ORIGINAL ARTICLE

Morbidities, concordance, and predictors of preterm premature rupture of membranes among pregnant women at the University of Nigeria Teaching Hospital (UNTH), Enugu, Nigeria

TC Okeke, JO Enwereji, CO Adiri, CI Onwuka, ES Iferikigwe

Department of Obstetrics and Gynaecology, University of Nigeria Teaching Hospital, Enugu, Nigeria

Abstract

Background: Preterm premature rupture of membranes (PPROM) is a challenging complication of pregnancies and an important cause of perinatal morbidity and mortality. Management of morbidities associated with PPROM is fraught with controversy. However, women should be informed of these complications.

Objective: This article aimed to review the morbidities, concordance, and predictors of PPROM over a 10-year period. **Methods:** This was a retrospective review of morbidities, concordance, and predictors of PPROM among pregnant women at the University of Nigeria Teaching Hospital, Enugu, Nigeria between January 1, 1999, and December 31, 2008. The morbidities, concordance, and predictors of PPROM were expressed by regression analysis output for PPROM. **Results:** Primigravidae had the highest occurrence of PPROM. Increasing parity does not significantly influence the incidence of PPROM. The concordance and predictors of PPROM are maternal age (P < 0.000), gestational age at PROM (P < 0.000), latency period (P < 0.000), and birth weight (P < 0.001).

Conclusion: PPROM is a major complication of pregnancies and an important cause of perinatal morbidity and mortality. Management of these morbidities associated with PPROM poses a great challenge. However, women should be informed of these complications.

Key words: Concordance, Enugu, morbidities, Nigeria, predictors, preterm premature rupture of membrane

Date of Acceptance: 05-Dec-2015

Introduction

Preterm premature rupture of membranes (PPROM) complicates 3-8% of all pregnancies and is associated with 20–30% of all preterm deliveries.^[1,2] Its prognosis is

Address for correspondence:

Dr. TC Okeke,

Department of Obstetrics and Gynaecology, University of Nigeria Teaching Hospital, Enugu, Nigeria. E-mail: tcokeke2014@yahoo.com

Access this article online					
Quick Response Code:	Website: www.njcponline.com				
	DOI : 10.4103/1119-3077.181361				

related primarily to gestational age (GA) at presentation and delivery.^[1,2] It is an important cause of perinatal morbidity and mortality.^[2,3] PPROM increases maternal risk of sepsis from ascending genital tract infections, placental abruption, and disseminated intravascular coagulation (DIC).^[3-8] Adverse perinatal outcomes that accompany PPROM include prematurity, umbilical cord prolapse and compression, neonatal sepsis, respiratory

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Okeke TC, Enwereji JO, Adiri CO, Onwuka CI, Iferikigwe ES. Morbidities, concordance, and predictors of preterm premature rupture of membranes among pregnant women at the University of Nigeria Teaching Hospital (UNTH), Enugu, Nigeria. Niger J Clin Pract 2016;19:737-41.

distress syndrome, intraventricular hemorrhage, and fetal or neonatal death.^[9,10] Morbidities of PPROM in perinatal period are due to brief latency from membrane rupture to delivery, perinatal infection, and umbilical cord compression due to oligohydramnios.^[8,11]

To achieve a good prognosis, a timely and accurate diagnosis of PPROM is critical to optimize pregnancy outcome.^[2,12,13] It is important to appreciate that PPROM that is remote from term, pregnancy outcome remains dismal and is associated with significant risks of maternal and perinatal morbidity and mortality.^[3] Thus, the attending clinician should develop a pregnancy outcome plan to reduce maternal and fetal risks.^[12,14] Management of pregnancies complicated by PPROM is challenging, controversial, and should be individualized.^[15] Expectant management (a wait and see approach) and immediate delivery (early planned birth) are potential options in these patients, and each has its own merits and demerits. There is a need for expectant management of PPROM. Expectant management of PPROM is associated with prolongation of pregnancy that results in decrease GA-related morbidity associated with prematurity. However, the benefit of this must be balanced with the risks of expectant management such as clinical chorioamnionitis.^[3,4,16]

There is a paucity of data on morbidities, concordance, and predictors of PPROM in sub-Saharan African. To address these problems, this study was designed to review the morbidities, concordance, and predictors of PPROM among pregnant women at the University of Nigeria Teaching Hospital (UNTH), Enugu, Nigeria.

