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Modelling the Transitional Dynamics of  Mycobacterium Tuberculo-
sis Strain 
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The World Health Organization’s targets of eliminating Tuberculosis (TB) by 2050 is challenged 
by the emergence and spread of drug resistance TB. However, the traditional mechanism of re-
sistance is that of acquired resistance, whereby the mycobacterium Tuberculosis (MTB) strain de-
velops mutations under selective pressure of insufficient drug therapy. These mutations have the 
tendency of changing the drug target protein, restricting the bacteria to the anti-TB agent. We pro-
pose a discrete state markov chain model with three disease states: Drug Susceptible (DS), Multi 
Drug Resistant (MDR) and Extra Drug Resistant (XDR) to further study the transitional dynamics 
of the MTB strain. The study made use of a retrospective data on resistant pattern to first line and 
second line anti TB drugs. The structural properties of the model established life expectancies of 
DS and MDR strains as well as the probability of first resistance of the DS strain. Key estimates 
were assessed by the bootstrapping procedure which converged in estimates to the actual data. If 
the experiment were repeated infinitely many times, in 95 out of 100, the interval 2.782 x 10-7 to 0.018 
will contain the true probability of first mutation of the DS strain. A key contribution of this study 
is the revealing therapeutic cycle of the treatment regime of the TB disease based on the TB pro-
gression data which saw the period after the 20th cycle of the treatment being prominent in some 
key strain dynamics. These findings may also help explain further the pharmacodynamic proper-
ties of the "first line" anti-Tuberculosis drugs for enhance TB treatment.  
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INTRODUCTION  
Tuberculosis (TB) remains the world’s leading cause 
of death (WHO, 2004). The emergence and the 
spread of Drug Resistant (DR) TB has grown to be a 
major threat to the treatment and control of TB. 
Even though, the Mycobacterium grows slowly, rou-
tine Drug Susceptibility Testing (DST) which is one 
of the standard methods of testing DR TB can take 
weeks to months. Patients who delay in receiving 
suboptimal therapy in the course of DST may fur-
ther lead to development of additional resistance 
(Dye & Williams 2010).  
 
The World Health Organization (WHO) in 2010 

indicated that a consequence of inadequate TB 
treatment and management has given birth to Mul-
tidrug-Resistant TB (MDR-TB) which has emerged 
in all parts of the world and now accounts for ap-
proximately 8 -9% of all  TB  deaths (WHO, 2010). 
The need for standard methods of diagnosing DR 
TB which relies heavily on culture and phenotypic 
DST are being developed in recent times. These 
new development relies on information about mu-
tations that leads to DR TB. 
 
This study briefly review below, some extensive 
research in both molecular and mathematical mod-
els on the dynamics of the MTB strain which has 
increase our knowledge on the mutational capabili-
ties of the bacteria and subsequent development of 
therapies. For instance, Blower et al., (1995) devel-
oped two mathematical models that studied infect-
ed individuals that can develop TB either by fast 
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progression or endogenous reactivation. Their analy-
sis shows a longer period (years) for the rise and fall 
of TB epidemic to reach equilibrium and suggested 
that natural behaviour of the epidemic may help re-
duce TB. 
 
In 2001, the work of Blower et al., was extended by 
Ziv et al., (2001), their model focused on the effec-
tiveness of early therapy for latently infected individ-
uals. Their analysis indicates that TB epidemic can 
be controlled if latently infected individuals are given 
therapy at the early stages of the diseases. Nishiura et 
al., (2004) model concentrated on failure trend of 
DR TB in Thailand even though their study antici-
pated a dramatic decline in Drug Sensitive (DS) cas-
es, DR cases were predicted to go up slowly such 
that more than half of the TB strains would not be 
DS after 2020. Bhunu & Garira (2009) developed a 
two strain TB transmission model with therapy and 
quarantine. Their analysis among others shows that 
effective chemoprophylaxis and treatment of infec-
tions result in a reduction of MDR-TB cases.  
 
Abukari et al., (2013) developed a stochastic branch-
ing process model to determine the containment of 
a bacillus population with conferred mutations to 
first line anti TB drugs Isoniazid (INH) and Rifam-
pin (RIF). Their analysis indicates that if the total 
number of MTB strain is less than 39,062,500 and 
4,444,444,444 with selective effect to INH and RIF 
respectively, the explosion of the MTB stain can be 
contained. These metrics were far less than the clini-
cal bacterial load of 1010. Christopher et al., (2013) 
attempted to address the question of why MTB 
strains from East Asian Lineage and Beijing sub lin-
eage acquire DR in vitro more quickly than MTB 
strains from Euro – American Lineage. Stochastic 
model was used to demonstrate that the observed 
differences in the mutation rate predict a substantial-
ly higher probability that patients infected with DS 
lineage from East Asian will habour MDR bacteria 
at the time of diagnosis. 
 
