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ABSTRACT: In this paper, a stable and consistent criterion to an explicit finite difference scheme for a time-
dependent Schrodinger wave equation (TDSWE) was presented. This paper is a departure from the well-
established time independent Schrodinger Wave Equation (SWE). To develop the stability criterion for the scheme, 
the Fourier series method of von Newmann was adopted, while in establishing the consistency property, the 
concise definition of the consistent scheme was applied. This research is carried out for a particular case of a 
finitely low potential well. 
Keywords: Time-Dependent Schrodinger Wave Equation, Stability, Consistency, Finite Potential Well, Finite 
Difference. 

 
INTRODUCTION 
Two forms of the Schrodinger wave equation (SWE) 
exist. In the first, the time factor is explicitly expressed, 
for which reason it is widely referred to as the time-
dependent SWE. In the second, known as the time-
independent SWE, the time factor is removed. In 
practice though these two equations are separate, the 
latter, which is the time-independent SWE can be 
derived from the former. The only exception to this 
order is if the potential is time dependent.  
 
The Schrodinger equation, which was developed by 
Erwin Schrodinger, is very central to the study of 
quantum mechanics as it defines the permissibility of a 
stationary state of a quantum mechanics. Accordingly, it 
tells how the quantum state of a physical system 
changes with time (Schrodinger Equation (Physics), 
Encyclopedia Britannica).  
 
Time-Dependent SWE 
According to Shanker (1994), the form of Schrodinger 
equation depends on the physical situation. The most 
general form is the time-dependent Schrodinger 
equation, which gives a description of a system 
evolving with time. 
This time-dependent SWE is given as 
 

                        (1) 

                            (1) 

where  ,  being the Planck’s constant,  is 

the mass of particle, , is the wave function,  is 

the position of any particular particle in time ,  is 

the time-dependent potential, and  is the time. 

When this equation is set up for analysis, it forms the 
bedrock for wave mechanics, a branch of quantum 
mechanics. This equation, when solved, is capable of 
generating solutions that depict a wave propagating 
through space. This explains the rationale behind being 
termed a wave equation even though it does not 
represent properly the more familiar classical wave 
equation. 
 
Koch (2004) developed a numerical scheme that is 
workable with the TDSWE in an Ultrafast Laser e. The 
scheme so developed by Koch approximates the 
original wave equation on a linear manifold. 
 
With basis on a discretizing space and time on a grid, 
Kosloff and Kosloff (1983) developed a new method 
through the Fourier method to produce spatial 
derivatives and the second-order differencing for time 
derivatives. Petridis et al. (2010), by means of 
superposition of time-independent solution with the 
approximated spectral functions, developed an exact 
solution to the TDSWE which satisfied both the 
boundary and square-integrability conditions. In a thesis 
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by Persson (2012), different numerical methods for 
solving the time-dependent SWE were described. The 
spectral and pseudospectral representations of the 
equation were described and subsequently subjected to 
the different numerical techniques with some practical 
examples to serve for illustrations. A novel numerical 
method that allows the computation of the exact 
solutions of a stationary Schrodinger equation was 
proposed by Rieth et al. (2002). It was affirmed by the 
the authors that well-known reference system will be 
needed for the practical application of the method. The 
said method was proposed for the determination of the 
eigenfunctions and eigenvalues of a particle in a 
quantum-mechanized system. 
 
We follow a similar numerical approach in this paper. 
For the TDSWE, we develop a criterion for the stability 
of a finite difference scheme to the TDSWE. The 
consistency of the scheme is also verified. 
 
Stability and Consistency Criteria for a Finite 
Difference Scheme 
To investigate the stability property of the finite 
difference scheme to be shortly developed, the Fourier 
series method has been adopted. This method 
developed by von Neumann, and first discussed by 
O’Brian et al (1951), “expressed an initial line of errors 
in terms of a finite Fourier series, and considers the 
growth of a function that reduces to this series for 

 by a separation of variable method commonly 

used for solving analytically a partial differential 
equation (Smith, 1978).  
 
The procedure for doing this is as follows.   
Suppose we denote the error at the pivotal point (Smith, 
2009) by 
 

                                    (2)      (2) 

                          

Then the  equations 

                    (3)   

(where  is constant and , ) 

are sufficient to determine the unknown 
, uniquely. For a linear finite difference 

scheme ours with separate additive solutions, we need 
only consider the proportion of the error due to a single 

term, such as . being constant may be 

neglected. 

