ ∂ ∂+ = + −
∂ ∂ ∂ +

                                                                             (17) 

2

2
p

(T T ) (T T ) (T T )v S(T T )
t y C y

κ
ρ

∞ ∞ ∞
∞

∂ − ∂ − ∂ −+ = + −
∂ ∂ ∂

                                                                           (18) 

2 2

T2 2
(C C ) (C C ) (C C ) (T T )v D D

t y y y
∞ ∞ ∞ ∞∂ − ∂ − ∂ − ∂ −+ = +

∂ ∂ ∂ ∂
                                                              (19) 

     In equation (18) the viscous dissipation and Ohmic dissipation are ignored and in equation (19), the term due to chemical 
reaction is supposed to be absent. 
Now using  

0v V ,T(y, t) T (y, t)θ∞= − − =  and C(y, t) C C (y, t)∗
∞− =  

Subject to the boundary conditions 
t 0 : u(y, t) w(y, t) 0, 0,C 0θ ∗≤ = = = =    for all y 

               
i t i ty 0 : u(0, t) w(0, t) 0, (0, t) ae ,C (0, t) be

y : u( , t) w( , t) 0, ( , t) 0,C ( , t) 0

ω ωθ
θ

∗

∗

⎫⎪
⎬
⎪⎭

= = = = =
→∞ ∞ = ∞ = ∞ = ∞ =

(t 0)>                                                                          (20) 
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Let us introduce the following dimensionless quantities: 

0V yη
υ

= , 
2

/ 0V tt
4υ

= , /

0

uu
V

= , /

0

ww
V

= , /

a
θθ = , / CC

b

∗

= , 3
0

Gr 4g a
V
βυ= , 3

0
Gc 4g b

V
β υ∗= , 

2
0

3
0

4BM
V
συ

ρ
= , pPr

Cυρ
κ

= , 

Sc
D
υ= , 

2
/ 0

2
V kk
4υ

= , /
2
0

4SS
V
υ= , T

0
D aS

bυ
= .                            

                                                                                                                                                                      (21)    
All the physical variables are defined in the Nomenclature. 
       Equations (16), (17), (18) and (19) transform to the following non-dimensional forms, respectively (dropping the dashes) 
 

2

2 2 Gr Gcu u u M u4 4 (u mw) C
t k1 m

θ
η η

∂ ∂ ∂− = − + + + −
∂ ∂ ∂ +                                                                                                                   (22) 

2

2 2
w w w M w4 4 (mu w)
t k1 mη η

∂ ∂ ∂− = + − −
∂ ∂ ∂ +                                                                                                                                       (23) 

2

2
44 S

t Pr
θ θ θ θ

η η
∂ ∂ ∂− = +
∂ ∂ ∂                                                                                                                                                                      (24)  

2 2

02 2
C C 4 C4 4S
t Sc

θ
η η η

∂ ∂ ∂ ∂− = +
∂ ∂ ∂ ∂                                                                                                                                                            (25) 

      The corresponding boundary conditions (20) in non-dimensional forms are (dropping the dashes): 
t 0 : u( , t) w( , t) 0, 0,C 0η η θ≤ = = = =  for all  0η =  

i t i t0 : u(0, t) w(0, t) 0, (0, t) e ,C(0, t) e (t 0)
: u( , t) w( , t) 0, ( , t) 0,C( , t) 0

ω ωη θ
η θ

⎫⎪
⎬
⎪⎭

= = = = = >
→∞ ∞ = ∞ = ∞ = ∞ =

                                                                                               (26) 

 
3. Method of solutions 
 
   The equations (22) and (23) can be combined using the complex variable 
                                                                    u iwψ = +                                                                                                                    (27) 
This gives the combined equation as  

2

2 2 Gr Gc1 1 M 1 1 1(1 im) C
4 t 4 k 4 41 m

ψ ψ ψ ψ θ
ηη

⎡ ⎤
⎢ ⎥⎣ ⎦

∂ ∂ ∂+ − − − + = − −
∂ ∂∂ +

                                                                                            (28) 