Generally, most of these studies and others dis-
cussed the spread of the TB disease among popula-
tion of humans. Those that discuss the dynamics of 
the MTB strain still needed to determine appropriate 

probability metrics that will help design more vigor-
ous treatment strategies for the control and cure of 
the TB disease. In this study, discrete state Markov 
Chain model was proposed to study the transitional 
dynamics of the MTB strain. The study also focuses 
on determining the probability of initial mutation of 
the DS strain, the expected progression from DS to 
MDR strain and the life expectancy for DS and 
MDR strain. Specifically, the study focuses on de-
termining: The average length of time a DS strain 
spends before mutating to XDR strain and the life 
expectancy for DS and MDR strain. It is expected 
that this study will help in the design of new treat-
ment strategies for enhanced TB treatment and 
control. 
 
METHODOLOGY 
 
Markov Chain 
A discrete time stochastic process {Xt} is called a 
Markov chain if  t = 0,1,2,…. and all states P(Xt+1 = 
it+1 | Xi = it ) ———[1] 
In essence, this means that the probability distribu-
tion of the state at time t+1 depends on the state at 
time t(it) and does not depend on the states the 
chain passed through on the way to  it at time t 
(Wayne, 2004). 
 
A further assumption that for all states i and j, P
(Xt+1 = j | Xi = i ) ———[2] is independent of t. 
This assumption allow us to write equation [2] as Pij 

where Pij  is the probability that given the system is 
in state i at time t, it will be in a state j at time t+1. 
If the system moves from state i during one period 
to state  j during the next period, we say that a tran-
sition from i to j has occurred. The Pij’S  are often 
referred to as the transition probabilities for the 
Markov chain. [2] presupposes that the probability 
law relating the next period’s state to the current 
state does not change over time. 
 
We also must define qi to be the probability that the 
chain is in state i at the time 0; in other words, P(X0 
= i) = qi ———[3]. The vector q = [q1, q2, …..,qs] 
was called the initial probability distribution for the 
Markov chain (Wayne, 2004). 
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Classification of States in a Markov Chain 
In markov chains, a state j is reachable from state i if 
there is a path leading from i to j. Two states i and j 
are said to communicate if j is reachable from i, and i 
is reachable from j. 
 
A set of state S in a Markov Chain is a closed set if 
no state outside of S is reachable from any state in S. 
A state i is an absorbing state if pij=1. A state i is a 
transient state if there exists a state j that is reachable 
from i, but the state i is not reachable from state j. If 
the state is not transient, it is called a recurrent state. 
A state i is periodic with period k > 1 if k is the 
smallest number such that all paths leading from 
state i back to state i have a length that is a multiple 
of k. If a recurrent state is not periodic, it is referred 
to as aperiodic.  
 
If all states in a chain are recurrent, aperiodic, and 
communicate with each other, the chain is said to be 
ergodic. (Wayne, 2004). This paper focuses on ab-
sorbing markov chain since we are modeling disease 
states that finally absorbs into a state that neither 
communicate nor reachable from other states in the 
course of the disease progression. 
 
The Model  
In the context of this study, three discrete states was 
defined: Drug susceptible (DS), Multi Drug Re-
sistant (MDR) and Extra–Drug Resistant (XDR). 
This simplified framework does not account for the 
history of the MTB strain (i.e., a  DS strain remains 
inexperience). 
 
For instance, a DS strain can progress to an MDR 
state and an MDR strain can retrogress back to a DS 
state. Similarly, an MDR strain can progress to an 
XDR state. Once an MDR strain progresses to an 
XDR state, it stays there forever and cannot become 
an MDR strain or DS strain. Johnson et al., (2009), 
have indicated 60% treatment success for subopti-
mal treatment cure for MRD TB with second line 
anti-TB drugs. The DS and MDR states are referred 
to as ‘transient states’ while XDR is referred to as 
‘absorbing state because once an MTB strain enters 
that state it can never leave, it stays there forever.  
The transition probability matrix may be denoted as:  

The rows represents the state of a process for a 
given MTB strain (1=DS, 2 = MDR, 3 = XDR) at 
time step n and the column indicate the state of the 
process at time step n+1. Sequentially, the states are 
DS ↔MDR→XDR 
 
