
Volume 29 (1), pp. 75–86

http://www.orssa.org.za

ORiON
ISSN 0529-191-X

c©2013

A note on the statistical analysis of point judgment
matrices

MG Kabera∗ LM Haines†

Received: 24 July 2012; Revised: 13 February 2013; Accepted: 21 February 2013

Dedication to Emeritus Professor Theodor Stewart

Professor Theo Stewart has an encyclopaedic knowledge of a great many things, ranging from
operational research, decision theory and statistics through to LaTeX and single malt whiskey.
He shares this knowledge generously and unconditionally with colleagues and students alike.
Theo is an excellent teacher, an outstanding researcher and a boundless source of institutional
wisdom, in short the epitome of a fine and dedicated academic. It has been a great pleasure
for the second author to have known Theo for many years and to have worked with him in
the same department over the last eight years. We salute him on this, his 70th birthday year.

Abstract

The Analytic Hierarchy Process is a multicriteria decision making technique developed by
Saaty in the 1970s. The core of the approach is the pairwise comparison of objects according
to a single criterion using a 9-point ratio scale and the estimation of weights associated with
these objects based on the resultant judgment matrix. In the present paper some statistical
approaches to extracting the weights of objects from a judgment matrix are reviewed and
new ideas which are rooted in the traditional method of paired comparisons are introduced.

Key words: Analytic Hierarchy Process, least squares, logistic distribution, Bradley-Terry model,

Kullback-Leibler distance.

1 Introduction

The Analytic Hierarchy Process is a multicriteria decision making technique developed
by Saaty in the 1970s which has received considerable attention in the mathematical
and statistical literature [11, 18]. The core of the approach is the pairwise comparison
of objects according to a single criterion using a 9-point ratio scale and the estimation
of weights associated with these objects based on the resultant judgment matrix. Saaty
suggested that these estimates be taken to be proportional to the eigenvector corresponding
to the largest right eigenvalue of the judgment matrix [17]. However, his idea has been
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the subject of much criticism, in particular because it has a deterministic rather than a
statistical basis [10].

The aim of this paper is to review the key statistical approaches to extracting the weights
of objects from a judgment matrix and, in so doing, to relate the embedded models to the
traditional linear models used in the method of paired comparisons [5]. The remainder of
the paper is organized as follows. §2 comprises a brief account of the method of paired
comparisons and a formal specification of a judgment matrix. Statistical approaches to
the analysis of judgment matrices are then introduced within the context of paired com-
parisons, with those which are distribution-based discussed in §3 and those based more
directly on the method of paired comparisons in §4. An illustrative example is presented
in §5 and conclusions and pointers for further research are given in §6.

2 Preliminaries

A brief introduction to paired comparisons and judgment matrices within the AHP context
is presented in the following subsections.

2.1 The linear model for paired comparisons

In the traditional setting for paired comparisons, d decision makers are invited to compare
n objects pairwise with respect to a single criterion and to state, quite simply, their
preference for each pair with no ties permitted. The results can be assembled in a matrix
D = {dij} where dij is the number of decision makers who prefer object Ai to object Aj
for i 6= j, i, j = 1, . . . , n and thus dij + dji = d. A full account of the analysis of such data
is given in the seminal book by David [5] and a brief summary is presented here.

The perceived underlying merit of object Ai is taken to be a continuous random variable
Yi with mean µi and the probability that Ai is preferred to Aj can be introduced as

πij = P (Ai preferred to Aj) = P (Yi > Yj), i, j = 1, 2, . . . , n, i 6= j.

By defining Zi −Zj = (Yi − µi)− (Yj − µj) and invoking subtle distributional arguments,
it can be shown that

πij = P (Yi > Yj) = P (Zi − Zj > −(µi − µj)) = P (Zi − Zj < µi − µj) = H(µi − µj), (1)

where H(·) is the distribution function of Zi−Zj . Note that the merits of the objects Ai,
with i = 1, 2, . . . , n, are chosen on a linear scale and, since the origin of the linear scale is
arbitrary, it is usual to impose an additional constraint on the µi such as

∑n
i=1 µi = 0 or

µn = 0. It also follows immediately from result (1) that πij = 1
2 if and only if µi = µj , that

πij >
1
2 if and only if µi > µj and that πij <

1
2 if and only if µi < µj for i, j = 1, 2, . . . , n

and i 6= j.

