SURVEY OF WILD PLANT SEEDS AND THEIR VALUE IN TRADITONAL HERBAL MEDICINE IN OSUN STATE, NIGERIA.

*Ariwaodo J.O¹, Adeniji K.A², Onadeji O.M³, and Shasanya O.S⁴

Department of Forest Conservation and Protection, Forestry Research Institute of Nigeria, P.M.B. 5054, Ibadan.

*Corresponding Author: Ariwaodo J.O

E-mail:joseph.ariwaodo@yahoo.com

ABSTRACT

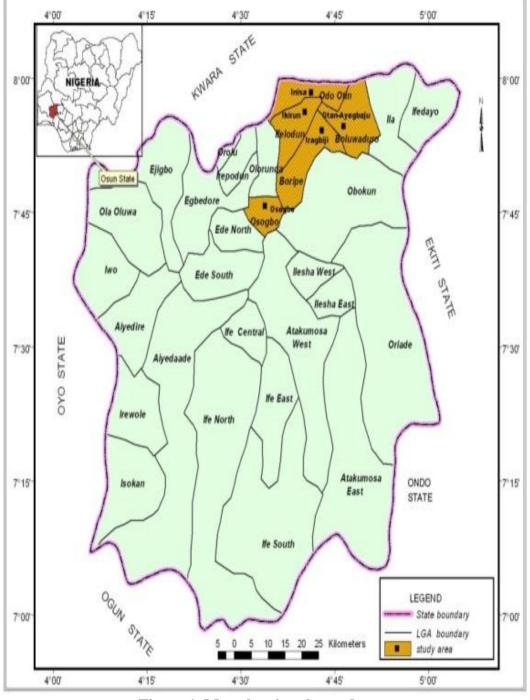
A gap in knowledge exist on the traditional medicinal use of wild plant seeds in Nigeria. The study involved oral interview of 100 herb sellers (stall owners) in five selected herbal markets in Osun State to elicit vital information on medicinal seeds. Seeds of 58 medicinal plant species belonging to 56 genera and 34 families were identified and documented. These seeds are used in the traditional management of about 28 ailments. The common ailments are fever, cough, skin disease, asthma, dysentery and piles. Seeds from tree species accounted for 23 or (39.7%) of the total list, closely followed by seeds of climbing plants with 13 or (22.4%). The price per kilogram of these medicinal seeds varies between \Re 1, 766.79 for Sarcocephalus latifolius (Sm) Bruce and \Re 6,557.38 for Monodora myristica (Geartn) Dunal, in the markets surveyed. Establishment of medicinal plant gardens by traditional health practitioners is proposed to reduce the mounting pressure on the natural forest ecosystem and ensure the conservation of its rich medicinal plant genetic resources.

Keywords: herbal market, conservation, ecosystem, genetic resources.

INTRODUCTION

Seeds are fertilized and ripened ovules. In a functional sense. they are units of dissemination. Taxonomically, phenerogams (seed plants) are grouped into two major divisions namely: Angiosperm and gymnosperm. Kozlowki (1972) had earlier highlighted the economic importance of seeds to include its uses as source of food, fiber. beverages, edible and spices, industrial oils. vitamins and drugs (medicine).

In the tropics, traditional health practitioners rely on selective harvesting of both vegetative and reproductive plant materials including fruits and seeds in crude herbal medicine preparation. Most of these plant materials are harvested from the wild. In South Africa, report indicate that of the 400 to 500 species of medicinal plants sold for traditional medicare, 99% are harvested the wild from (Cunningham, 1991; Cunnigham 1988 and Williams 1996).A similar trend was recently reported in Nigeria by Fashola (2006) and Obute (2007), where collectors of medicinal plant materials continuously harvest plants in the wild, generating some employment


opportunities in the rural area. However, Peters (1994) noted that intensive annual harvesting of valuable fruits or oil seeds, for example, may have a long term impact on populations of vulnerable species either because of the long term impact on seedling recruitment through depletion of seed banks or because fruit/seed collection can involve tree felling.