For example, P12 (the element in row 1 and column 
2) is the probability of transitioning from the DS to 
MDR in one step (conditional on escape from 
MDR/Survival), commonly referred to in disease 
literature as the discrete time force of infection. The 
elements P13 and P23 reflect on the inability of the 
DS strain to escape XDR status. In this context, it 
indicates treatment failure. P21 is the defective prob-
ability (Cohen, 1973). In this context, it reflects on 
the treatment success of the diseases. The last row 
of the matrix represents the probabilities of treat-
ment failure as XDR cannot be treated, hence it is 
an absorbing state. Once an MTB strain enters that 
state, it can never recover and remains there forev-
er.  
 
In order to ensure that the transition process occur 
on a biologically meaningful time scale, this study 
consider number of hours as the time course of the 
MTB stain to make a transition. At any given time 
an MTB strain must be in any one of the three 
states, which reflect the fact that each of the rows 
always sum up to one.  
 
This means the n-step transition probabilities of the 
markov process can therefore be examined by rais-
ing the matrix to nth power, thus Pn. The probability 
that a process initially at state i will be in state j after 
exactly n steps is exactly the elements of Pn denoted 
by Pij

n. The elements of the matrix Pn provide infor-
mation on the markov chain at the nth time step: 
Nothing can be inferred about the state of the pro-
cess during any of the n-1 time step (Wayne, 2004). 
 
The metrics of interest from the elements of Pij

n can 
be computed. Further, the probability that a DS 
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strain initially becomes MDR strain during the inter-
val between m-1 and in m time steps can also be de-
termined.  
 
Clearly, for the state of the MTB strain of interest, it 
is only possible for one transition to occur within 
one logical order of time step. We define the initial 
time step as n and examine the intervals between n, 
n+1,……, n+m. The probability that an observed 
patient with a DS strain progresses to MDR strain 
after one step is simply P12  and the probability that 
a patient with DS strain remain as DS is P11. Thus 
the probability that a DS strain first becomes MDR 
strain after two steps is simply the probability that it 
remain DS for exactly one step and the become 
MDR strain during the next time step: P (Xn+2 =1, 
Xn+1 = 0/Xn=0) = P11 P12  ——— [4] 
 
Following this sequence, the probability that a DS 
strain progresses to MDR state for the first time 
between the m-1 and m time steps would be fm12 = P
(Xn+m=1, Xn+m-1….Xn+1=0/Xn=0) = P m-1 11 P12 —
——-[5]. For 1<m< ∞. Equation [5] is usually re-
ferred to as a sub-distribution of probabilities.  
 
fm12  is defined as the first step probability that a DS 
strain first progresses to an MDR strain in exactly m 
steps for all possible values of m.  This will enable us 
to calculate the total probability that a DS strain will 
progress to an MDR strain or an MDR strain will 
progress to an XDR strain or an MDR strain will 
recover from MDR during the time period of the 
study and the speed with which this procedure oc-
curs.  
 
Our Markov Chain model also allows us to calculate 
the life expectancies for the DS and MDR strain. In 
this study, we define life expectancy as the expected 
time to absorption of each MTB strain (i.e. absorp-
tion into the XDR state).  
 
We denote as Ti for i = 1,2.To examine life expec-
tancies of the various states, we create a matrix Q 
that contains only transition probabilities for the 
recurrent transitions for the transient states (ie pro-
cess of MDR and recovery from resistance). Note 
that in this model, we have defined two transient 

states 1 and 2 (i.e. DS and MDR) and one absorb-
ing state 3 (XDR), therefore  
The life expectancy for an MTB strain is N =(I-Q)-1 

11 12

21 22

P P
Q

P P

 
  

 

Where 

The term life expectancy is a vector containing the 
expected times to a strain becoming an XDR strain 
starting from the DS state (first element of N) and 
MDR state (second element of N) respectively. 
 
Probability Matrix  
For each cycle, a count matrix was constructed 
based on the number of patients with the respec-
tive MTB strains making the transitions. The count 
matrices were summed to give the overall summa-
tion (S) matrix (Jain, 1986). The summation matrix 
was used to construct the estimates  Pij of the prob-
ability (P). The probability of transitioning from 
state i, the previous state, to state j, the future state, 
given by: 

[6] 
Where fij(k) the frequency or count of patients mak-
ing the transition from state i to state j, fi is the sum 
of observed patients initially in state i and k is the 
cycle with a total of K cycles (Craig & Sendi, 2001). 
Hence, the sum of each row of the P matrix is one 
as indicated in Table 1. 
 
