Ife Journal of Science vol. 6, no. 2 (2004)

DEVELOPMENT OF A GENERIC VIRUS BEHAVIOURAL DETECTOR: A
PREVIEW

J.A. AYENTH, E.R, ADAGUNODO and A.D. AKINDE
Department of Computer Science and Engineering, Obafemi Awolowo University, 1le-1fe, Nigeria.

(Submitted: 22 April 2004; Accepted: 31 October 2004)

Abstract

Detecting viruses by observing and monitoring known virus activities while the computer system is in use is
known as detection by “behavioural abnormality”. In this paper, we examine virus mode of spreading and
behaviours, how their infection technique could be used for their detection and present a system for monitoring
critical system activities for normal and abnormal behaviours. Generally, viruses spread using either the Operating
System or the Computer System as a veritable vehicle to aid the realisation of their motives and detection
algorithms are often designed using these spreading modes. The Generic Virus Behavioural Detector (GVBD)
is a system (program) that monitors various system activities; reading and writing block of disks and memory
and the use of Interrupts. A technique for its realisation is presented.

Keywords: Computer virus, interrupts, handlers, GVBD (Generic Virus Behavioural Detector).

1. Introduction

Viruses are defined as malicious codes that alter,
delete, or render files on a given computer system
useless (Phillips and Thomas, 1998). They carry out
operations that are in no way related to the current
requirement of a given computer system. The present
day viruses are products of above-average
programming skill coupled with some in-depth
knowledge of anti-virus techniques (Vprotect, 2002).
Traditional anti-virus scanners are not protective
enough as an effective combat tool against viruses.
The generic virus behavioural detector uses the goal
of a virus for its identification and thereby blocking
it (the virus) before being triggered.

Common Virus Behaviours
Some known virus behaviours are (Whittington and
Wilheims, 2002):

- lInterrupt redirection

- Modification of system resources or files
(*.exe, *.com and *.sys)

- Unauthorised modification of user files
- Staying resident illegally.

All of these actions are behavioural, and as such, it
is possible to define these behaviours in such a way
that a program can look for them for possible
identification. However, a brief discussion of the
spreading mode of viruses is an essential part of this
work.

+ corresponding author (email: jayeni@oauife.edu.ng)

2. Spreading Modes of Viruses

As it is known in practice, a virus can be attached to
various program areas. The forms of attachment are
referred to as their spreading modes. Viruses do have
different spreading modes (Phillip, 1998; Munro,
2002 and Vprotect, 2002) and could be dependent
or independent of the machine and/or the operating
system.

(a) Machine Depet. . :nt

A spreading mode of a virus can be machine- specific
when the program areas which can be infected by
the virus depend on the machine. An example is the
boot virus that depends on the services of the BIOS
or the disk controller for its propagation.

(b) Machine Independent

On the other hand, a spreading mode of a virus can
be machine independent when the program areas
which can be infected are machine independent. An
example is a text file, as they could be infected under
different machines using the same spreading mode.

(c) Operating System Dependent

A spreading mode of a virus can be operating system
dependent when the program areas, which can be
infected by the virus, depend on the operating system.
An example is the .exe files in DOS.

(d) Operating System Independent

A virus spreading mode is operating system
independent if the program areas which can be
infected by the virus are independent of the operating

155

156

Ayeni et al: A generic virus behavioral detector

system. An example is the boot sector virus that uses
the BIOS services and not DOS services. However,
virus classification is based on these spreading modes
and not really on the type of infection. A virus
spreading mode often assists in the design of its
detection or its detection algorithm.

3. The Behavioural Abnormality Technique

Our approach shall be to observe a given normal
system behaviour as opposed to an abnormal
behaviour. Of course, normal system behaviour
consist of making the system files “read-only” with
no need for modification except when the system
administrator deem it necessary. These modifications
could be the upgrading of the Operating System
along with its related files, drivers etc. Any program
that attempts to do such on its own should trigger a
warning, alert the user and be prevented from making
such modification. The same applied to Boot Sector
writers and the modifications of interrupt vectors.
For viruses to remain undetected, they will always
attempt to modify their codes or change their
locations in memory or the disk. This will be
interpreted as a “behavioural abnormality”. In this
paper, we shall deal with four types of “Virus
behaviours”,

These are:
i Boot Sector viruses
ii Interrupt Routine Re-Routers
iii Viruses that attempt to go “Resident”
before infection
iv File Viruses.

