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Abstract 

Poor pass rates of matric learners at secondary schools in South Africa has been a concern for 

quite some time. Despite large government spending on education, research has shown that the 

South African schooling system is struggling to convert resources to student performances and 

failing to promote social equity. The poor performance by South African students prompts further 

investigation into the factors contributing to educational outputs.  The focus of this case study in 

Cape Town is twofold, firstly to determine if there are any spatial patterns among the matric pass 

rates of secondary schools and secondly to determine if there are any relationships between the 

matric pass rate of the school and the socio-economic attributes of the school feeder areas.  Key 

findings of this research suggest that Cape Town schools are clustered in terms of school 

performance with high performing schools grouped together and many low performing schools also 

clustered together. There were a few exceptions where within a cluster of low performing schools 

there was one high performing school and vice versa.  Outcomes of the research into spatially 

varying relationships point to selected socio-economic factors of the community, particularly 

parent and household characteristics, influencing the learner’s school performance.   

Key words: Matric pass rate, school performance, spatial analysis, socio-economic factors, spatial 
relationships 
 

1. Introduction 
Schooling, the quality of education and the higher education system has been under investigation 

around the world and in South Africa for many years.  Senior certificate examination results, 

commonly known as matric, provide an indicator for the functioning of the secondary school 

system, the schools and individual learners.  An investigation into the educational system in South 

Africa is not only important in understanding the development of its population based on human 

development terms but also assist in defining the potential per capita income of the South African 

population (Fedderke et al., 2000).   Analyses of the various factors that shape schooling outcomes 

have been in short supply for South Africa generally, and even more so for post-apartheid South 

Africa: existing analyses are either dated, not based on national data or attempt to collect schooling 

outcomes from survey data, rather than schooling datasets (Crouch and Mabogoane, 1998; Case and 
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Deaton, 1999; Burger and van der Berg, 2003; Yamauchi, 2011). As a result of the Southern and 

Eastern Africa Consortium for Monitoring Educational Quality (SACMEQ), much interest has 

recently been given to the analysis of these factors (Murimba, 2005; Moloi and Chetty, 2010; van 

der Berg et al., 2011; Spaull, 2013). Spaull (2013) highlights that the correlation between education 

and wealth still manifests in the dualistic nature of the education system in post-apartheid South 

Africa. New interest in exploring geographical differences in the effect of one or more predictor 

variables upon a response variable have led to the application of spatial analytical techniques 

(Fotheringham et al., 2001; Harris et al., 2010; Singleton et al., 2012).   

Matric pass rates attract a great deal of public interest and are seen as a major public barometer 

of school performance.  Students from a low socio-economic background, or schools in poverty-

stricken areas, tend to perform much worse in their matric exam than students from affluent areas 

even if one statistically controls for resources (Crouch and Mabogoane, 2001; van der Berg et al., 

2011; Spaull, 2013), with the mere location of a school in a township area causing a decrease in 

matric pass rates.   By examining geographically whether the clustering of students from lower 

socio-economic  background within a school is a predicator of average school performance would 

contribute to a better understanding of the distribution of low performing schools and examine if 

students from high socio-economic backgrounds perform better than students from low socio-

economic backgrounds.  A useful definition of socio-economic status (SES) is ‘relative position of a 

family or individual on a hierarchal social structure based on their access to, or control over wealth, 

prestige and power (Mueller and Parcel, 1981)’ (Willms, 2003:3).  The use of socio-economic data 

from census for educational prediction is not new (Fedderke et al., 2000; Crouch and Mabogoane, 

2001; Burger and van der Berg, 2003; Marks, 2006; van der Berg et al., 2011; Matthews and Parker, 

2013; Spaull, 2013). Various estimates of the contribution of socio-economic background to 

examination success exist in the literature relating to school effectiveness and school effect, 

depending on the statistical modelling techniques employed and the choice of independent or 

explanatory variables. Social, economic and environmental factors account for 80% of the 

educational outcomes in local education authorities (Willms, 2003; Moloi and Chetty, 2010). 