Resistant Pattern Data 
We adopt a retrospective data on resistant pattern 
to first line and second line anti TB drugs from a 
study conducted by Rizwan et al. (2012). The data 
consist of a total of 1180 MTB positive patients 
receiving various anti TB drugs and suspected of 
having drug resistance. These patients were referred 
to the specialized research center for TB at Lahore 
for culture and drug susceptibility testing against 
first line and second line anti TB drugs. 
 
Primarily, isolation for MTB was performed using 
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Table 1: Summation of row of P matrix  

the recommended procedure for culturing with 
standard concentrations and critical concentrations 
as recommended by Sidiqqi et al. (1985). The data on 
key states defined for the study was extracted. Out 
of the 1180 suspected MDR patients tested, 201
(17%) showed resistance to both INH and RIF, 4
(2%) were XDR cases (Rizwan et al., 2012). 
 
Note that these were patients who were on various 
treatment regimens hence our choice for adoption 
of proportions as case probabilities for our markov 
chain model. The case probabilities are illustrated as 
shown below:  

  DS MDR XDR  ∑ 

DS 179 201 0 1180 

S =      MDR 0 197 4 201 

XDR 0 0 4 4 

  DS MDR XDR  ∑ 

DS 0.83 0.17 0 1 

P =      MDR 0 0.98 0.02 1 

XDR 0 0 1 1 

The transition matrix of the resistant pattern data in 
a canonical form is written as: 

0.83 0.17 0

0 0.98 0.02

0 0 1

P

 
 

  
 
 

This study make the following assumptions: 
1. An MTB strain that progresses into an XDR 

strain remains there forever. We refer to this as 
the treatment failure in our model 

2. We assume that strains jumps between states 
(DS ↔MDR→XDR) 

3. The transition from DS → XDR is sequential 
4. Patients tested with DS, MDR and XDR are 

declared as those statuses respectively. 
5. The period of transition in discrete period is 

measured in hours. 
Estimating our probabilities and life expectancies, 
we obtain the canonical form of the matrix, thus: 

0.83 0.17 0 1 0
, ,

0 0.98 0.02 0 1
Q R I

     
       

     

   
1 5.88 50 1 8.6 0.0

, ( ) 2.94,0 , ( )
0.00 50 1 0.0 0.0

N I Q B NR and SD N Cov N
      

           
     

Where: 
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An MTB strain starting as DS strain will spend an 
average of 5.9 ± 2.9 hours in that state, and starting 
as MDR strain, it will remain in that state for an av-
erage of 50 hours before it progresses to XDR state. 
Table 2 below consists of the summary of the model 
analysis. 

Description Metric 
(Hours) 

Expected Time to Treatment Failure 50 

Life Expectancy for the DS Strain 5.9 ± 2.9 

Life Expectancy of the MDR Strain 50 

Expected Time to Treatment Failure 
for MTB strain 

55.9 ± 2.9 

Table 2 Analysis of Resistant Pattern Data 

Simulated Data 
We generated 50 chain cycles of the probability dis-
tribution of both the mutation of the DS strain at 
each cycle and the probability distribution of drug 
resistance at each given time step of the chain cycle. 
Clinically, most patients under treatment of various 
TB regimes usually do not complete the drug cycle 
or even lost to follow up. The model allowed as to 
use the transition probability matrix of the drug sus-
ceptibility data to determine the future states of the 
diseases given that each entered into their various 
treatment regime at the same time. In the absence of 
further visits of the patients, the simulated chain 
enables us to determine the future states of the dis-
eases in some number of steps (Figure 4.1 and Table 
3). 

Figure 4: 4.1, 4.1A, 4.1B and 4.1C are 50, 100, 
200, and 1000 cycles of the probability of first 
mutation of the DS MTB strain respectively. 

Number of 
Cycles 

SD Mean Figure 

1 0.17 0.17 - 
50 0.04 0.02 Fig. 4.1 
100 0.29 0.01 Fig. 4.1A 
200 0.021 0.005 Fig. 4.1B 
1000 0.01 0.01 Fig. 4.1C 

Table 3: Summary Statistics of the Original 
Transition Matrix and the Simulated Cycles of 
the Probability of First Mutation of the MTB 
Strain 

Table 3 shows a decreasing trend in the deviations 
as the number of cycle increases. However, the 
means exhibited similar trend but increase slightly 
at the 1000th cycle. 