The preference probabilities πij , for i, j = 1, 2, . . . , n, and i 6= j given in equation (1) are
specified by the choice of distribution function H and two such choices are of particular
interest. Specifically, in the Thurstone-Mosteller model [16, 22], the variables Yi are taken
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to be normally distributed and it follows straightforwardly that

πij = P (Yi > Yj) = Φ

(
µi − µj
σ

)
, (2)

where Φ(·) is the cumulative density function of the standard normal distribution and σ2 is
the variance of the difference Yi−Yj . In the more widely used Bradley-Terry model [3], the
variables Yi are taken to follow independent extreme value distributions and the differences
Yi − Yj therefore follow logistic distributions [6]. It can then be shown that

πij = P (Yi > Yj) =
πi

πi + πj
, (3)

where the parameters πi have an immediate and natural interpretation as weights or
probabilities associated with the objects Ai, i = 1, 2, . . . , n, respectively.

2.2 Judgment matrices

Suppose now that n objects are again to be compared according to a particular criterion
but that a single decision maker expresses his or her relative preferences on a ratio scale.
Saaty [18] suggested choosing relative preferences on an ordinal scale of integers from 1 to
9, together with their reciprocals. However, other scales can be used. For example Becker
and co-authors [2] use a 5-point Likert scale. More formally, let aij denote the relative
preference of object Ai when compared with object Aj for i, j = 1, 2, . . . , n. The relative
preferences can then be assembled in a positive reciprocal matrix, termed a point judgment
matrix, of the form A = {aij} where aij > 0, aji = 1/aij and aii = 1 for i, j = 1, 2, . . . , n.
The entries of A can be regarded as the ratios of weights associated with the objects in
the pairwise comparisons. Once the pairwise judgments have been elicited, the crucial
question is how to determine the weights associated with the objects.

3 Distributional approaches

In this section three distributional approaches are now discussed.

3.1 Logarithmic least squares and the normal distribution

Crawford and Williams [4] introduced what is arguably the first statistical approach to
the analysis of point judgment matrices, termed the logarithmic least squares method
(LLSM), in 1985. More detailed work on the LLSM was developed later by Kabera [13],
Kabera and Haines [14] and Laininen and Hämäläinen [15]. However, the LLSM can be
derived using the same arguments as those invoked in deriving the Thurstone-Mosteller
model for paired comparisons and this insight is now discussed.

The relative preferences aij can be expressed as

aij =
wi
wj
e∗ij , 1 ≤ i < j ≤ n, (4)
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where wi and wj are the unknown weights associated with the objects Ai and Aj re-
spectively. Moreover, wi > 0 for i = 1, 2, . . . , n and

∑n
i=1wi = 1 and e∗ij is a positive

error term which captures the inconsistency in the judgments. By invoking a logarithmic
transformation, model (4) can be re-expressed as the linear model with no intercept

yij = βi − βj + eij , 1 ≤ i < j ≤ n,

where yij = ln aij , βi = lnwi, βj = lnwj and eij = ln e∗ij . Assuming that the differences yij
are observed values of random variables Yij = Yi − Yj taken to be normally distributed as
in the Thurstone-Mosteller model, that is Yij ∼ N(βi−βj , σ2), simple arguments similar to
those developed in Kabera and Haines [14] yield the following results. Pairwise differences
of the parameters, βi − βj , are estimable and it is straightforward to show that the least
squares or, equivalently, the maximum likelihood estimates (MLEs) are given by

β̃i − β̃j =
1

n

2yij +

n∑
k=1
k 6=i,j

yik −
n∑
k=1
k 6=i,j

yjk

 1 ≤ i < j ≤ n.

Estimates of the weights associated with the objects can be formulated as

ŵi =
exp β̃i∑n
j=1 exp β̃j

=
1∑n

j=1 exp
{
−(β̃i − β̃j)

} , i = 1, 2, . . . , n.