Methods

This was a retrospective study of morbidities, concordance, and predictors of PPROM at the UNTH Enugu, Nigeria between January 1, 1999, and December 31, 2008. The criteria for inclusion in this study includes (1) pregnant women who received antenatal care and delivered at UNTH, Enugu, during the study period. (2) The patient must have ruptured fetal membranes spontaneously at GA below 37 completed weeks. (3) Those patients who did not start laboring within 1 h following spontaneous membrane rupture. (4) All cases of artificial rupture of fetal membranes are to be excluded from the study.

Data were retrieved from medical records of pregnant women who had PROM during the study period. Study information sort were sociodemographic characteristics (maternal age, parity, occupation, tribe, and GA). Perinatal/neonatal information such as birth weight, Apgar scores at 1st and 5th min, need for neonatal resuscitation, admission to New Born Special Care Unit (NBSCU), and fetal outcome. Maternal complications that could be assumed to have resulted from PROM such as postpartum endometritis, DIC, maternal sepsis, and Asherman syndrome.

The morbidities, concordance, and predictors of PPROM were expressed by logistic regression. The Chi-squared test for qualitative variables was used to analyze the results. Data were analyzed by descriptive statistics using the statistical package for social science version 15 (SPSS Inc. Chicago, IL, USA). The value P < 0.05 is considered statistically significant.

Approval for the study was obtained from the UNTH Ethical Committee. The UNTH, Enugu, is one of the oldest tertiary care centers in Eastern Nigeria. The antenatal clinics hold every working day (Monday to Friday). Patients are seen at every 4 weeks until 28 weeks, fortnightly until 36 weeks, and then weekly until delivery. At booking, obstetric, medical, and surgical histories are obtained. Pregnancy was well-dated with last menstrual period and collaborated with first-trimester ultrasound to ascertain the appropriate GA. Height, weight, and blood pressure were also measured. The following routine investigations were also done, packed cell volume, urinalysis, blood group and rhesus factor, genotype, hepatitis B surface antigen, Venereal Disease Research Laboratory, HIV screening, and ultrasound assessment. Pelvic examination using a sterile speculum was performed. Digital examination was avoided. Diagnosis of PPROM was based on a history and confirmed by the presence of pooled amniotic fluid on a sterile speculum, positive results from a ferning test and transvaginal ultrasonographic evaluation that demonstrated oligohydramnios. Each patient was observed in the labor and delivery room for at least 24 h.

Results

A total of 2798 deliveries occurred during the study period. There were 94 cases of PPROM with a prevalence of 3.3% for PPROM of all deliveries. The case notes of 15 patients were removed from analysis and evaluation due to unbooked status with scanty information documented in them leaving a total of 79 patients out of the 94 that met the criteria for PPROM.

Table 1 shows the demographic characteristics of women with PPROM. PPROM is the highest among reproductive age group of 21–30 years but lowest among reproductive age group 16–20 and 41–45 years. Primigravidae had the highest occurrence of PPROM. Increasing parity does not significantly influence the incidence of PPROM. PPROM is highest at GA 35–37 weeks but lowest at GA 26–30 weeks.

Table 2 shows the relationship of PPROM to maternal morbidity. A total of 16 cases (20%) had complications

Okeke, et al.: Morbidities, concordance and predictors of PPROM in Enugu

Table 1: Demographic characteristics of women with					
preterm premature rupture of membranes variables					
Maternal age group with PPROM	Frequency (%)				
<20	2 (2.5)				
21-30	46 (58.2)				
31-40	29 (36.8)				
41-45	2 (2.5)				
Total	79 (100.0)				
Parity					
0	23 (29.1)				
1	15 (19.0)				
2	21 (26.6)				
3	9 (11.4)				
4	8 (10.1)				
5+	3 (3.8)				
Total	79 (100.0)				
GA at PPROM					
26-30	6 (7.6)				
31-34	26 (32.9)				
35-37	47 (59.5)				
Total	79 (100.0)				