Figure 4.2 illustrate the probability of re-
sistance of the MTB strain at each time cycle 

In Figure 4.1, Probability distribution of first muta-
tion from DS to resistant strain decreases exponen-
tially over the cycle. The decreasing trend becomes 
steady after the 20th cycle. Apparently, the DS 
strain is sensitive to the anti TB drugs and as such 
mutations at each cycle will continue to reduce and 
consequently approaches 0, by which time all the 
DS strain would have been wiped out as a result of 
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the drug effect. This is because the first time the 
strain is visited with the drug, the chances of the DS 
strain becoming resistant is very low. Our simulated 
chain is consistent with the fact that mutation of 
susceptible MTB strain can be reduced when antimi-
crobial agents are adhered to over time course of 
treatment. 
 
The reverse is the case in Figure 4.2. The Probability 
distribution of DS becoming resistant increases over 
the time course of the cycle. If subsequent visits of 
the drugs to the DS strain is interrupted or taken 
below prescribed concentrations, chances are high 
for the strain to become resistant. As shown in Fig-
ure 4.2, the Probability of the DS strain becoming 
resistant over the time course of the treatment in-
creases. Coincidentally, this also occurs after the 20th 
cycle of the treatment regime. This consequently 
reaches an absorption state. 
 
We further generated a number of cycles (n=100, 
n=200 and n=1000) for the probability of first muta-
tion of the DS strain. The deviations of the various 
cycles shows a decreasing trend , nonetheless, the 
steady state of the process was after the 20th cycle 
which was consistent with all the cycles generated in 
Figure 4.1, 4.1A,  4.1B, and 4.1C respectively. Same 
conclusions can be made about Figure 4.2 based on 
the generated cycles. No matter the number of times 
we generate the cycles of the disease transition, the 
steady state will occur after the 20th cycle for both 
probability of first mutation of the DS strain and the 
probability of DS resistance hence the focus on 50 
cycles. In terms of clinical practice, resistance of 
MTB DS strain should be prevented before the 20th 
cycle of the course of treatment. 
 
Assessment of Estimates 
Since we ran 50 cycles of the resistant pattern data 
and determined certain metrics of interest on the 
transitional behaviour of the MTB strain. The 50 
random generated cycles was used as the empirical 
data to further assess the simulated results of the 
Markov Chain. Looking at the distribution of the 
data in Figure 4.1G and 4.1J respectively for the 
probability of first mutation from DS to MDR and 
the probability of resistance of the DS strain, it seem 

not right for further analysis. Computing the mean 
of first DS mutation and DS resistance level of the 
MTB strain alone given this distribution may not 
have meaning and may not describe the situation 
well. 
 
Hence,  a  more  important  objective  of  this study  
is  primarily  to  understand  the variability of  the  
DS and MDR  level  for the MTB strain dynamics.  
Again, the law of averages does not work well for 
this kind of distribution, unless one has a very large 
data set, say n = 1000 or more. This is a case where 
the bootstrap can be a useful technique. Bootstrap 
techniques are generally categorized as either non-
parametric or parametric. Parametric bootstrap 
techniques assume that the data are generated from 
a standard parametric probability model (such as 
the Normal, Poisson etc.). 
 
Nonparametric bootstrap techniques are more ver-
satile and suit our illustration of the data to the 
model much better.  Because  of  their  versatility, 
nonparametric  bootstrap  techniques  are  the  
more  popular  type  of  bootstrap applications. The  
beauty  of  the  nonparametric  bootstrap  is  that,  
since  there  are  no assumptions  of  the  underly-
ing  model,  you  can  apply  it  to  any  dataset. The 
essence of what the nonparametric bootstrap is 
doing is sampling from the empirical cumulative 
density function (CDF) of the data. The empirical 
probability distribution assigns an equal probability 
to each of the data points, 1/n. Hence when we 
resample, every data point has an equal chance of 
being sampled. Using the CDF is what allows us 
not to rely on a particular probability model as seen 
in Figure 4.1E and 4.1H. 
 