The contribution of this research to studies of school performance is the spatial component and 

specifically the addition of spatial analysis techniques such as point pattern analysis and 

geographically weighted regression (GWR).   Spatial data often have special properties and need to 

be analysed in different ways from non-spatial data. For a long time the complexities of spatial data 

were ignored and spatial data were analysed with techniques derived for non-spatial data, the classic 

example being regression analysis.  The development and maturity of Geographical Information 

Systems (GIS) has had an effect on quantitative geography and this ability to apply quantitative 

methods for spatial data within GIS leads to an increase in the potential for gaining new insight 

(Fotheringham et al., 2001, Harris et al., 2010; Singleton et al., 2012). 

The poor pass rates of the matric learners at secondary schools in South Africa has been a 

concern for quite some time. Not only is the variance in the SACMEQ tests for South Africa more 

than double the overall variance for other regional countries, but the scores obtained by South 
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African students on international tests are the lowest in the region (Van der Berg and Louw, 2006; 

Moloi and Chetty, 2010, Spaull, 2013). The focus of this research is twofold, firstly to determine if 

there are any spatial patterns among the matric pass rates of secondary schools in the Western Cape. 

Secondly to determine if there are any relationships between the matric pass rate of the school and 

the socio-economic attributes of the school feeder areas as captured by census data.  To investigate 

the spatial patterns of secondary schools with similar matric pass rates in the Western Cape, spatial 

point pattern analysis techniques such as spatial autocorrelation and cluster and outlier analysis 

were used.  Once the level of clustering of school performance was established, ordinary least 

square (OLS) regression analysis and geographically weighted regression (GWR) were used to 

establish which socio-economic factors influenced the matric pass rates in schools.   

2. Background Research on School Performance Measures 

Internationally, a number of studies have found that student attributes and socio-economic 

variables and learner locations are more important in influencing student learning outcomes than 

school attributes (Jaggia and Kelly-Hawke, 1994; Conduit et al., 1996; Taylor and Yu, 2009; Saifi 

and Mehmood, 2011).  As early as 1966, Coleman et al. (1966) investigated equality of education 

opportunities by looking at the poor school performance of African American students.  It was 

found that the learner’s personal and family characteristics were major contributing influences on 

the students’ performance rather than the characteristics of the schools they attended. The 

inequalities imposed on children by their home environments are carried by them into the schools, 

with family background and location being the main factors affecting student performance (Jaggia 

and Kelly-Hawke, 1994; Leventhal et al., 2009; Dupe’re’ et al., 2010).  The problem with the 

concept of a school neighbourhood is that pupils are rarely drawn exclusively from the school’s 

immediate hinterland and most parents who can exercise choice come from above average socio-

economic groups (Sammons, 2013).  A strong relationship exists between socio-economic status 

(SES) and school performance (Conduit et al., 1996; Tschinkel, 1998; Betts et al., 2003; Holmes-

Smith,2006; Smith, 2011) where a clear inverse relationship between deprivation and examination 

results emerged with schools located in non-deprived areas having higher pass rates. Socio-

economic based indicators such as single parent, parent’s educational background, unemployment, 

occupation and poverty indicators of each school community influenced factors of school 

performance, however the association between location and achievement was much lower when 

schools were closely clustered, reducing the constraint of access to schools.  