PPROM=Preterm premature rupture of membranes; GA=Gestational age

Table 2: Maternal morbidity with PPROM					
Age	Parity	GA	Latency period	Complications	
25	2	33	13 hours	Secondary PPH/Hysterectomy death	
26	0	32	14 hours	Psychoses/neonatal death	
31	1	34	14 hours	Intra-partum pyrexia	
29	0	35	15 hour	Depression	
30	2	35	16 hours	Pyrexia	
30	2	34	16 hours	Puerperal/cord prolapsed	
41	0	34	18 hours	Pyrexia	
34	3	32	18 hours	Secondary PPH	
30	0	35	23 hours	Secondary PPH/Pyrexia, died	
38	1	36	36 hours	Puerperal pyrexia	
29	3	33	2 days	Puerperal pyrexia	
28	2	36	2 days	Pyrexia	
32	2	33	4 days	Secondary PPH	
32	0	36	4 days	Pyrexia/offensive vaginal discharge	
25	1	32	4 days	Puerperal pyrexia	
41	1	31	5 days	Retained placenta/pyrexia	

GA=Gestational age; PPH: Postpartum hemorrhage; PPROM: Preterm premature rupture of membranes

which led to prolonged hospital stay. Eleven women out of the 16 patients were febrile, and 7 women out of the 11 women that had febrile illness had secondary postpartum hemorrhage (PPH), and one out of these patients had a total abdominal hysterectomy because of secondary PPH.

Table 3 shows the relationship of the GA at which PROM occurred, the latency period with birth weight and perinatal death. All the babies delivered before GA of 34 weeks weighed <2.5 kg, 20 babies delivered after 35–36 weeks weighed >2.5 kg, and 17 babies delivered after

Table 3: Comparison of GA, PPROM, latency period, birth weight and perinatal death							
GA at Birth weight (kg) Perinatal No of % Latency period							
PPROM	<2.5 kg	>2.5 kg	death	cases		<24 hrs	>24 hrs
26-30	6	0	4	6	7.6	2	4
31-34	26	0	3	26	32.9	17	9
35-36+	17	20	0	47	59.5	38	9

GA=Gestational age; PPROM: Preterm premature rupture of membranes

Table 4: Regression analysis output for PPROM							
Model	Unstandardized Coefficients		Standardized coefficients	t	Sig.		
	В	Std. Error	Beta				
1							
Constant	2.211	0.239		9.244	0.000		
Maternal age	0.419	0.033	0.751	12.815	0.000		
G.A. @ PROM	-0.269	0.056	-0.293	-4.830	0.000		
Prenatal death	0.056	0.090	0.027	0.615	0.541		
Latency period	-0.261	0.064	-0.201	-4.063	0.000		
Birth weight	-0.152	0.042	-0.157	-3.577	0.001		
Parity	-0.030	0.015	-0.077	-1.974	0.052		

Dependent variable: PPROM. GA=Gestational age; PPROM: Preterm premature rupture of membranes

35–36 weeks still weighed <2.5 kg. Four perinatal deaths occurred in those with GA between 26 and 30 weeks, and 3 perinatal deaths occurred in those with GA between 31 and 34 weeks. No perinatal death was recorded in those with GA between 35 weeks and above.

Table 4 shows the regression analysis output for PPROM. Maternal age, GA at PROM, latency period, and birth weight are significant. The concordance and predictors of PPROM are maternal age (P < 0.000), GA at PROM (P < 0.000), latency period (P < 0.000), and birth weight (P < 0.001).