(a) The Structure of Viruses

We present a simple structure of a virus (C Language
- Fig. 1). The virus is an example of the structure of
a file virus (see section 3(e) on File Viruses). The
file is often infected at known location within the
binary file. The infection is referred to as the virus’
signature and often used to eliminate re-infecting an
already infected file. That is, if the file (executable)
had already been infected, the virus stops action (Fig.
1). We shall briefly analyse the other types of viruses
and their methods of infection.

(b) Boot Sector Viruses

This is the type of virus that corrupts the Boot Sector
of the disk by the modification technique (Gordon,
1995 and Munro, 2002). The virus infects the system
Boot Sector by relocating the original Boot Sector
of adisk and copying itself appropriately. This class
of virus attempts to redirect the INT 13H (Rom BIOS
disk services) and INT 21H (DOS services) to its

(virus) codes. Therefore, a first approach to the
detection of this class of virus will be to monitor
request to modify the disk boot sector.

(c) Interrupt Routine (Vectors) Interceptors

This class of virus redirects the Interrupt Vector
associated codes to their own codes. The effect is
abnormal system behaviour. Such effects are the
keyboard not responding, pointing device pointing
abnormally, system resources exhaustion, and also
system malfunctioning (Patrick, 1992). We shall
approach this abnormal behaviour by monitoring the
system’s associated Interrupt Vectors and disallowing
re-direction.

(d) Memory Resident Viruses

The first task of any given virus on execution is to
go resident in memory. This is an essential feature
of viruses and hence their capability to perform their
malicious tasks. Viruses go resident and await system
requests issued by applications to be triggered.
Allowing applications to reside in the memory of a
computer system is a useful provision by the
operating system to enable adequate utilization of
the system resources and also service application
requests. Most viruses abuse this provision by
exploiting its usefulness to achieve their malicious
goals. In this regard, we shall be prudent as it is
practically unwise to block all programs trying to
go resident because most system’s utilities reside in
memory. It is equally impossible to establish the
usefulness, relevance or otherwise of a program
going resident without allowing it to execute first.
However, a ‘launch-code’ into memory from another
file or a redirection from an EXE or COM file to
another section of memory may look suspicious. We
shall approach the ‘resident virus’ problem by
examining where the calls to go resident emanate
from.

(e) File Viruses

This group contains viruses using the Operating
System file system in one way or the other for
replication purposes. The infection method of a file
virus varies from one type to the other. They infect
COM, EXE, data, SYS, OBJ, LIB and even text files.
These are classified as Overwriting, Parasitic,
Companion, Link, VBS, OBJ and LIB Viruses. This
class of virus tends to attack a set of system files
that are known and their detection by their objective
may not be difficult (Patrick, 1992; Gordon, 1994
and Hanau, 1997). We assume that, it is illegal to
change the content of all system files except when
the operating system is being upgraded. Therefore,
an attempt to change SYS, EXE, COM, OBJ, LIB,
files etc. when not initiated by corresponding owners,
i.e. the O/S, Compiler, etc. will be interpreted as
illegal and adequate provision made for its blockage.

Ayeni et al:: A generic virus behavioral detector

157

Algorithm 1.

Virus(void)

{
infectExecutableFile();
if (triggered() {

doDamage();

}

goto main of infected program/file

/* Virus main body */

Void infectExecutable(void) /* Searches for unifected executable file */

{
file = choose an unifected executable file;
prepend Virus to file

}

void damage (void) /* The payload */

{

do anything

}

int triggered (void) /* Triggers virus load */

{
return (sometest?1:0);

}

Fig. 1: The structure of a file infecting virus

4. Virus Anti-Detection Techniques

In order to achieve their targets, viruses often employ
special techniques to shield themselves from
detection. Also, because the same anti-virus software
techniques are in use, virus writers have attempted
to defeat this software in their viruses by one or both
of these techniques (Patrick, 1992 and Paget, 2000):

i Disabling the software or any of its

modules.
ii Getting around the detection algorithms.
iii Removing the antivirus signature

database.

Consequently, this has resulted into virus
classification based on their anti-detection technique.
We briefly discuss below some of these techniques.

5. Polymorphic Viruses

The scanning techniques used in most of the anti-
virus software rely heavily on virus signature
recognition. Thus virus writers have resulted into
making their viruses capable of changing their codes
after each infection session. This will eventually

158

R ! make the virus untraceable, as it would be difficult
to get its correct signature into the database of the
scanner (Paget, 2000 and Leitold, 2001).