The poor performance by South African matriculants prompts further investigation into the 

factors contributing to educational outputs.  Historically, South Africa has been divided along racial 

lines both economically and politically.  Spaull (2013:437) remarks that “eighteen years after the 

political transition, race remains the sharpest distinguishing factor between the haves and the have-

nots”.  According to van der Berg (2007), the poor still receive an inferior quality of education 

compared to their wealthier counterparts, compounded by the poor qualification of educators in the 

current system (Smith, 2011).  Christie (2013:781) laments that “patterns of performance on tests 
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continue to mirror former apartheid departments” and remain racially skewed.    Many South 

African studies have considered  the relationship between socio-economic indicators and school 

performance (Fedderke et al., 2002; Van der Berg, 2007, 2008, 2011; Christie et al., 2007; Bhorat 

and Oosthuizen, 2009; Smith, 2011; Spaull, 2013) with racial composition and socio-economic 

background as the major explanatory factors for matric pass rates (Van der Berg,  2007, 2008, 2011; 

Smith, 2011). Within the post-apartheid school system, school characteristics ofinfrastructure and 

pupil teacher ratios, teacher, child, parent and household characteristics have all been seen to play a 

contributing role (Christie et al., 2007; Bhorat and Oosthuizen, 2009; Smith 2011). This highlights 

the importance of socio-economic variables (Christie et al., 2007; Smith, 2011) as a predictor of 

good senior certificate results.  Both Smith (2011) and Christie (2013) highlight the link between a 

learner within a deprived community (place) and their opportunity of attainment in education and 

society. 

3. Spatial Analysis of School Performance 

The aim of spatial data analysis is to identify relationships between pairs of variables drawn from 

geographical units, often using regression, in which relationships between one or more independent 

variables and a single dependent variable are estimated (Fotheringham et al., 1998).  In regression 

models involving geographical locations, regression coefficients may not remain fixed over space 

and the model residuals may exhibit spatial dependence (Charlton and Fotheringham, 2009).  

Geographically weighted regression (GWR), a method of spatial statistical analysis, allows 

modelled relationships between the response variable and a set of covariates to vary geographically 

across a study area (Harris et al., 2010), thereby allowing characterization of spatial heterogeneity 

and accommodating spatial non-stationarity.  GWR is a local refinement of global linear regression 

methodologies such as the ordinary least squares (OLS) model (Charlton and Fotheringham, 2009). 

The equation for a typical GWR version of the OLS regression model describing a relationship 

around location u, would be: 

 yi(u)=0i(u) +   [1] 

Where:   is the independent variable, 

   is the coefficient for each of the predictor variable (x) and  is the residual. 

In this equation u represents the two-dimensional geographical space defined as the local 

neighbourhood.With GWR, local rather than global parameters are estimated allowing the 

generation of a continuous surface of parameter values and measurements to denote the spatial 

variability of the variable (Charlton and Fotheringham, 2009).  The choice of a spatial weighting 

function or kernel, defining the extent of “local” (proximity of data points to location u) is crucial 

(Brunsdon et al., 1996; Páez et al., 2002; Charlton and Fotheringham, 2009).  A number of kernels 

are possible: GWR supports fixed, Gaussian-shaped and adaptive kernels, based on a fixed distance 

(bandwidth) or a number of adjacent points (neighbours) (Charlton and Fotheringham, 2009).  The 

distance-based weighting rests on the assumption that observations that are closer together share a 
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common but spatially localised context that differs across the study area. Spatial autocorrelation 

(SA) arises when the measures of a variable in multiple sample units are not independent of each 

other and this describes the spatial structure of the data (Harris et al., 2013). Pattern analysis can be 

used to reveal spatial distribution patterns (random, dispersed or clustered) of school performance 

as well as identify local clusters of high or low values (Chang, 2010).   

Several studies have applied spatial statistical analysis to examine educational performance. 

These studies model the relationship between school performance and socio-economic variables of 

the community surrounding the school (Conduit et al., 1996, Pitts and Reeves, 1999, Gibson and 

Asthana, 1998, Fotheringham et al., 2001, Gordon and Monastiriotis, 2007; Xiaomin and Shuo-

sheng, 2011) using spatial statistical techniques: namely OLS regression (Conduit et al., 1996, Pitts 

and Reeves, 1999, Gibson and Asthana, 1998),  GWR (Fotheringham et al., 2001, Gordon and 

Monastiriotis, 2007; Xiaomin and Shuo-sheng, 2011) and a grid-based variation of GWR (Harris et 

al., 2010).   