In a broader sense, uncontrolled seed harvesting and collection may alter the ecological balance of forest ecosystems -keystoneø plant species when are unsustainably harvested. The food resources in the seeds of these species are vital in the sustenance of animal populations which depend on them when fruits are scarce as a result of infrequent flowering/fruiting of certain plant species. The overall implication of these factors on annual recruitment of seedlings and population changes in the Nigeriaøs fragile tropical forest ecosystem have been documented (Oyeachusim, 1985; Isikhuemen, 2005). From the standpoint of the traditional medicinal value of seed of wild plants, not much has been reported in Nigeria.

This study was undertaken to document information on wild plant seeds used in traditional medicine in Osun State, Nigeria. This is aimed at building a databank of indigenous knowledge on the use of medicinal plant materials. It is hoped that information provided will further enhance the basis for phytochemical screening of its bioactive components for drug production to meet the ever increasing demand for plant based medicine.

MATERIAL AND METHODS

Study Area: The study was conducted in Osun State, South West, Nigeria. The state covers an of approximately area 14.875km² and lies between latitude 7.0° N to 8.0° N and longitude $04^{\circ}.10$ ¢E to $05^{\circ}.05$ ¢E, Fig1. Rainfall ranges from 1475mm per annum in the southern part to 1125mm in the northern part of the state. The vegetation lies in the lowland rain forest zone of southwestern Nigeria, with derived savanna featuring around Iwo and Osogbo (Abe, 1995).

Data Collection: Five Local Government Areas were randomly selected out of the 30 in the state. Most of the selected study areas lies in the northern parts of the state and shares a common boundary with the neighbouring Kwara State (Savanna vegetation). One major herbs market was then sampled from each of the five selected L.G.Aøs to document wild medicinal plant seeds sold. These markets are: Oja Oba Iragbiji (Boripe), Oja Orisunbare (Odootin), Oja Oba Osogbo (Osogbo), Oja Oba Ikirun (Ifelodun) and Oja Obada Otan (Boluwaduro). Field visits Ayegbaju through personal contacts and oral interview of 20 randomly selected local herb sellers (Stall owners) per market were conducted. Information elicited included, medicinal uses, local names and the place of collection of plant materials. Furthermore, samples of some medicinal seeds were purposively bought from Ojaoba Osogbo (a central functional herbal market) for weight determination and their unit prices. Weight of seeds was determined using electronic weighing scale.

Data analysis

The botanical names, families and the habit of the taxa were determined using the *Flora of West Tropical Africa* by Hutchinson and Dalziel (1954 and 1972) and preserved plant specimens in the Forest Herbarium, Ibadan (FHI) listed in Holmgren *et al.* (1991). The data for the five markets surveyed were pooled and validity was verified by triangulation (Walter, 1998; Akinsoji and Oke, 2010).

RESULT AND DISCUSSION

The demographic data from the respondents (Table1) revealed that about 92% of the interviewee are women. This was in agreement with observation by Fashola (2002) and Akinsoji and Oke (2010), who had earlier confirmed the significant role played by women herb sellers in local health tradition.

SURVEY OF WILD PLANT SEEDS AND THEIR VALUE IN TRADITONAL HERBAL MEDICINE IN OSUN STATE, NIGERIA.

	sellers)			
Demographic	Age	Frequencies	Percentage	
characteristic				
Age (Years)	18 -28yrs	8	8%	
	29 -39	32	32%	
	40 -61	51	51%	
	62 -72	9	9%	
Sex				
Male		8	8%	
Female		92	92%	

Table 1: Demographic characteristic of respondents (Herb sellers)

Source: Field Survey, 2011.