Since these weights depend only on the unique estimates of βi − βj , they are unique. Ap-
proximate variances and covariances of the estimates ŵi, for i = 1, . . . , n, can be obtained
by observing that V ar(β̃i − β̃j) = 2σ2/n and by invoking the delta method to give

Var(ŵi) ≈
σ2

n
w2
i (1− 2wi +

n∑
k=1

w2
k), i = 1, 2, . . . , n (5)

and

Cov(ŵi, ŵj) ≈
σ2

n
wiwj(−wi − wj +

n∑
k=1

w2
k), 1 ≤ i < j ≤ n (6)

respectively. Estimates of these variances and covariances can immediately be obtained
by the “plug-in” principle, that is by replacing the weights with their estimates and σ2

with the residual variance s2.

3.2 The logistic distribution

The approach based on the logistic distribution for analyzing judgment matrices in the
AHP was introduced by Haines and Litvine [9] in the context of interval judgments,
and was fully developed for point judgment matrices by Kabera [13] and Kabera and
Haines [14]. The derivation of weights associated with objects compared pairwise and the
corresponding covariance structure can be deduced directly from the Bradley-Terry model
reviewed in §2 as follows.
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Suppose that, in a pairwise comparison of n objects, the merit of object Ai is assumed
to be represented by an outcome of a random variable Yi which follows an extreme value
distribution with probability density function (pdf) f(yi) = e−(yi−θi) exp[−e−(yi−θi)], with
yi taking a value on the real line and the unknown parameter θi > 0 for i = 1, 2, . . . , n.
Then, if Yi and Yj are independent, the random variable Yij = Yi−Yj , for i, j = 1, 2, . . . , n
and i 6= j, follows a logistic distribution with location parameter θi−θj and scale parameter
1 [6]. For the Bradley-Terry model, the probability that object Ai is preferred to object
Aj for 1 ≤ i < j ≤ n is simply

πij = P (Yi > Yj) =
πi

πi + πj
=

eθi

eθi + eθj
,

that is

logit(πij) = ln
πij

1− πij
= θi − θj

and the logistic distribution itself is subsumed in this development [3, 5]. In contrast,
suppose that the entry aij in the judgment matrix A is a realization of a random variable
Aij which represents the strength of object Ai relative to object Aj and is related to the
variable Yij as Yij = ln(Aij). In other words, Aij is assumed to be log-logistic. Then the
likelihood for the parameters θ = (θ1, . . . , θn) associated with the judgment matrix A is
given by

L(θ) =
n∏
i<j

i,j=1,n

e−[yij−(θi−θj)][
1 + e−[yij−(θi−θj)]

]2
where yij = ln(aij) and the MLEs of θ can be readily obtained subject to a single con-
straint, for example θn = 0, in order to ensure identifiability. Estimates of the weights
follow as

ŵi =
eθ̂i
n∑
j=1

eθ̂j

, i = 1, 2, . . . , n,

where θ̂i is the MLE of θi, for i = 1, . . . , n. The asymptotic variances and covariances
of the estimates of weights ŵi can be obtained using the delta method and are the same
as those for the LLSM approach but with σ2 replaced by 3 in expressions (5) and (6)
respectively [14].

3.3 Discretization

An approach which recognizes that judgments represented on a ratio scale are in fact
discrete was introduced by Kabera [13] and Kabera and Haines [14]. The method is
termed “discretization” and is a natural extension to the approaches based on the normal
and logistic distributions described above. Specifically, the entries in a judgment matrix
from the AHP are taken on an integer and reciprocal integer scale. Thus, strictly, these
entries are realizations of a discrete random variable A∗ij and Y ∗ij = lnA∗ij is necessarily
discretely distributed for 1 ≤ i < j ≤ n. In discussions so far, the random variable
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Yij = ln(Aij) has been assumed to be continuous. It is thus more correct to regard the
event Y ∗ij = ln aij , as equivalent to the event

Yij ∈
(

ln(aij − 1) + ln aij
2

,
ln aij + ln(aij + 1)

2

)
.