       Now introducing the non-dimensional parameter 2
0

4
V
υωΩ =  and using equation (27), the boundary condition in (26) are 

transformed to:  

i t

i t(0, t) ( , t) 0,C(0, t) e
(0, t) e , ( , t) 0,C( , t) 0

ψ ψ
θ θΩ

Ω ⎫⎪
⎬
⎪⎭

= ∞ = =

= ∞ = ∞ =
                                                                                                                                          (29) 

 Substituting i t( , t) e f ( )θ η ηΩ= in equation (24), we have 

/ / /Pr i Pr SPrf ( ) f ( ) f ( ) 0
4 4

η η η⎛ ⎞
⎜ ⎟
⎝ ⎠

Ω+ − − =                                                                                                                                    (30) 

The equation (30) can be solved under the boundary conditions, 
                                                         f (0) 1= , f ( ) 0∞ =                                                                                                                   (31) 
Hence the solution is  

                                             1Af ( ) e ηη −=  , where  1

2Pr Pr Pr (i S)
A

2
+ + Ω−

=  

                                      1i t A( , t) e ηθ η Ω −⇒ =                                                                                                                                (32) 
Separating equation (32) in to real and imaginary parts and taking the real part only we get  
                                       r 2

2x( , t) e cos( t y )ηθ η η−= Ω −                                                                                                                (33) 
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Where                1
2

Pr xx
2
+

= ,  

1
22 2

1

2(Pr SPr) Pr (Pr S)x
2

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

− + − +Ω
=  

                  1
2

yy
2

= ,   

1
22 2

1

2Pr (Pr S) (Pr SPr)y
2

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

− +Ω − −
=                                                                                                 (34) 

Again substituting i tC( , t) e g( )η ηΩ=  in equation (25), we have  

/ / / / /c
0Sc Sc

i Sg ( ) g ( ) g( ) S f ( )
4

η η η ηΩ+ − = −                                                                                                                                  (35) 

The equation (35) can be solved under the boundary conditions, 
                                                 g(0) 1,g( ) 0= ∞ =                                                                                                                            (36) 
Consequently the solution is  

                                                           4 3
2 1A Ag( ) A e A eη ηη − −= +  

                                                   4 3
2 1A Ai tC( , t) e (A e A e )η ηη − −Ω⇒ = +                                                                                     (37) 

Separating equation (37) in to real and imaginary parts and considering the real part only we obtain,  
{ }r 3 4 2 4

4xC ( , t) e L cos( t y ) M sin( t y )ηη η η−= Ω − − Ω −  

                                                     { }2 2 2 2
2xe L cos( t y ) M sin( t y )η η η−+ Ω − − Ω −                                                                       (38) 

where 

      3
4

Sc xx
2
+

= ,

1
22

3

2 2Sc Sc Scx
2

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

+ +Ω= , 3
4

yy
2

= ,

1
22

3

2 2Sc Sc Scy
2

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

+Ω −=                         (39) 

        Also substituting i te F( )ψ ηΩ= in equation (28) we arrive at,  

   / / /
2 Gr Gc1 M 1 1 1F ( ) F ( ) i (1 im) F( ) f ( ) g( )

4 k 4 4(1 m )
η η η η η

⎡ ⎤
⎢ ⎥
⎣ ⎦

+ − Ω+ − + = − −
+

                                                                       (40) 

The equation (40) can be solved under the boundary conditions, 
                                                F(0) 0= and F( ) 0∞ =                                                                                                                      (41) 
Therefore the solution is  

                              11 10 8
6 1 2A A AF( ) A e A e A eη η ηη − − −= + −  

                     11 10 8
6 1 2A A Ai t( , t) e (A e A e A e )η η ηψ η − − −Ω⇒ = + −                                                                                             (42) 