For an increasing , investigating this error, we need 

only to find a solution which reduces to  when 

. 

If we assume 

           (4) 

Where  with  in general, a complex 

constant. 

When , . 

The only way to keep the error stable as  increases is 

to make a provision such that 

                                                                (5) 

Equation (5) is known as the stability criterion. It is both 
necessary and sufficient for two time-level difference 
scheme but not always for three time-level schemes 
(Smith, 2009). 

For a more concise approach, suppose we 

take , where  is the discretization error,  

is the exact solution of the partial differential equation 
(pde) and , the exact solution of the finite difference 

scheme. Then, if  is bounded as  increases, the 

difference equation is said to be stable. In a nutshell, if 
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 remains bounded as , 

then the difference equation to the pde is stable. 

In a similar fashion, suppose  is a 

difference equation at  mesh point, then a 

finite difference is said to be consistent with the pde if 
as . 

RESULTS AND DISCUSSION  
In what follows in this paper, we present the results for 
both stability and consistency of the explicit finite 
difference equation for TDSWE. We begin by giving the 
difference equation. 

The time dependent Schrodinger equation wave 
equation is 

                         (6)    

We can write this as 

    (7) 

Let     

 

     

For a simple case where  is unity i.e   

   (8) 

Where   

    

      (9) 

    (10) 

     (11) 

                (12) 

We thus come to the difference scheme given by   

              (13) 

This equation is the finite difference scheme of the 
time-dependent Schrodinger wave equation in a finite 
potential well, where v(x) = 1. 

Stability 
In developing a stability criterion for (13), we employ 
both Courant, Friedrichs andLewy Criteria [CFL criteria] 
(Courant et al., 1928) and the Von Neumann method 
(O’Brian et al., 1951). From the difference scheme for 
the classical wave equation, the former found that if 

, then the scheme is unstable. The CFL 

criteria has its origin in the fact that if , then 

the rate at which signals in the numerical scheme travel 
will be faster than their real world counterparts and this 
unrealistic expectation leads to instability. 

We proceed from the Von Neumann-Fourier method 

Let 

                                      (14)  

where  is an arbitrary real number and  is a complex 

number yet to be determined. This choice is motivated 

by the fact that the initial condition  can be 

represented by a Fourier series where a typical term 

behaves as . 
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By substituting (14) into  we obtain,   

                                                           (15) 

              (16) 

The quantity  will grow exponentially unless   

          (17) 

i.e 

                    (18) 

                              (19) 

                         (20) 

 

                         (21) 

                  (22) 

Taking the right hand side of (22), i.e., 

                   (23) 

                                                  (24) 

                                    (25) 

                                               (26) 

For the left hand side inequality of (22) we have    

                 (27) 

                    (28) 

That is,   

                 (29) 

  (30) 

Combining inequalities (26) and (30), we get    

                                          (31) 

The result equation (31) gives our proposed stability 
criterion for an explicit finite difference scheme of the 
TDSWE.  

Consistency 
We know that 

 

    

    (32) 

       

                                                                                  (33)           

                 (34) 

                                                                          (34) 
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By substituting (32) to (34) into (13), we obtain      

      (35) 

      (36) 

          (37) 

                                                       (38) 

                                                                                                               

(39) 

 (40) 

The term on the LHS vanishes because  

satisfies the wave equation. Likewise, as 

 the terms on the RHS tend to zero(0) 

and so  is a consistent finite difference 

approximation to the Schrodinger wave equation.  
 
 

Numerical Results 
To establish the validity of the result in (31) above, we 
take the values of the step sizes as  

 and  with the boundary values as  

 and . The value of the mesh ratio 

is given by the inequality . This 

value was computed based on the values of 

 and 

. This result satisfies the stability 

criterion in (31).  
In the following table, the numerical results obtained on 
a Maple 14 software are reported. 

CONCLUSION  
In the course of this paper, we have been able to 
develop criteria for both the stability and consistency for 
the difference equation of a time-dependent 
Schrodinger wave equation. The consequential effect of 
these results is that the scheme is convergent as it 
approaches a continuous solution as  In 

the future, we hope to extend the Schrodinger wave 
equation for cases of two and three dimensions. 

Table 1: Computational Results with  and  
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