Let α = ln
√

(aij − 1)aij and β = ln
√
aij(aij + 1). Then it follows that

P (A∗ij = aij) = P (Y ∗ij = ln aij) =

∫ β

α
h(yij)dyij , (7)

where h(yij) is the pdf of yij for 1 ≤ i < j ≤ n. Estimates for the unknown parameters can
then be obtained by maximizing the likelihood

∏
i<j P (Y ∗ij = ln aij) or, equivalently, the

log-likelihood subject to appropriate constraints and the variance-covariance matrix of the
resultant estimates can be approximated by the inverse of the observed Fisher information
matrix. Note that integrals of the form (7) can be evaluated explicitly in the case of the
logistic distribution since

P (mij < Yij < Mij) =

∫ Mij

mij

e−[yij−(θi−θj)]

(1 + e−[yij−(θi−θj)])2
dyij

=
e−[Mij−(θi−θj)] − e−[mij−(θi−θj)]

(1 + e−[mij−(θi−θj)])(1 + e−[Mij−(θi−θj)])

but must be calculated numerically for the normal distribution.

4 Direct approaches

The question as to whether the traditional paired comparison models can be used more
directly in modelling judgment matrices of the form A = {aij} than the models discussed
in §3 now arises and is addressed in the following subsections.

4.1 Genest-M’Lan approach

Genest and M’Lan [7] suggested that aij , the relative preference for object Ai relative to
object Aj recorded on a ratio scale such as the Saaty scale, can be interpreted as reflecting
the fact that the objects have been compared nij times where

nij = max{aij , aji}+ 1 for 1 ≤ i < j ≤ n (8)

and thus thatAi is preferred toAj xij times where xij is determined by aij = xij/(nij−xij).
Thus xij = nijaij/(1 + aij) or, more succinctly, xij = max {aij , 1} , for 1 ≤ i < j ≤ n.
With this interpretation, the pairwise comparison of objects Ai and Aj can be regarded as
following a binomial distribution with the number of trials nij taken to be independent,
the number of successes given by xij and the probability of success πij taken to follow the
Bradley-Terry model for paired comparisons.
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This approach is indeed an interesting one but the following concerns should be noted.
First the interpretation of the term nij defined in expression (8) as the number of compar-
isons of objects Ai and Aj for 1 ≤ i < j ≤ n, implies that pairs of objects are not examined
the same number of times. Second, and as an example, suppose that a12 = 4. This can
be interpreted as indicating that object A1 is preferred to object A2 in 4 out of 5, or 40
out 50, or 400 out of 500 comparisons or any number of preferences and trials preserving
the proportion 4 : 5 in favour of object A1. These concerns indicate an arbitrariness in
the selection of the number of pairwise comparisons of the objects. Genest and M’Lan [7]
recognized these problems and suggested that the number of comparisons between all pairs
of objects be taken to be equal and, specifically, to be the least common multiplier (LCM)
of max {aij , aji}+ 1. Thus for the Saaty scale the LCM of 2, 3, . . . , 10, is 2520. However,
the number of comparisons still remains essentially arbitrary. An example illustrating the
above concerns can be found in Kabera [13]. In conclusion therefore the interpretation of
the preferences in a point judgment matrix as emanating from a binomial model requires
great caution.

4.2 A Distance approach

An alternative approach to that of Genest and M’Lan [7] based on the method of paired
comparisons was developed in the thesis of Kabera [13] and is now introduced here. Specifi-
cally, the entry aij in a judgment matrix A is interpreted as an odds ratio for the preference
probability and thus as

aij =
pij

1− pij

so that

pij =
aij

aij + 1
1 ≤ i < j ≤ n, (9)

where pij is the observed probability that object Ai is preferred to object Aj for 1 ≤ i <
j ≤ n. Note that the relative preference aij is taken to be on a ratio scale, for example
(but not necessarily) the Saaty scale. Estimates of the parameters of models describing
the preference probabilities πij can be obtained as those values for which the observed
probabilities pij are as close as possible, in some sense, to the true values πij , 1 ≤ i < j ≤ n.
Two measures of “closeness,” one based on least squares and the other on the Kullback-
Leibler distance, are now considered and the ideas reinforced by invoking the Bradley-Terry
model (3).

4.2.1 Least squares

Consider the least squares approach of David [5] which involves minimizing the sum of
squares

S =
n∑
j 6=i
j=1

[
H−1(pij)−H−1(πij)

]2
=

n∑
j 6=i
j=1

[
H−1(pij)− (µi − µj)

]2
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where the observed probabilities pij are given by equation (9) and H(·) is given by (2).
For the Bradley-Terry model (3), µi = ln(πi) and

H−1(pij) = ln
pij

1− pij
= ln aij 1 ≤ i < j ≤ n,

so that estimates of the parameters are obtained by minimizing the expression

n∑
j 6=i
j=1

(
ln aij − ln

πi
πj

)2

.