From the study, seeds of 58 medicinal plant species (Table2) belonging to 56 genera and 34 families were documented from the 5 herbal markets surveyed in Osun State, Nigeria. Dicotyledons accounted for 52 or 89.6% of the medicinal plants seeds while monocotyledons accounted for 6 or 10.4% of the seeds. Most of the medicinal plant seeds were sourced from the forest and savanna vegetation. The closeness of the markets surveyed (Osun State) to savanna vegetation found in Kwara State may have contributed to the presence of seeds of savanna plants. These seeds include: *Sarcocephalus latifolia, Acacia nilotica* and *Kigelia africana.* Since, seasonality affect flowering and fruiting, virtually all the seeds recorded in the market were dry specimens. Plates 1-5 shows some of the medicinal seeds obtained from the market. Seeds from tree species accounted for about 23 (39.7%) of the total, closely followed by seeds of climbing plants with 13 (22.4%). About 43.1% of the medicinal seed documented are contained in 7 families viz: Ceasalpiniaceae, Mimosaceae, Papilionaceae, Euphorbiaceae, Annonaceae, Apocynaceae and Cucurbitaceae. Some of the wild plant seeds recorded, such as, *Xylopia aethiopica* and *Garcina kola* had earlier being classified as either threatened or endangered in the Nigerian flora (Gbile *et al*, 1978).

The medicinal value of the seeds sold revealed that they are used for the treatment or management of about 28 ailments. The common ailments were fever, cough, skin diseases, asthma, dysentery and piles. Investigation revealed that most of the documented seeds are used in multi herbal preparation with other plant parts such as leaves, bark, and roots before administration. However, a few numbers of the seeds are used in the form of monotherapy.

/N	Scientific name	Family	Local name	Habit	Ailment/Medicinal Uses
1.	<i>Annacardium occidentale</i> Linn	Anacardiaceae	Kaju	Tree	Cough
2.	Monodora tenuifoliaBenth	Annonaceae	Lakosin	Tree	Anemia
3.	<i>Xylopia aethiopica</i> (Dunal) A.Rich	Annonaceae	Eru	Tree	Rheumatism
4.	<i>Monodoramyristica</i> (Gaertn.) Dunal	Annonaceae.	Abo lakoshe	Tree	Impotence
5.	Picralimanitida Th.et el.Dur	Apocynaceae	Abere	Tree	Stomach ache.
6.	Pleicers barteri Baill	Apocynaceae	Abeji	Shrub	Skin diseases
7.	Thevetia peruvianaSchum.	Apocynaceae	Olomiojo	Shrub	Cardiac ódisorder
8.	Helianthus annus L	Asteraceae	Ododo-orun	Herb	Cough
9.	Vernonia cinerea Lees	Asteraceae	Ewe ogan	Herb	Anthelmintics
10.	<i>Kigelia africana</i> (Lam) Benth	Bignoniaceae	Pandoro	Tree	Skin disease, breast diseases
11.	Bixa orellana Linn	Bixaceae	Osun-buke	Shrub	Skin diseases, malaria
12.	Canna indica Linn.	Cannaceae	Ido	Herb	Asthma
13.	Bulchholzia coriacea Engl.	Capparidaceae	Obi óata	Tree	Antimicrobials, gonorrhea
14.	<i>Afzelia africana</i> Smith	Ceasalpiniaceae	Apa	Tree	Gonorrhea
15.	<i>Caesalpinia bonduc</i> (Linn) Roxb.	Ceasalpiniaceae	Ayo	Climber	Sore throat
16.	Garcinia kolaHeckel.	Clusiaceae	Orogbo	Tree	Cough, Respiratory problem
17.	<i>Quisqualis indica</i> Linn	Combretaceae	Oganfunfun	Shrub	Anthelmintics
18.	<i>Cnestis ferruginea</i> DC.	Connaraceae	Akara ó Oje	Climber	Low sperm count and weak erection.
19.	Adenopus breviflorus Benth	Cucurbitaceae	Tagiiri	Climber	Smallpox, measles
1). 20.	Cucurbita pepo Linn	Cucurbitaceae	Elegede	Climber	Dieuretic
21.	Mormodica charantia Linn	Cucurbitaceae	Ejinrin	Climber	Diabetes, dysentery
22.	Croton penduliflorusHutch.	Euphorbiaceae	Aworoso	Shrub	Pile, Blood purifier
23.	Jatropha curcas Linn.	Euphorbiaceae	Lapalapa	Shrub	Ring worm, eczema
24.	<i>Plukenetia conophora</i> Mull.Arg.	Euphorbiaceae	Awusa	Climber	Anti ósnake bite
25.	Ricinus cummunis Linn.	Euphorbiaceae	Laa	Shrub	Abortion
26.	IcacinatriacanthaOliv.	Icacinaceae	Gbegbe	Shrub	Rheumatism.
27.	Persea americana Mill.	Lauraceae	Pia	Tree	Hypertension
28.	Gossypium barbadens Linn	Malvaceae	Owu	Shrub	Ear ache
29.	Marantochloa leucantha (K. Schum) Milne-Redh.	Marantaceae	Tooto	Herb	Boils
30.	Azadirachta indicaA.Juss.	Meliaceae	Dongoyaro	Tree	Malaria
31.	Rhigiocarya racemiferaMiers.	Menispermaceae	Lagbolagbo	Climber	Insomnia