Discussion

In this study, 20% of pregnant women who had PPROM had complications which led to prolonged hospital stay. The rate of maternal morbidity of 20% reported in this study is high compared to the previous study by Sims *et al.*^[17] but is in agreement with that reported by Borna *et al.*^[8] Previous studies by Verani *et al.*^[18] and Davidson^[19] reported that use of prophylactic antibiotic in PPROM reduces maternal morbidity. However, despite the fact that prophylactic antibiotic was used liberally in this study: Maternal morbidity rate of 20% and perinatal mortality rate of 8.9% were reported. The lack of effectiveness of prophylactic antibiotic as noted in this study might be due to noncompliance, efficacious, and low socioeconomic status of patients involved.

Infection was the most important complication of PPROM, and a similar observation was noted by Walters and Mercer^[20] in 2009, and Ecevit *et al.*^[21] in 2014. Infection rate of 13.9% was noted in this study in the mothers both intrapartum and postpartum. There was an increase in the incidence of infection with increase latency period more than 24 h.

Steroid was used in all cases of PPROM below 34 weeks, and this may be responsible for the low incidence of respiratory distress syndrome, intraventricular hemorrhage, and necrotizing enterocolitis observed in this study. The findings in this study were supported by Oboro *et al.*,^[3] Crowley,^[22] and Harding *et al.*,^[23] that demonstrated the use of corticosteroid in preterm PROM before 34 weeks gestation reduces perinatal morbidity and mortality by reducing the risk of respiratory distress syndrome, intraventricular hemorrhage, and necrotizing enterocolitis.

Problems were encountered regarding the best medical approach or management of PROM remote from term. The problems frequently observed in the management of PPROM such as infection morbidity, prematurity, and its complications. The principal risk to fetus is prematurity while the primary maternal risks are infection morbidity and its complications.^[15] The incidence of neonatal complications is high but comparable to that documented by Vermillion *et al.*,^[24] Borna *et al.*^[8] and Mercer.^[25] This high neonatal complication may be related more closely to the effects of premature birth and sophistication of NBSCU rather than PPROM.

Primigravidae had the highest occurrence of PPROM. Increasing parity does not significantly influence the incidence of PPROM. However, maternal age, GA at PROM, latency period, and birth weight are the concordance and the predictors of PPROM.

Limitation of this study was on small scale retrospective hospital-based study which should be interpreted with caution. Morbidities of PPROM among pregnant women were a neglected area in Obstetrics in Nigeria that poses a great challenge in management outcome. However, this is a stepping stone toward further research on morbidities in PPROM among Nigerian women.

Conclusion

PPROM is a major complication of pregnancies and an important cause of perinatal morbidity and mortality. Management of these morbidities associated with PPROM poses a great challenge. However, women should be informed of these complications.

Financial support and sponsorship Nil.

Conflicts of interest

There are no conflicts of interest.