Note immediately that this approach gives the same results as the logarithmic least squares
method discussed in §3.1 (see also [13] and [15]), although the underlying “philosophy” is
very different. There is therefore no need to pursue this method further.

4.2.2 The Kullback-Leibler distance

The Kullback-Leibler distance between the probabilities pij and πij for 1 ≤ i < j ≤ n,
with respect to the distribution specified by the pij is given by

D =
n∑
i<j
i,j=1

[
pij ln

pij
πij

+ (1− pij) ln
1− pij
1− πij

]
. (10)

Consider now minimizing D and hence, since the probabilities pij are observed, maximizing
the expression

D∗ =
n∑
i<j
i,j=1

[pij lnπij + (1− pij) ln(1− πij)] =
n∑
i<j
i,j=1

[
pij ln

πij
1− πij

+ ln(1− πij)
]

(11)

with respect to the parameters on which the true probabilities πij depend. Maximizing
expression (11) is equivalent to maximizing the log-likelihood for a binomial distribution
with numbers of trials all equal and with probabilities of success πij . In particular note
that the model proposed by Genest and M’Lan [7] gives the same parameter estimates as
those obtained by maximizing (11) provided that all pairs of objects are assumed to be
compared the same number of times. The present approach therefore gives some support
to their methodology.

Consider now the case where the probability πij that object Ai is preferred to object Aj
follows the Bradley-Terry model (3), that is πij = πi/(πi + πj) for i, j = 1, 2, . . . , n and
i 6= j. Then equation (11) can be written as

D∗ =

n∑
i<j
i,j=1

[
pij ln

πi
πj

+ ln
πj

πi + πj

]
. (12)

Estimates of the weights which minimize the Kullback-Leibler distance (10) can be readily
obtained by developing an iterative procedure which preserves the constraints that πi >
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0 and
∑n

i=1 πi = 1 and which is similar to that developed for the method of paired
comparisons [5]. Specifically, using (12) and solving for ∂D∗/∂πi = 0 gives

1

π̂i

n∑
i<j
i,j=1

pij =
n∑
i<j
i,j=1

(π̂i + π̂j)
−1 i = 1, 2, . . . , n,

where π̂i is an estimate of πi. This system of equations then forms the basis for an iterative
scheme for finding the estimates π̂i, i = 1, 2, . . . , n. The calculations require the following
steps.

(1) Choose starting values for the π̂i, such as π̂
(0)
1 = π̂

(0)
2 = . . . = π̂

(0)
n = 1

n .
(2) Take the kth iterative solution as

π̂
(k)
i =

∑
i<j
i,j=1

pij

n∑
i<j
i,j=1

(π̂
(k−1)
i + π̂

(k)
j )−1 +

n∑
i<j
i,j=1

(π̂
(k−1)
i + π̂

(k−1)
j )−1

, i = 1, 2, . . . , n

(3) Continue the process until π̂
(k+1)
i is deemed to be sufficiently close to π̂

(k)
i , say at

iteration m, and then the final estimates are taken to be

π̂i =
π̂

(m)
i∑n

j=1 π̂
(m)
j

, i = 1, 2, . . . , n.

Alternatively the weights can be estimated by invoking a constrained optimization routine.

The Kullback-Leibler distance is not a likelihood function. Thus standard errors for the
parameter estimates cannot be obtained from the asymptotic results of likelihood theory.
However, the jackknife technique can be used to estimate the weights and to provide
attendant standard errors. Specifically consider estimating the weights by omitting the
comparison of objects Ai and Aj as the vector π̂(i,j) where the subscripts indicate the
removed pairs for i, j = 1, 2, . . . , n. There are

(
n
2

)
such estimates and these form the basis

for finding an overall estimate π̂ and the associated standard errors.