(a) Tunneling

This is another technique often used to ensure that
the virus is loaded underneath the scanner. This class
of viruses often target interrupt handlers and thus
have direct access to the operating system (Patrick,
1992).

(b) Other Techniques

Some of the viruses being developed today use a
combination of the above techniques and a few more
of their own. Some viruses would upon launch,
disable anti-virus software or corrupt the “*.dbf” files
containing virus signatures used by the scanners.
Others will reduce their searching techniques with
improved algorithms.

Generally, a behavioural detector would be able to
catch these viruses as most of these virus activities
could be used to distinguish viruses from non-viruses
(Patrick, 1992 and Lu, 2002).

6. Descriptive Model of the Detector

We present a brief overview of the ‘Behavioural
Detector’ and the tools to be used. The program is
designed to be compact enough to be able to reside
in memory while retaining all the proposed
functionality. The most ideal language for its
implementation is the C or Assembly programming
language because of its closeness to the machine
language and the possibility of combining both
languages. Generally, an object-oriented language
is not ideal for this type of work because of the size

Ayeni et al.: A generic virus behavioral detector

of its executable codes and their characteristic
machine dependency structure. A general
architectural model for the detector is presented in

(Fig. 2).

7. Software and Hardware Interrupts

The concept of interrupts has expanded in scope over
the years. The MSDOS and Windows family of
Operating System have incorporated a lot of
confusion into this phenomenon. Virus writers have
explicitly explored the absence of rigidity to
penetrate the Operating System and wreck havoc. In
the 80X 86 families, there are three types of events
commonly known as interrupts and these are
exceptions, traps and hardware interrupts. Although
(the terms) trap and exception are often used
interchangeably, in the context of this paper, the latter
refers to a programme initiated and expected transfer
of control to a special handler routine and its nothing
more than a specialized subroutine call (Leitold,
2001). The 80X86-instruction int call is the vehicle
for executing a trap. It is important to state here that
traps are usually unconditional and when an int call
is executed, control is transferred to the procedure
associated with the trap. Therefore, since traps are
executed via an explicit instruction, it is easy to
determine exactly which instructions in a program
will invoke a trap Aandler routine. On the other hand,
an exception is an automatically generated trap and
occurs in response to some exceptional condition
generated due to exceptional behaviour of normal
80X 86 instruction. Whenever this occurs, the CPU
normally suspends the currently executed instruction
and transfer control to the exception handler routine.

Program Start:

End Program

While Resident And System On

Monitor Programs going Resident

Monitor Interrupt calls

Filter I/O calls by the (System, User,Applications} on:

System’s boot sector

F System’s Device drivers
System modules
Al applications
* End While

Fig: 2: A General Architectural Model Of The Detector

Ayeni et al.: A generic virus behavioral detector

Although there is no specific instruction to cause an
exception, as with the software interrupts (Int traps),
execution of some instructions always causes
exceptions. As an example, executing a division
instruction causes a division error or request for
inaccessible memory region. Hardware interrupts in
this work handles some events such as; Keyboard,
Timer, Disk etc. and inform the CPU that a device
needs some attention. The CPU interrupts the
currently executing program, services the device, and
then returns control back to the program. An interrupt
service routine is a specifically written procedure
provided by the Operating System to handle a trap,
exception and interrupt. Although different
phenomena cause traps, exceptions and interrupts,
an Interrupt Service Routine or ISR has the same
structure for each of these three (Jones, 1998).
Generally, the structure of the ISR in the DOS
environment has provided virus writers a readily
available entry point for the activation of viruses and
allowing these malicious programs to replicate with
case. An effective technique of putting these ISR’s
under control and close monitoring will surely ensure
the curtailment of these viruses and their activities
in the DOS environment. We need to block the

possibilities of allowing access to target ISR’s by
these virus writers.

Trapping the needed Interrupts

Perhaps the most interesting aspect of the generic
behavioural detector is the technique of blocking
access to the Interrupt routines. Although this
technique is not peculiar to this work, virus writers
often employ the same technique. For all the needed
interrupts, we save the addresses of their associated
routines (systems) and insert the address of the
detector’s handling routine. Inside the detector’s
handling routine, we then try to determine the
genuineness or otherwise of the calling routine’s
request (Fig. 3). Hardware interrupts are handled by
Interrupt Service Routines (ISR) that
correspondingly instruct the processor to carry out
the task requested by the hardware such as Floppy
Drives, Hard Drives, Timer, etc. and are potential
entry points to triggering a malicious program. In
addition to the known hardware interrupts i.e.
generated by Hard and Floppy Drives, Timer, etc.,
that is, those that could assist the replication
requirements of viruses, we also need to monitor such
BIOS (Basic Input and Output System) requests via
the INT 21H calls (Patrick, 1992).