Table 2: List of wild medicinal plant seeds recorded from ethnobotanical survey in the selected markets.S/NScientific nameFamilyLocal nameHabitAilment/Medicination

JOURNAL OF RESEARCH IN FORESTRY, WILDLIFE AND ENVIRONMENT. Volume 4 No.2

32	Sphenocentrum jolly-anum Pier	Menispermaceae	Akerejupon	Shrub	Cough
33	Acacia nilotica (Linn) Wild exDel.	Mimosaceae	Booni	Tree	Insomnia.
34 35	Entada gigas L Parkia biglobosa (Jacq) R.Br.exG.Don	Mimosaceae Mimosaceae	Aagbaa Iru	Tree Tree	Diarrhoea Aiding of sight
36	Tetrapleura tetraptera	Mimosaceae	Aridan	Tree	Fever
37	(Schum&Thonn)Taub. Ficus sur Forssk.	Moraceae	Opoto	Tree	Lack of milk in breast
38 39	Moringa oleifera lam. Microdesmis puberula Hook.ex.	Moringaceae Pandaceae	Ewe ó igbale Esunsun	Tree Tree	Asthma Diarrhea, dysentery
40	Abrus precatorius Linn	Papilionaceae	Ominsinmisin	Climber	Cough, rheumatism
41	Cajanus cajan (Linn) Millsp.	Papilioniaceae	Otili	Shrub	Small pox
42	Canavalia ensiformis (L) D.C	Papilioniaceae	Pinpondo	Climber	Antibiotic
43	Dioclea reflexa Hook. F.	Papilioniaceae	Agbarin	Climber	Asthma, Stimulant
44	Mucuna sloanei FaweklRendle	Papilioniaceae	Yerepe	Climber	Haemorrhoids
45	Tephrosia densiflora Hook.f.	Papilioniaceae	Lakuta	Herb	Cough
46	Piper guinensis Schum&Thonn	Piperaceae	Iyere	Herb	Sterility
47	Coix lacryma-jobi Linn	Poaceae	Ida ahun	Herb	Irregular menstraion,
48	Olyra latifolia Linn	Poaceae	Iyeigbo	Herb	asthma Pain
49	Securidaca	Polygalaceae	Ipeta	Tree	Fever, diabetes.
50	longipendiculataFres. Sarcocephalus latifolius (Sm) Bruce	Rubiaceae	Egbesi	Woody climber	Jaundice
51	<i>(sm) Bruce</i> <i>Psychotria guineensis</i> <i>Petit</i>	Rubiaceae	Olomi	Shrub	Cough
52	Blighia sapida Konig	Sapindaceae	Isin	Tree	Malaria, ease labour
53	Paullina pinnata Linn	Sapindaceae	Kankansela	Climber	Cough
54	Vetillaria paradoxum	Sapotaceae	Emi ó emi	Tree	Hypertension
55	(Gaertn.f) Hepper. Cola nitida (vent)	Sterculiaceae	Obi gbanja	Tree	Diarrhoea
56	Scholf&Endl. Vitex doniana Sweet.	Verbenaceae	Oori-nla	Tree	Inflamatory
57	Aframomum meleguata K. Schum	Zingiberaceae	Atare	Herb	Small pox, toothache, malaria.
58	Aframomum sceptrum (Oliv. &Hanb) K. Schum	Zingiberaceae	Oburoetu	Herb	Small pox
59	Sphenocentrum jolly-anum Pier	Menispermaceae	Akerejupon	Shrub	Cough