There are, however, limited studies using spatial statistical analysis techniques on South African 

schools data (Bhorat and Oosthuizen, 2009).  The purpose of this paper is therefore to focus on the 

spatial analysis of South African schools data, modelling the relationship between school 

performance (expressed by matric pass rates) and socio-economic variables of the community 

surrounding the school in particular characteristics of parents (Xiaomin and Shuo-sheng, 2011) and 

households (Fotheringham et al., 2001; Bhorat and Oosthuizen, 2009).  

4. Methodology 

In this study quantitative geographical techniques were used to analyse the 2010 matric results of 

261 secondary schools in Cape Town. The school data was obtained from the Western Cape 

Department of Basic Education extracted from their Education Management Information System 

(EMIS) and Final Matric Register. Coordinates were verified using GIS.  Firstly,  using spatial 

point pattern analysis, the spatial distribution of schools was characterised and secondly, spatial 

relationships between school matric pass rates and socio-economic variables of the school feeder 

communities were identified and mapped.  The socio-economic variables were extracted from 

Statistics South Africa’s 2011 Population Census for Cape Town, a city with an estimated 

population of 3.7 million (City of Cape Town, 2012), was chosen as the study area.  Ninety two 

percent of Cape Town schools fall in the higher quintiles of socio-economic strata as defined by the 

then National department of education (Christie et al., 2007), making it a homogeneous community 

to study.  Sub-place areas were selected as the spatial analysis unit, since it is the smallest unit of 

analysis at which StatsSA release the majority of their socio-economic information, and spatial 

delineation data is available at sub-place level.  Cape Town consists of 684 sub-places with most 

suburbs divided into a number of sub-places. 

Point pattern analysis, using ESRI’s ArcMap version 10.1, was used to determine if the physical 

location of schools are random, dispersed or clustered, after which clusters of schools with high 
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matric pass rates and clusters with low pass rates were identified.  Finally high performing schools 

surrounded by low performing schools and low performing schools amongst a cluster of high 

performing schools were detected.  To identify the most relevant explanatory variables for spatial 

analysis the correlation between selected socio-economic attributes and school performance was 

determined. The four attributes with the strongest correlation, reflecting the parent and household 

characteristics (Fotheringham et al., 2001; Bhorat and Oosthuizen, 2009; Xiaomin Shuo-sheng, 

2011) were percentage of persons who are employed, percentage of households that have a 

computer, percentage of households that have a telephone and percentage of persons who acquired 

a tertiary qualification.   

Spatial relationships between the dependant variable, school matric pass rate and these selected 

independent socio-economic variables were investigated with sub-place as geographical unit.  The 

pass rate of the school was assigned to the attributes of the sub-place in which it resides, which is 

simple for cases where there is only one school per sub-place (n=135). For sub-places without 

schools, the pass rate of the nearest school (Euclidian distance) was allocated to the attributes of the 

sub-place (n=481), the assumption being that learners attend the school closest to their home.  In the 

cases where there are two or more schools within the sub-place (n=53) the mean pass rate of the 

schools was assigned to the sub-place attributes.  The number of schools within these 53 sub-places 

varied between two (n=33) and eight (n=1).  Sub-places identified as nature reserves and sub-places 

with a total population of zero were assigned a pass rate of zero (n=15).  

Multivariate linear regression was performed on the data using the OLS model after which the 

GWR model was applied to deal with spatial non-stationarity.  For both global and local regression, 

the response variable (Pass) is the proportion of learners who passed the matric examination in year 

2010 in each secondary school (Pass). The four independent variables used are percentage of 

persons who completed high school (High), percentage of persons who are employed (Employed), 

percentage of households that have a computer (Computer) and percentage of homes that are 

occupied by the owners (Owned). Different methods of determining the local neighbourhood 

(kernel) for the GWR model were selected (Fixed kernel with variable bandwidth; Adaptive kernel 

with varying neighbourhood size).  In addition, the spatial relationships of the coefficients (beta (β) 

values) of the significant exploratory variables for the GWR model were investigated. 