Détector's
Rouotine

Detector’s
Check Point

Blocked

S ————

Fig 3: Schematic Representation Of GVBD

159

160

Ayeni et al: A generic virus behavioral detector

8. Necessary Components of the GVBD
The three major components of the GVBD are:

i Identifying the system calls that are
susceptible to virus attacks.

ii The GVBD presentation as a TSR
(Terminate and Stay Resident)

Getting the GVBD into memory
immediately after the Operating System
is loaded.

(a) The BIOS and DOS Calls

Our first approach is to decide on the various calls
that are potential entry points to virus attacks and to
be monitored against malicious use. Some of the
interrupt vectors, BIOS and DOS calls that could be
used as launch pads and channels by viruses are:
INT 13H - BIOS disk services

INT 10H - BIOS video services

INT 21H — DOS services

INT 1AH — BIOS Real Time clock services

INT 8 (IRQ 0) Timer Interrupt

INT 9 (IRQ 1) Keyboard interrupts

INT OEh (IRQ 6) Diskette drive.Interrupt

INT 76h (IRQ 14) Hard Disk drive Interrupt

iii

(b) The GVBD as a Terminate and Stay Resident
Program

The GVBD program would be resident in memory
as a “terminate and stay resident” program (TSR)
and this must be realised just after loading the
Operating System and its components in order to
capture all the system resources before any virus
action. This will allow an effective monitoring of
all the activities of the computer system.

(c) Further Work Enhancement

Studies have proved a virus behavioural detector to
be more effective than a virus scanner because of
the need to continually update the scanner’s database
for newly discovered signatures. However, for
monitoring to be effective users must be educated to
be able to identify normal system activities from
suspected activities. Also, the sensitivity of the
monitor has to be set high and appropriate so as to
reduce the generation of false alarms.

9. Conclusion

The proposed GVBD is an effective tool against all
classes of viruses and even those that could only be
detected after attacking at least one system. While
the conventional anti-virus scanner relies heavily on
virus signature or strains for detection, the GVBD
looks for any form of abnormal behaviour of a
program and therefore has the potential of being more

effective and relevant in the fight against malicious
codes. The idea however is not to abandon signature-
based anti-virus software; but instead, create a more
robust malicious code protection solution with both
techniques; signature-based and behavioural-based
(GVBD).

Acknowledgement

The authors thank Professor Amos David of LORIA,
Toulouse, France for his commitment towards the
upliftment of Information Communication
Technology (ICT) in Nigerian Universities and his
encouragement towards the realisation of this paper.

REFERENCES

Conry-Murray, A., 2002. Behavior-Blocking Stops Malicious
Code, Network Magazine, June 2002 CMP Media,
N.Y.

Gordon, S., 1994. The Generic Virus Writer. In: Proceedings
of the Fourth International Virus Bulletin Conference,
Jersey, U.K.

Gordon, S., 1995, Technologically Enabled Crime: Shifting
Paradigms for the year 2000. Computers and Security,
Elsevier Press, December 1995,

Hanau, 2000. Building an Anti-Virus Engine. http://
www.hanau.net/fgk/downloads/42.zip.

Jones, D., 1998. 80X86 Assembly Programming. Oxford
University Press, Oxford.

Leitold, F., 2001. Reductions of the General Virus Detection
Problem, EICAR Conference 2001. http://
papers.weburb.net/archive/00000063.

Lu, L., 2002. A Simplified Approach For Anti-Virus
Implementation on EMAIL Servers. EICAR
Conference 2002. http://papers.weburb.net/archive/
00000072.

Munro, J., 2002. Anti-Virus Research and Detection Techniques
http://www.extremetech.com/article2/
0,3973,325897,00.asp.

Paget, F., 2000. Computer Viruses: The Technological Leap,
EICAR Conference, 2000

Patrick, M., 1992. Virus Detection Alternatives. Published by
the Dutch National Criminal Intelligence Service,
Computer Crime Unit, The Hague, Netherlands.

Philip, F. and Thomas, D., 1998. The Computer Virus Crisis,
Van Nostrand Reinhold, New York.

Vprotect, 2002. Computer Knowledge Virus Tutorial, http://
www.cknow.com/vtutor/vprotect.htm, Coniputer
Knowledge.com.