Basically, the process is a form of pseudo sampling 
from the original dataset to determine the variability 
of the dataset. This process may sound too easy and 
simplistic, yet it is a very robust and statistically 
sound technique for measuring standard errors. 
The R package stepfun, plot, Stepfun and bootstrap were 
used to plot the empirical CDF for the data set and 
subsequent selection of 1000 bootstrap samples 
from the original resistant pattern data. Table 4 
consists of the summary measures of the process. 
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Description Mean Standard Error C.I (95%) Bias 

Original 
Data 

Bootstrap Original 
Data 

Bootstrap Bootstrap 

Probability of 
First Mutation of 
DS Strain 

0.01 0.0101755 0.0289 0.0091780
75 

2.782228e-07 and 
0.01811307 

0.00017 

Probability  of 
Resistance of DS 
Strain 

0.9511765 0.9511253 0.1412794 0.0446325 0.9153687 and 
0.9999986 

0.00001 

Steady State 
Probability of 
MTB Strain 

2.24 2.23856 0.6869037 0.6801311 2 and 2.46 0.00144 

Table 4 Comparison of Summary Measures of Original Data and Bootstrap Results 

It is observed that the mean of the bootstrap sam-
ples converges to the mean of the original data for 
both first time mutation from DS state to MDR 
state and the probability distribution of DS re-
sistance. 
 
Further, the graphs below depict the variability 
structure of both the original data and the bootstrap 
samples. Both graphs of the original data (Figure 
4.1G and 4.1J) exhibited high level of skewness, yet 
the bootstrap samples graphs of first DS mutation 
and DS resistance (Figure 4.1F and 4.1I) exhibited a 
fairly normal distribution. This is evident in Table 4 
where the Bias in both cases are almost 0.This pro-
vides a very sound statistical basis for the conclusive 
results on the dynamics of the MTB strain in terms 
of the first time the DS strain becomes resistant over 
the course of treatment regime (cycle) and the prob-
ability distribution of DS resistance over the course 
of the treatment regime (cycle). 
 
The confidence interval further allowed for the in-
terpretation of the estimates with a certain probabil-
ity. A 95%  confidence  interval  for  our  parameter  
estimate  for  the probability of first mutation of DS 
strain is (2.782 x 10-7,  0.018). Thus, if  the experi-
ment is repeated (drawing  random  samples  of  size  
50  from  the empirical data)  and  made confidence 
intervals for each sample mean point estimate, then 
95% of the time, the  confidence  interval  derived 
(2.782 x 10-7,  0.018) would  contain  the  true  mean 
of the first DS mutation. Similarly, a  95%  confi-

dence  interval  for  our  parameter  estimate  for  
the probability of DS resistant strain is (0.92 and 
0.10). Thus, if this experiment is repeated (drawing  
random  samples  of  size  50  from  the empirical 
data)  and  made confidence intervals for each sam-
ple mean point estimate, then 95% of the time, the  
confidence  interval  derived (0.92 and 0.10) would  
contain  the  true  mean of the  DS resistance. 
 

Figure 4.1E and 4.1H are the empirical cumula-
tive distribution function of DS first mutation 
and DS resistance. Figure 4.1G and 4.1J are the 
graph of the original data for DS first mutation 
and DS resistance. Figure 4.1F and 4.1I depicts 
the distribution of bootstrap samples for both 
DS first mutation and DS resistance 
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RESULTS AND DISCUSSION  
The transitional period of the MTB strain from DS 
to either MDR or XDR is very crucial in TB treat-
ment. It represent the period of difficulties in TB 
treatment because of the random behaviour  of the 
MTB strain partly due to drug to drug interactions 
and other physiological effects .Our study discusses 
the transient state of this period and guarantees an  
absorption into the XDR state of the disease in  
course of treatment. It is established that a drug ef-
fect is often related to its concentration at the site of 
action, hence monitoring of this concentration is 
very crucial. This study can be optimized with 
knowledge of appropriate transitional dynamics of 
the MTB strain so as to reduce the side effect of anti 
TB drugs and enhancing drug efficacy. 
 
In clinical efficacy, minimum inhibitory concentra-
tion (MIC) has been chosen as a predictive factor 
with for instance 0.025-0.05 ug/ml for INH. The 
therapeutic range of serum concentration is approxi-
mately 3 ug/ml to be maintained for at least 6 hours 
(EMA, 2012). With knowledge of life expectancies 
for the MTB strain, appropriate MIC over the time 
course can be determined for optimal therapeutic 
benefits. This analysis can be applied to other anti 
TB drugs. 
 