Table 3.shows the unit weights and unit prices of 10 medicinal plants seeds sold in Oja ó Oba market in Osun State. The price per kilograms of reported medicinal seeds varies between $\mathbb{N}1,766.79$ for *Sarcocephalus latifolius*(Sm) Bruce and $\mathbb{N}6$, 557.38 for *Monodora myristica* (Geartn) Dunal in the market surveyed. This indicates that *M. myristica* is the most expensive medicinal plant seed /kg sold and is more than \aleph 2,661.28 higher than its closest rival, *Icacina tricantha* Oliv, sold at \aleph 3,896.10. The difficulty in sourcing for certain medicinal plant seeds in high demand in the selected herbal market is a contributory factor to the variation in unit prices.

Table 3, Price list of some wild medicinal p	olant seeds sold in Oj	ja – Oba herbal market Osogbo.
--	------------------------	--------------------------------

Scientific Name	Family	Local	Unit	Unit Price	Price/kg
	-	Name	Weight(G)	(N)	(₩)
Monodora myristica (Geartn)	Annonaceae	Ariwo	6.1	40.00	6,557.38
		/sasagbeku			
Xylopia aethiopia (Dural) A.Rich	Annonaceae	Eru	6.2	20.00	3,225.81
Picralima nitida (Stapf) Th.&H.Dur.	Apocynaceae	Abere	8.0	30.00	3,750.00
Thevetia peruvianaSchum	Apocynaceae	Lako	12.6	30.00	2,380.95
Canna indica Linn	Cannaceae	Ido	6.8	20.00	2,941.12
Jatropha curcas Linn	Euphorbiaceae	Lapalapa	14.3	50.00	3,496.50
Icacina tricanthaOliv	Icacinaceae	Gbegbe	7.7	30.00	3,896.10
Gossypium barbadense Linn	Malvaceae	Koroowu/	5.6	20.00	3,571.43
		Kerewu			
Acacia nilotica (L) Wild subsp nilotica	Mimosaceae	Booni	7.4	30.00	4,054.05
Sarcocephalus latifolius(Sm) Bruce	Rubiaceae	Egbesi	28.3	50.00	1,766.79

G: Gramms

Plate 1: Monodora myristica

Plate 2: Caesalpinia bunduc

Plate 3: *Xylopia aethiopica*

Plate 4: *Buchholzia coriacea* (Wonderful cola)

Plate 5: Etanda gigas

CONCLUSION AND RECOMMENDATION

It has been observed that substantial proportion of some of the most useful plant families is currently threatened by either habitat loss or over-exploitation of some specific species (or a combination of these factors). Mac.Guirk (1988) and Oluwalana and Adeola (2002) report that less than 1% of the earthøs 265,000 flowering plants have been tested for their active components. It is evident that very few studies have been conducted on the medicinal value of wild seeds in Nigeria. There is the need to document useful ethnobotanical knowledge from experienced older people in the use of seeds of medicinal wild plants sold in our local herbal markets. The level of availability in these markets could provide a clue to plant seeds rarity or abundance in their natural habitat.

Further studies on the marketing of seeds of medicinal plant seeds from herbal markets in other states in Nigeria are recommended. There is also the need to carry out pharmacognostic investigation to isolate

useful bioactive components of these seeds. This will provide a basis for reaping their enormous therapeutic potentials. It is further suggested that traditional health practitionerøs should establish medicinal plant gardens to reduce the mounting pressure on natural forest ecosystems. Education of dependent rural populace involved in the harvesting of reproductive plant materials such as seeds should be encouraged to ensure sustainability in the use of our endangered medicinal plant resource.