5 An example

The aim of this example is to fix ideas by comparing judgment weights and associated
standard errors obtained using the Kullback-Leibler approach with those obtained using
methods discussed earlier in this paper and in [14]. Thus, Saaty [18, p. 38] considered the
following example in which four identical chairs, labelled 1, 2, 3 and 4, were placed in a
line at distances of 9, 15, 21 and 28 yards from a light source respectively. Chairs were
compared according to brightness and the following judgment matrix assembled:

A =


1 4 6 7

1/4 1 3 4
1/6 1/3 1 2
1/7 1/4 1/2 1

 .
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The weights and their associated standard errors using the LLSM and the approaches
based on the logistic distribution, discretization using the logistic distribution and the
Kullback-Leibler distance are summarized in Table 1. For the LLSM, the coefficient of
determination obtained from the analysis of variance (ANOVA) table was R2 = 96.8%,
indicating an excellent fit of the model to the data and more particularly indicating that
the matrix A is close to being consistent [8]. In addition, in terms of brightness, chair
1 was found to be significantly different to the others, chair 2 was significantly different
from chair 4 but not chair 3, and chairs 3 and 4 were not significantly different from each
other at the 5% level of significance.

LLSM Logistic Discretization Kullback-Leibler

Chairs Weights Se Weights Se Weights Se Weights Se

1 0.614 0.052 0.614 0.245 0.613 0.203 0.632 0.043
2 0.225 0.041 0.225 0.194 0.225 0.160 0.218 0.034
3 0.099 0.020 0.099 0.096 0.098 0.078 0.094 0.012
4 0.062 0.013 0.062 0.062 0.064 0.052 0.056 0.007

Table 1: Estimates of the weights and associated standard errors for chair brightness.

It is clear that the distribution-based methods give practically the same weights, while the
Kullback-Leibler distance approach gives slightly different weights, but that the ranking
of chairs with respect to brightness is the same for all the four methods. It is also clear
that the standard errors associated with the estimates of the weights for the LLSM and
the Kullback-Leibler approaches are smaller than those obtained from the logistic and
discretization approaches. This result is not surprising since it was demonstrated in §3
that that the standard errors associated with the estimates of the weights from the logistic
approach are

√
3/σ2 larger than those obtained from the LLSM. In the present case this

multiplier is approximately
√

3/s2 = 4.7, where s2 is the estimate of error obtained from
the ANOVA table for the LLSM, in accord with the results in Table 1. Also, it is clear
that if the judgment matrix is consistent, then the jackknife estimates will have zero error.
Since the matrix A is close to being consistent, this observation is reflected in the small
standard errors for the Kullback-Leibler approach given in Table 1 .

6 Conclusions

In this paper the connection between the traditional method of paired comparisons and
a range of statistically based approaches to extracting weights for judgment matrices
embedded in the Analytical Hierarchy Process is introduced and explored. The results
from the example presented here, and indeed from other examples [13], suggest that the
various statistical methods for deriving such weights produce estimates which are similar
but attendant standard errors which are somewhat different. The question then arises as to
which method is to be preferred. The approach based on the logistic distribution does not
incorporate a scale parameter, while the standard errors for the estimates of the weights
obtained from the Kullback-Leibler method tend to be understandably small. In contrast,
the logarithmic least squares method includes a scale parameter in its model formulation
and provides sound statistically based standard errors for the estimates of the weights. On
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balance therefore, the logarithmic least squares method, or the discretized version thereof,
is recommended for deriving weights from judgment matrices and, furthermore, is readily
implemented in practice.

There is scope for further research into statistical approaches for analyzing judgment
matrices. In particular statistically based methods address rank reversal since standard
errors are associated with estimates of the weights and thus the rankings are not stated
with certainty. However, the weights are constrained to lie in a simplex and it would
be useful to develop confidence regions for the weights rather than simply reporting the
standard errors associated with their estimates. More generally, Stern [21] introduced
a generalization of the traditional paired comparison model by introducing the notion
that the random variables which describe the perceived values of objects follow a Gamma
distribution with the same shape parameter but with different scale parameters. This
approach is particularly interesting in that it relates to a Poisson process which can be
construed as describing how a decision maker quantifies his or her preferences and could
well be pursued within the context of extracting weights for judgment matrices.

Finally it should be emphasized that approaches to the analysis of judgment matrices
within the context of the AHP, not all statistically based, are the subject of on-going
research. Some key developments and new methodologies are presented in the papers
by Bajwa [1], Jones and Mardle [12], Srdjevic [19], Srdjevic and Srdjevic [20] and Wang,
Parkan and Luo [23, 24].
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