5. Visualisation of the Schools Spatial Point Data 

Results from the nearest neighbour analysis lead to the conclusion that the physical locations of 

secondary schools in Cape Town municipality are clustered and not randomly distributed within the 

study area.  The next step in the analysis was to calculate the distance band. Results will differ 

depending on the distance at which the Moran’s I statistic (for SA) is calculated. To find the 

optimim distance the incremental spatial autocorrelation tool was used and the appropriate scale of 

analysis (distance band) was determined as 11.5km, which was used for further analysis.  
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Moran’s I spatial autocorrelation tool was used to measure if schools with higher pass rates are 

situated closer to each other or if schools with higher pass rates are next to schools with lower pass 

rates.  The results indicated that schools with higher matric pass rates are clustered with a Moran’s I 

index of 0.11 (p-value < 0.0001).  Since results indicated that schools with higher pass rates are 

clustered, Anselin local Moran’s I was used to identify outlier schools.  An outlier would be a 

school with a high pass rate surrounded by schools with low pass rates, indicated in Figure 1 as 

orange dots (HL) and vice versa (LH) as green dots.  Schools with high pass rates enclosed by other 

schools with high pass rates (HH) (red) and schools with low pass rates bordered by other low 

scores (LL) (blue) are also shown in Figure 1.  

There are 12 schools identified as part of statistically significant clusters of high values (HH) at 

the 5% level of significance, all these schools had pass rates over 90%. These schools are situated in 

suburbs towards both the north and south of the city haveing a majority of white (Tableview, 

Plumstead, Constantia and Simons’s Town) and coloured (Wynberg) residents, mostly employed 

with some level of secondary and even tertiary education.  The statistically significant clusters of 

low values included 41 schools with pass rates mostly below 40%. These schools can be found in 

areas of poor socio-economic conditions, traditionally known to have a majority of black african 

residents.  The unemployment is high and the education level generally below matric. These 

suburbs towards the south-east of the city include Khayelitsha, Langa and Gugulethu. 

 

Figure 1: Cluster and outlier analysis of matric pass rates. 
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The results from the outlier analysis also identified 13 schools that are outliers, eight of which 

represent LH-clustering and five with HL-clustering. The eight outlier schools that have a pass rate 

lower than their surrounding schools are listed in Table 1.  

Table 1: Schools with low pass rates surrounded by schools with high pass rates (LH). 

Schools with low pass rates Surrounding schools with higher pass rates 

Rondebosch Boys' High (48%). Bishops (100%), St Joseph's' College (87%), Groote 
Schuur (91%), Heritage College (80%), Cristel House 
SA (94%) and Livingstone High School (92%). 

Springfield Convent of the Holy (50%) and  

John Wycliffe Christian School (50 %) 

Shiloah Christian School (83%), Immaculata RK 
(94%), Wittebome High School (79%), Wynberg Girls 
High (75%), Norman Henshilwood High School 
(92%) and Voortrekker High School (91%). 

Khanyolwethu Secondary School (24%) Rusthof Secondary (78%), Strand Secondary (61%), 
Madrasatur Rajaa Strand High School (93%) and 
Valsbaai High School (100%). 

Simanyene Secondary (46%) Strand High School (87%), Natural Learning Academy 
(87%), Hottentots Holland High School (88%), and 
Valsbaai High School (100%). 

Zeekoevlei High School (41%) 
Pelican Park high school (80%), Grassdale High  
(87%), Fairmont Secondary (77%), Lotus Secondary 
(100%) and Al-Azhar Institute - Cape Town (86%). 