REFERENCES

- Abe, J.O. (1995). Community participation in forestry development in Nigeria ó Osun State Experience, Proceedings of the24th Annual Conference of the Forestry Association of Nigeria (Ed. Oduwaye, E.A), Kaduna, Kaduna State, 30th October 5th November, pp,19 ó 27.
- Akinsoji, A. and Oke, E. (2010). A survey of medicinal plants in four markets in Lagos Metropolis, Nigeria.*Nigerian Journal of Botany*, 23(1):17-26.
- Cunningham A.B. (1991). Development of a conservation policy on commercially exploited medicinal plants; a case study from Southern Africa. In: *Conservation of Medicinal Plants* (Ed. Heywoods V. Synge H. and Akerele O.) pp337 ó 358.
- Cunningham, A.B. (1988). Collection of wild plant foods in Zembe Thonga

JOURNAL OF RESEARCH IN FORESTRY, WILDLIFE AND ENVIRONMENT. Volume 4 No.2

SURVEY OF WILD PLANT SEEDS AND THEIR VALUE IN TRADITONAL HERBAL MEDICINE IN OSUN STATE, NIGERIA.

Society: a guide to iron age gathering activities. *Annals of the Natal Museum* 29 (2); 433 ó 446.

- Gbile, Z.O., Ola-Adams, B.A. and Soladoye, M.O. (1978).Endangered Species of the Nigerian Flora.*Nigerian Journal of Forestry*, 8:14-20.
- Fashola T.R. (2002). The contribution of women herb sellers to health care delivery in Ibadan, Nigeria. Nigerian Field, 67:59-66.
- Fashola T.R. (2006). The impact of traditional medicare on the people and environment of Nigeria. In: *Sustainiable Environment Management in Nigeria* (Ed.Ivbijaro, M.F.A, Akintola F. and Okechukwu R.U) pp. 251 ó 264.
- Holmgren P.K, Keuken, W and Schofield E.K. (1990).*Index herbarium part 1*: The herbaria of the world. 8thed ó Reg Veg.120 ó New York.
- Hutchinson J and DalzielJ.M (1954 ó 1972).*Flora of West Tropical Africa* ed.2.Revised by R.W Keay and Hepper.3vols. London.
- Isikhumen E.M. (2005). Tree population dynamics and regeneration of a logged over secondary regrowth forest.Ph.D Thesis in Forest Conservation and Ecology, University of Agriculture, Abeokuta, 251 pp.
- Kozlowki, T.T. (1972). Seed Biology. Academic Press New York, 422pp.

- MacGuirk, T.(1988). Dealing in DNA: an ethical battle rages as prospectors comb the globe to find and profit from organisms that could cure some of the worldøs worst diseases. New York Times, November, 30, pp46 ó 52.
- Obute, G.C. (2007). Ethnomedicinal plant resource of south eastern Nigeria.<u>http://.www.sin.edu/ebi//leaflet</u> obute.htm Accessed 15th October,2010.
- Oluwalana, S.A. andAdeola, A.O. (2002). Indigenous use of *Vernonia amygdalina*, Del, in South Western Nigeria.*Ogun Journal of Agricultural Sci.*2: 177 ó 185.
- Oyeachusim H.D. (1985). Ecological studies in Omo Forest Reserve, South-western Nigeria with particular reference to the tree seed germination patterns, ground flora dynamics and litter standing crops. M.Phil Dissertation, Dept of Forest Resources Management, University of Ibadan.494pp.
- Peters, C.M. (1994). Sustainable harvest of non-timber plant resources in tropical moist forest: an ecological primer.
 Biodiversity Support Programme, World Wildlife Fund, Washington DC.
- Walter, S. (1998). The Utilization of nontimber forest products in the rainforest of Madagascar. A case study. *Plant Research and Development*, 48:121-144.
- Williams, V.L. (1996). The witwaterrand multi-trade. *Veld and Flora*, 82: 12-14.

JOURNAL OF RESEARCH IN FORESTRY, WILDLIFE AND ENVIRONMENT. Volume 4 No.2