     Separating equation (42) in to real and imaginary parts, and then using (27), we have  

11 6 11 6 10 2 10 2
6 2x xu e {L cos( t y ) M sin( t y )} e {L cos( t y ) M sin( t y )}η ηη η η η− −= Ω − − Ω − + Ω − − Ω −                                        

8 4 8 4
4xe {L cos( t y ) M sin( t y )}η η η−− Ω − − Ω −                                                                                                                            (43) 

11 6 11 6 10 2 10 2
6 2x xw e {L sin( t y ) M cos( t y )} e {L sin( t y ) M cos( t y )}η ηη η η η− −= Ω − + Ω − + Ω − + Ω −                                        

8 4 8 4
4xe {L sin( t y ) M cos( t y )}η η η−− Ω − + Ω −                                                                                                                            (44) 

Where             5
6

1 xx
2
+

= , 

1
22 2

4 4 4
5

(1 L ) (1 L ) M
x

2

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

+ + + +
= , 

                          5
6

yy
2

= ,      

1
22 2

4 4 4
5

(1 L ) M (1 L )
y

2

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

+ + − +
=  

                The shearing stress at the wall along x-axis is given by 

           1 11 6 11 6 10 2 10 2 8 4 8 4
0

u L y M x L y M x L y M x
η

τ
η =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∂= = + + + − −
∂

                                                                                     (45) 
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and the shearing stress at the wall along z-axis is given by 

           2 11 6 11 6 10 2 10 2 8 4 8 4
0

w M y L x M y L x M y L x
η

τ
η =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∂= = − + − − +
∂

                                                                                    (46) 

          The constants involved in the above discussion have been obtained but not presented here for the sake of brevity. 
 
4. Discussion of the results 
 
   In order to attain a physical insight into the problem, we have carried out numerical calculations for the velocity field, 
temperature field, concentration field and shearing stresses at the plate due to primary and secondary velocity fields for different 
values of 0 Pr ScS ,m, ,  keeping the values of Gr GcS, , , ,Ω t,MΩ  and k  fixed. The value of Pr  is taken to be 0.71 which 

corresponds to air at 025 C temperature and one atmosphere pressure respectively. The value of Grashof number for heat transfer 
is assumed to be Gr 10=  and Grashof number for mass transfer is taken to be Gc 5= − , corresponding to the heated plate Gc( 0)〈 . 

The values of the Schmidt number are chosen to be Sc =0.78 (for Ammonia) and Sc =0.30 (for Helium) at 025 C temperature and 
one atmosphere pressure. The numerical results obtained are discussed in figures 2 to 11. 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Variation of velocity component u against η  

 when 1, 1, 10,GrS = Ω = = 5, , 0.5, 5, 12Gc t m M kπ= − Ω = = = = . 

Pr 0.71, 0.30Sc= =  

η
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   Figures 2 and 3 given above depict the variation of the velocity component u against η  under the influence of Soret number 0S  
and Hall parameter m respectively. It is seen from figure 2 that the velocity component u increases as 0S  decreases. It may be 
noted from (21) that as 0S  decreases, TD  decreases. This leads to a fall in chemical thermal diffusivity and a subsequent increase 
in the species concentration gradient. Consequently, the buoyancy forces due to concentration differences increase, thereby 
causing the main flow component u to increase. We also notice from this figure that this increase is significant for large values of 
η  only. From figure 3 we observe that u rises as m (Hall parameter) decreases for small values of η  whereas it illustrates a 
reversal of the aforementioned trend as η →∞ . 
   The following figures 4 and 5 exhibit the change of behavior of the velocity component w against η  under the effect of Soret 
number and Hall parameter respectively. From figure 4 it is clear that w increases in sign as 0S  decreases. Again, figure 5 depicts 
that w rises as Hall parameter rises for small values of η  whereas this behavior takes a reverse trend as η →∞ . The Soret effect 
on ‘u’ and ‘w’ is negligible near the plate-surface, but is noteworthy at large distances from the plate-surface.   
 