Life expectancy is a common measure of success for 
clinical studies and forms the bedrock for clinical 
decision making. Beck & Pauker (1983) defined life 
expectancy as the average future life time of a co-
hort of subjects with identical features. In this study 
we established that a DS strain will reside in that 
state for an average of 5.9 ± 2.9 hours before pro-
gressing to MDR state. Similarly, an MDR strain will 
reside in that state for an average of 50 hours before 
progressing to an XDR state. These serves as life 
expectancies for both DS and MDR strain respec-
tively. The progression from MDR state to XDR 
signifies treatment failure of the disease since treat-
ment failure and relapse rates are higher than drug-
susceptible strains (Mak et al., 2008). Further, we 
estimated that it will take an average of 55.9 ± 2.9 
hours for the DS strain to be finally absorbed into 
the XDR state. It is observed that the average time 
to absorption and life expectancy of the MDR strain 

remains the same 50 hours since progression from 
MDR state to DS state was not possible. This is 
evidenced in the fact that patients who are MDR 
require much lengthier treatment (Mak et al., 2008). 
Our study revealed that the probability of absorp-
tion for both DS and MDR strain is certain with a 
large difference of life expectancies. 
 
We further simulated the transition probability data 
of the susceptibility test of the 1180 patients on 
various TB treatment regimes. It was realized that 
the probability distribution of first mutation from 
DS to resistant strain decreases exponentially over 
the cycle, whiles the probability distribution of DS 
becoming resistant increases over the time course 
of the cycle. Steady state probabilities of the MDR 
and XDR state saw a large dramatic cycle as com-
pared to DS state. A  95%  confidence  interval  for  
our  parameter  estimate  for  the probability of first 
mutation of DS strain is  (2.782 x 10-7,  0.018). Our 
simulated chain is consistent with the fact that mu-
tation of susceptible MTB strain can be reduced 
when antimicrobial agents are adhered to over time 
course of treatment. 
 
CONCLUSION 
In our model, we established that it will take an 
average of 55.9±2.9 hours for an MTB strain to 
mutate to XDR stage with a certain probability. In 
the clinical sense, it represents treatment failure 
since MDR can be managed with second line anti 
TB drugs, even though the treatment success is 
very slim. The life expectancies for the MDR strain 
(50 hours) appears to be higher than DS strain (5.88 
hours) probable due to compensatory mutation. 
Our study shows the transient state (DS and MDR) 
of this period which leads to the development of 
Extra Drug Resistant State (XDR) of the disease in 
the course of treatment. The findings of the study 
are consistent with the observation that a simple 
plot of drug concentration versus time profile fol-
lowing intravenous drug infusion reflects plasma 
drug concentration. 
 
Probability distribution to first mutation from DS 
decreases exponentially over the cycle. Probability 
distribution of DS becoming resistant increases 
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over the time course of the cycle. The bootstrap 
results provided sound statistical basis for the con-
clusive results on the dynamics of the MTB strain in 
terms of the first time the DS strain becomes re-
sistant over the course of a treatment regime (cycle) 
and the probability of DS resistance over the course 
of the treatment regime (cycle). 
 
KEY CONTRIBUTIONS 
1. The major contribution of this study is the re-

vealing therapeutic cycle of the treatment regime 
of the TB disease based on the TB progression 
data which is of biological interest. 

2. The time unit in hours of the resident time of 
the MTB strain has been determined to facilitate 
further experimental studies. 

3. The results opened a new window for therapeu-
tic drug monitoring for enhanced TB treatment. 

 
BIOLOGICAL BENEFITS 
This study is useful for a number of purposes: 
1. In clinical efficacy, minimum inhibitory concen-

tration (MIC) has been chosen as a predictive 
factor with for instance 0.025-0.05 ug/ml for 
INH. The therapeutic range of serum concen-
tration is approximately 3ug/ml to be main-
tained for at least 6 hours (EMA, 2012). With 
knowledge of life expectancies for the MTB 
strain, Appropriate MIC over the time course 
can be determined for optimal therapeutic bene-
fits. 

2. For describing the basic dynamics of the MTB 
strain and can assist medical researchers to ex-
plore key aspects of the MTB mutation and ex-
plosion. 

3. In pharmacodynamics, it can be used to deter-
mine the virulence of the MTB strain and possi-
ble containment by inspecting thoroughly how 
probabilities of DS and DR recovery would 
change under various control strategies. It can 
also help in determining plasma concentration 
range that is safe for treatment of TB. 

4. With knowledge of life expectancies for the 
MTB strain, appropriate MIC over the time 
course can be determined for optimal therapeu-
tic benefits. 

 

LIMITATIONS OF THE STUDY 
The isolates were obtained from patients who were 
already suffering from various forms of DR TB. 
This affected the recovering probability in the tran-
sient state thus, from MDR to DS. 
 
COMPETING INTERESTS 
The authors declare that they have no competing 
interests. 
 