Constantia Waldorf School (56%) 

South Peninsula (90%), Bergvliet (75%), Cape 
Academy for Maths and Science (93%), Heathfield 
High School (80%), and Norman Henshilwood High 
School (92%). 

St Cyprians' High School (43%) 

Good Hope Seminary (93%), Jan Van Riebeck High 
School (77%), Gardens Commercial High School 
(85%), Cape Town High School (83%), Trafalgar High 
School (79%) and Harold Cressy High School (82%) 

The schools in Table 1 highlighted by the analysis are located in areas ranging from affluent 

(Cape Town central and the southern suburbs) through middle to low income areas, down right to 

areas with real socio-economic challenges.  Further investigations are required to determine why 

these particular schools (even in affluent areas) have such low pass rates compared to neighbouring 

schools.  One possible explanation may be a boarding school, not populated from the surrounding 

geographic area.   The outlier schools whith high performance within a cluster of low performing 

schools (HL) are listed in Table 2. 
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Table 2: Schools with a high pass rate surrounded by schools with a low pass rate (HL). 

Schools with a high pass rate Surrounding schools with a lower pass rate 

Mkize secondary school (80%) Intshukumo Secondary (47%), SithembeleMatiso 
(28%), Oscar Mpe Than (41%) , New Eisleben (52%) 

Mathew Gonwe Memorial High (86% Usasazo (46%), Masiyile (34%), and Siphamandla 
(52%). 

Oval North (81%), and Princeton Secondary (85%) Woodlands Secondary (65%), Lentegeur Secondary 
(68%), Phillipi Secondary (40%), Westridge 
Secondary (65%), Tafelsig Secondary (64%), Aloe 
Secondary (50%) 

Eersterivier Secondary (82%) Forest Hights High (55%), Tuscany Glen Secondary 
(65%) 

The findings from this HL analysis differ from the previous LH findings in that all the schools 

are situated in areas with challenging socio-economic conditions. Despite these challenging socio-

economic conditions, learners from these schools were able to perform and an explanation for the 

differing performance needs to be investigated, possibly looking at school characteristics.  From 

these results, it is clear that school performance cannot necessary be linked to location only, but has 

to be investigated with other factors in mind.   

6. Measuring the Spatial Relationships Between the Matric Pass Rates and the 
Socio-economic Attributes 

The fit of the OLS regression model was not good as only 32% of the variation is accounted for 

by the explanatory variables (High, Employed, Computer, Owned). The proportion of residents who 

have completed high school (High) accounts for the largest part of the variation, with high 

employment rates (Employed), percentage of households that have a computer (Computer) and 

percentage of homes that are occupied by the owners (Owned) measuring the unaccounted 

variation.  Variables such as occupation, female head of household, tertiary education and 

ownership of telephone were dropped during regression model specification since they were not 

statistically significant, however this does not mean that these variables have no relationship with 

the school performance and matric pass rate. Many of the variables measuring the socio-economic 

status of the community are highly correlated indicating multi-colinearity among the variables. The 

evaluation statistics for the OLS model are shown in Table 3. 
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Table 3: OLS regression statistics. 

Description Value p-value 

R squared 0.32  

Adjusted R squared 0.32  

Akaike Informaton Criterion (AIC) 5763  

Koenker Statistic 83.76 <0.0000 * 

Jarque-Bera Statistic 146.40 <0.0000 * 

 

When running the GWR regression model it is important to determine the optimum bandwidth at 

which the model can perform best. In this study several different local neighbourhood sizes based 

on bandwidth were investigated. Using a fixed kernel and varying the bandwidth (ranges between 

30km to 1km) caused the model to improve. However, as the bandwidth decreased the model bias 

increased.  The best model was a compromise between bandwidth and bias and the effective 

number helped in determining the best model. Even though the R-squared and Akaike Information 

Criterion (AIC) showed improvement with bandwidths less than 5km, not all sub-places could be 

modelled at that level, therefore a fixed kernel with bandwidth of 5km was chosen as best model. 