 
 

 

 

Figure 3: Variation of velocity component u against η   

when 1, 1, 10,GrS = Ω = = 05, , 5, 0.2, 12Gc t M S kπ= − Ω = = = =  

 

Pr 0.71, 0.30Sc= =  

η
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Figure 4: Variation of velocity component w against η  

 when 1, 1, 10,GrS = Ω = = 5, , 0.5, 5, 12Gc t m M kπ= − Ω = = = =  

Pr 0.71, 0.30Sc= =  

η

Figure 5: Variation of velocity component w against η  

when 1, 1, 10,GrS = Ω = = 5, , 5, 0.2, 12 oGc t M S kπ= − Ω = = = =  

 

Pr 0.71, 0.30Sc= =  

η
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Figure 6: Variation of temperature rθ  against η  

when 1, 1, 10,GrS = Ω = = 5, , 0.5, 5, 12Gc t m M kπ= − Ω = = = = . 

η

rθ  

Figure 7: Variation of temperature rθ  against η   

when 1, 1, 10,GrS = Ω = = 05, , 5, 0.2, 12Gc t M S kπ= − Ω = = = = . 

Pr 0.71, 0.30Sc= =  

rθ  

η
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   In figures 6 and 7 the effects of Soret number 0S and Hall parameter m on the temperature field rθ  against η  are shown, 
respectively. We see from figures 6 and 7 that rθ  increases sharply for small values of increasingη , irrespective of the choice of 
values of 0S  and m. The same figures also indicate a steady fall in rθ  for comparatively larger values of η  i.e. as η →∞ , 
regardless of the choice of values of 0S  and m. This is attributable to the fact that a heated plate is considered and hence, near the 
hot plate, the fluid temperature rises sharply and then again declines with increasing distance from the plate-surface.   
   The variation of the concentration rC  at the plate under the influence of Soret number 0S and Hall m parameter are presented in 
the following figures 8 and 9 respectively. From figure 8, it is inferred that rC increases as 0S  increases whereas from figures 8 
and 9 we notice that rC increases sharply for small values of η  and then again declines steadily as η →∞ , for any value of 0S  
and m. Further, the Soret effect on rC  is negligible near the plate-surface and is marked at large distances from the plate-surface.  
A rise in 0S  causes a greater chemical thermal diffusivity at the plate’s surface.  Hence, rC rises as 0S  increases.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Variation of concentration rC  against η  

 when 1, 1, 10,GrS = Ω = = 5, , 0.5, 5, 12Gc t m M kπ= − Ω = = = = . 

 

Pr 0.71, 0.30Sc= =  

rC  

η
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Figure 9: Variation of concentration rC  against η   

when 1, 1, 10,GrS = Ω = = 05, , 5, 0.2, 12Gc t M S kπ= − Ω = = = = . 

Pr 0.71, 0.30Sc= =  

rC  

η  

Figure 10: Variation of shearing stress 1τ  against m  

when 1, 1, 10, 5, 5, 1Gr GcS M k= Ω = = = − = = . 

 

Pr 0.71, 0.30Sc= =  

m 

1τ  
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   The above figures 10 and 11 respectively demonstrate the variations of the shearing stresses 1τ  and 2τ  against the Hall 
parameter m, under the Soret effect. It is seen that 1τ  increases for increasing values of 0S , in figure 10. A rise in 0S  causes an 
increase in chemical thermal diffusivity at the plate’s surface. The increased molecular activity at the plate surface causes 1τ  to 
increase.  Again, figure 11 exhibits a rise in 2τ  for decreasing values of 0S . A fall in 0S  causes a decrease in chemical thermal 
diffusivity at the plate’s surface, thereby causing the cross-flow shear stress 2τ  to rise. The same figures also indicate that the Soret 
effect on 1τ  and 2τ  assumes significance for larger values of m. Further, we note from these figures that for small values of m, 1τ  
falls sharply and 2τ  rises. However, for larger values of m, we note that 1τ  increases sharply and 2τ  falls steadily.      
   The graphs for 0S = 0 (i.e. in absence of Soret effect) are almost identical with the graphs in the problem (sans Soret effect) 
studied by Sharma et al. (2007). This clearly supports validity of our results, when compared to those obtained by Sharma et al. 
(2007). 
 