References

- Tavassoli F, Ghasemi M, Mohamadzade A, Sharifian J. Survey of pregnancy outcome in preterm premature rupture of membranes with amniotic fluid index<5 and=5. Oman Med J 2010;25:118-23.
- Caughey AB, Robinson JN, Norwitz ER. Contemporary diagnosis and management of preterm premature rupture of membranes. Rev Obstet Gynecol 2008;1:11-22.
- Oboro VO, Adekanle BA, Apantaku BD, Onadipe OA. Pre-term pre-labour rupture of membranes: Effect of chorioamnionitis on overall neonatal outcome. J Obstet Gynaecol 2006;26:740-3.
- Pasquier JC, Picaud JC, Rabilloud M, Claris O, Ecochard R, Moret S, et al. Neonatal outcomes after elective delivery management of preterm premature rupture of the membranes before 34 weeks' gestation (DOMINOS study). Eur J Obstet Gynecol Reprod Biol 2009;143:18-23.
- Kenyon SL, Taylor DJ, Tarnow-Mordi W; ORACLE Collaborative Group. Broad-spectrum antibiotics for preterm, prelabour rupture of fetal membranes: The ORACLE I randomised trial. ORACLE Collaborative Group. Lancet 2001;357:979-88.
- Gopalani S, Krohn M, Meyn L, Hitti J, Crombleholme WR. Contemporary management of preterm premature rupture of membranes: Determinants of latency and neonatal outcome. Am J Perinatol 2004;21:183-90.
- Yoon BH, Kim YA, Romero R, Kim JC, Park KH, Kim MH, et al. Association of oligohydramnios in women with preterm premature rupture of membranes with an inflammatory response in fetal, amniotic, and maternal compartments. Am J Obstet Gynecol 1999;181:784-8.
- Borna S, Borna H, Khazardoost S, Hantoushzadeh S. 'Perinatal outcome in preterm premature rupture of membranes with Amniotic fluid index < 5 (AFI < 5). BMC Pregnancy Childbirth 2004;4:15.
- Medina TM, Hill DA. Preterm premature rupture of membranes: Diagnosis and management. Am Fam Physician 2006;73:659-64.
- Ekwochi U, Ndu IK, Nwokoye IC, Ezenwosu OU, Amadi OF, Osuorah D. Pattern of morbidity and mortality of newborns admitted into the sick and special care baby unit of Enugu State University Teaching Hospital, Enugu state. Niger J Clin Pract 2014;17:346-51.
- Bako B, Chama C, Audu BM. Emergency obstetrics care in a Nigerian tertiary hospital: A 20 year review of umblical cord prolapse. Niger J Clin Pract 2009;12:232-6.
- Mercer B, Milluzzi C, Collin M. Periviable birth at 20 to 26 weeks of gestation: Proximate causes, previous obstetric history and recurrence risk. Am J Obstet Gynecol 2005;193(3 Pt 2):1175-80.
- Garite TJ. Management of premature rupture of membranes. Clin Perinatol 2001;28:837-47.
- Aagaard-Tillery KM, Nuthalapaty FS, Ramsey PS, Ramin KD. Preterm premature rupture of membranes: Perspectives surrounding controversies in management. Am J Perinatol 2005;22:287-97.
- Okeke TC, Enwereji JO, Okoro OS, Adiri CO, Ezugwu EC, Agu PU. The incidence and management outcome of preterm premature rupture of membranes (PPROM) in a tertiary hospital in Nigeria. Am J Clin Med Res 2014;2:14-7.
- Cunningham FG, Leveno KJ, BLoom SL, Hauth JC, Gilstrap L 3rd, Wenstrom KD. Williams Obstetrics. 22nd ed. New York: McGraw-Hill; 2005. p. 232-47.
- Sims EJ, Vermillion ST, Soper DE. Preterm premature rupture of the membranes is associated with a reduction in neonatal respiratory distress syndrome. Am J Obstet Gynecol 2002;187:268-72.
- Verani JR, McGee L, Schrag SJ; Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC). Prevention of perinatal group B streptococcal disease – Revised guidelines from CDC, 2010. MMVVR Recomm Rep 2010;59:1-36.
- Davidson KM. Detection of premature rupture of the membranes. Clin Obstet Gynecol 1991;34:715-22.
- 20. Waters TP, Mercer BM. The management of preterm premature rupture of the membranes near the limit of fetal viability. Am J Obstet Gynecol 2009;201:230-40.

Okeke, et al.: Morbidities, concordance and predictors of PPROM in Enugu

- Ecevit A, Anuk-Ince D, Yapakçi E, Kupana-Ayva S, Kurt A, Yanik FF, et al. Association of respiratory distress syndrome and perinatal hypoxia with histologic chorioamnionitis in preterm infants. Turk J Pediatr 2014;56:56-61.
- 22. Crowley P. Prophylactic corticosteroids for preterm birth. Cochrane Database Syst Rev 2000;2:CD000065.
- 23. Harding JE, Pang J, Knight DB, Liggins GC. Do antenatal corticosteroids help in the setting of preterm rupture of membranes? Am J Obstet Gynecol

2001;184:131-9.

- 24. Vermillion ST, Kooba AM, Soper DE. Amniotic fluid index values after preterm premature rupture of the membranes and subsequent perinatal infection. Am J Obstet Gynecol 2000;183:271-6.
- Mercer BM. Premature rupture of the membrane. In: Perraglia F, Strauss GF, Gabbe SG, Wises G, editors. Complicated Pregnancy. 4th ed. London: Informa Healthcare; 2007. p. 713-27.