REFERENCES 
Abukari A., Nokoe, K. S. & Aboagye, K. K. (2013) 

Modelling the Containment of Mycobacte-
rium Tuberculosis Strain.  European Scientific 
Journal.  9(36): 443-453. 

Beck, J. R., & Pauker, S. (1983) The Markov Pro-
cess in Medical Prognosis. Medical Decision 
Making. 3:419–58. 

Blower, S. M., Mclean, A. R.,  Porco, T. C.,  Amall, 
P. M., Sanchez, M. A., Hopewell, P. C. & 
Moss, R. (1995) The Intrinsic Transmis-
sion Dynamics of Tuberculosis Epidemics. 
Nature Medicine. 1(8): 815–821. 

Bhunu, C. P. & Garira, W. (2009) A Two Strain 
Tuberculosis Transmission Model with 
Therapy and Quarantine. Mathematical Mod-
elling and Analysis.  14(3): 291-312. 

Christopher, D. J. & Balamugesh, T. (2013) Tuber-
culosis Risk in Health Care Workers. The 
Indian Journal of Chest Diseases & Allied Sci-
ence, 55,149-154 

Craig, B. A. & Sendi, P. P. (2001) Estimation of the 
Transition Matrix of a Discrete-Time Mar-
kov Chain. Health Econ. 11: 33-42 

Cohen, J. E. (1973) Host Mortality in a Catalytic 
Model Applied to Schistosomiasis. Ameri-
can Naturalist. 107:199–212. 

Dye, C. & Williams, B. G. (2010) The population 
dynamics and control of tuberculosis. Sci-
ence. 328: 856-861. 10.1126/
science.1185449 

European Medicine Agency. (2012) Anti-Tuberculosis 
Medicinal Products Containing Isoniazid, Rifam-
picin, Pyrazinamide, Ethambutol, Rifabutin: 
Posology in Children. United Kingdom. 5(3) 
of Regulation (EC) No 726/2004. 

Jain, S. (1986) Markov Chain Model and Its Appli-

Evolutionary dynamics of TB  
Alhassan and Nokoe 



23 

 

cations. CompBiomed Res. 19: 374-378 
Johnston, J. C., Shahidi, N. C., Sadatsafavi, M. & 

Fitzgerald, J. M. (2009) Treatment Out-
comes of Multidrug-Resistant Tuberculosis: 
A Systematic Review and Meta-Analysis. 
PLoSONE, 4(9), 6914. 

Mak, A., Adam, T., Mirtha, D. G., Richard, Z., Ni-
gor, M. & Dick, M. (2008) Influence of Mul-
tidrug Resistance on Tuberculosis Treat-
ment Outcomes with Standardized Regi-
mens. American Journal of Respiratory & Criti-
cal Care Medicine, 178(3), 306-12. 

Nishiura, H.  Patanarapelert,  K. & Tang Ming, I. 
(2004) Predicting the Future Trend of Drug-
Resistant Tuberculosis in Thailand: As-
sessing the Impact of Control Strategies. 
Southeast Asian Journal of Tropical Medicine and 
Public Health. 35(3): 649-656 

Rizwan, I., Iffat, S., Kashif, M., Khalid, C. &  Ejaz, 
Q. (2012) The First and Second Line Anti 

TB Drug Resistance Pattern in Lahore. 
Pakistan Journal of Medical Research. 51(1): 1- 
4. 

Siddiqi, S. H., Hawkins, J. E. & Laszlo, A. (1985) 
Inter Laboratory Drug Susceptibility Test-
ing of Mycobacterium Tuberculosis by a 
Radiometric Procedure and Two Conven-
tional Methods. J. Clin. Microbiol, 22, 919–
923. 

Wayne, L. W. (2004) Operations Research: Applica-
tions and Algorithms. Fourth Edition: 
Thomson Learning. USA. 

WHO. (2010) Multidrug  and  Extensively  Drug-
Resistant  TB  (M/XDR-TB):  2010 Global  
Report  on  Surveillance  and  Response. 
Geneva. World Health Organization. 

WHO (2002) Tuberculosis. Fact Sheet No 4. 
Ziv, E., Daley, C. L. & Blower, S. M. (2001) Early 

Therapy for Latent Tuberculosis Infection. 
Am. J. Epidemiol.,15 (4), 381-5 

9 7 7 2 0 2 6 6 2 9 0 0 8

I SSN  2026 - 6294

Evolutionary dynamics of TB  
Alhassan and Nokoe 