5. Conclusions 
 
a)  A decrease in the Soret effect leads to an increase in both the main flow and cross-flow velocities. Also, the Soret effect on the    
     main flow and cross-flow fields is noteworthy at large distances from the plate surface. 
b)  In the fluid region close to the plate-surface, the hall effect causes the main flow-field to decrease and the cross-flow field to   
     increase. However, at large distances from the plate surface, the hall effect causes the main-flow field to rise and the cross-  
     flow field to fall.  
c)  The buoyancy effects are significant near the plate-surface, as observed from the figures 2 to 5. This is characterized by the  
     steep rise in the velocity fields namely ‘u’ and ‘w’, near the plate-surface. 
d) The Soret effect causes the main-flow shear stress to rise and the cross-flow shear stress to fall. The concentration at the plate- 
     surface increases under Soret effect.  

Figure 11: Variation of shearing stress 2τ  against m  

when 1, 1, 10, 5, 5, 1Gr GcS M k= Ω = = = − = = . 

 

Pr 0.71, 0.30Sc= =  

m

2τ  
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e) The similarity in the temperature and concentration profiles indicates that heat and mass transfer phenomenon are analogous 
processes. 
 

 

Nomenclature 

B
uur

    [-]                   magnetic induction vector 
0B   [Tesla]          intensity of the applied magnetic field 

C     [-]       dimensionless species concentration of the fluid  

pC   [ J/ kg K ]                    specific heat at constant pressure 

C∞  [ 3kmol/m ]   species concentration far away from the plate 

C∗   [ 3kmol/m ]   species concentration of the fluid at the plate 
D    [ 2 -1m s ]                      coefficient of chemical molecular mass diffusivity 

TD  [ 1 -1 -1 -1M L T K ]  coefficient of chemical thermal diffusivity 

E
r

   [-]   electric field  
e    [Coulomb]  electron charge 
Gr [-]   Grashof number for heat transfer 
Gc [-]   Grashof number for mass transfer 
g    [ -2ms ]  acceleration due to gravity 

J
r

   [-]    electric current density 
κ [ W/ mK ]  thermal conductivity 
k    []   permeability of the porous medium 
M   [-]   magnetic field parameter (Hartmann number) 
m   [-]   Hall parameter 
Pr   [-]   Prandtl number 

ep  [-]   electron pressure 
S   [-]   source parameter 
Sc  [-]   Schmidt number 

0S  [-]   Soret number 
T   [K]   temperature of the fluid in the boundary layer  
T∞  [K]   fluid temperature far away from the plate 
t    [T]   time 
u   [-]   x-component of the velocity vector 
V
r

 [-]   velocity vector 

0V [ -1ms ]  reference velocity 

w  [ -1ms ]  z-component of V
r

 
 
Greek symbols 
 
β  [ -1K ]  coefficient of volume expansion for heat transfer 

β∗ [ 3m / k mol ]  coefficient of volume expansion for mass transfer 

ρ   [ -3Kg/ m ]  fluid density in the boundary layer 

υ    [ 2 -1m s ]  kinematic viscosity 

σ   [ -1 -1Ω m ]  electrical conductivity 
θ    [-]   dimensionless temperature 
φ    [ -3W m ]  frictional heat 
Ω   [-]   non-dimensional frequency parameter 
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eω   [-]    electron frequency 

iω   [-]                                ion frequency 

eτ   [T]                 electron collision time 

iτ    [T]                ion collision time 

eη   [Coulomb]               electron charge 
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