This GWR model was able to explain about 50% of the variation (R-squared = 0.57; Adjusted R-

squared = 0.49; AIC = 5397) and all the socio-economic variables displayed non-stationarity, 

indicating spatial variation in the relationship between the pass rates and the socio-economic 

predictor variables.   

The GWR output intercept term, determines the matric pass rate should the coefficients for all 

explanatory variables be negligible (zero). Figure 2 shows the spatial distribution of the intercept of 

the GWR model. Local estimates of the intercept coefficients range from a minimum of -83.75 

(associated with nature reserves) to a maximum of 124.05 (with predicted pass rate of 95.5%) with 

a mean of 31.89. These GWR results show the apparent spatial variations in the constant 

parameters. High parameter estimates mean that the effect of the variables is higher in that 

particular region as compared to other regions and is indicated in Figure 2as the red shaded area.  

The low parameter estimates are shown in blue. 
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Figure 2: Spatial variations for the intercept in GWR. 

Figure 3 shows the coefficients for the explanatory variables per sub-place in Cape Town 

obtained from the GWR model:  higher education (High) (Map 1), employment (Employed) (Map 

2), access to computers (Computers) (Map 3) and home ownership (Owned) (Map 4).  Red and 

darker and lighter shades of orange in Figure 3 indicate high coefficient estimates that mean the 

effect of the variable is high in that particular sub-place. When considering each of the explanatory 

variables, where there is a positive relationship (value has a positive sign), an increase in that 

variable (High, Employed, Computer, Owned) will induce an increase in the dependent variable 

(matric pass rate). If the sign is negative, it will cause a decrease. In Figure 3, areas indicated in 

blue represent a negative value, thus the effect of the particular explanatory variable on the matric 

pass rate is negative.  For example, in Khayelitsha (see Figure 3), ownership of a computer and 

employment have a strong positive relationship with the matric pass rate,  while higher education of 

the head of household (High) and home ownership (Owned) have a negative relationship. 
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Figure 3: Spatial variation of the explanatory variables in GWR. 
 

The GWR model accounts for spatial autocorrelation, the Moran index for the residuals of the 

GWR model is 0.0345 with z-score of 4.58 (p<0.00001) as shown in Figure 4. The Moran index 

shows that the residuals are clustered.  This could indicate that there are missing variables in the 

regression analysis.  By considering spatial variation as being a surrogate for missing variables 

(Harris et al., 2013), GWR can reveal that in some places there are other factors that need to be 

considered to account for the local school performance – these however, may not be of a spatial 

nature and may be associated with individual learner or educator characteristics (Spaull, 2013). 
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Figure 4: Residuals for GWR 
 

When the socio-economic characteristics are modelled using the GWR model, the explanatory 

power is increased. The results replicate closely, those obtained by Gibson and Asthana (1998) and 

Fotheringham et al. (2001), namely socio-economic indicators, in particular household and parent 

characteristics, are predictors of school average performance.  In the local, urban setting of Cape 

Town, these translated to schooling (High) and employment (Employed) of parents, home (Owned) 

and computer ownership.  According to Christie (2013) the practice of representing information in 

terms of aggregated spatial units such as provinces masks deeper patterns in the production of 

spatial inequalities in education.  The difference between urban and rural location on the provision 

of education and achievement of school performance is concealed.  The use of a local spatial 

analysis technique such as GWR can be used to tease out important factors influencing this.  

Therefore the analysis should be expanded to other area in South Africa, in particular the 

comparison between rural school setting and urban environments should need a very different set of 

independent variables to define parent and household characteristics for success (Spaull, 2013).  In 

addition school characteristics need to be investigated as van der Berg (2007) reported that school 

functioning and education management also contribute towards school performance.  In addition the 

use of non-standardised assessment methods, especially in low-functioning schools, leading up to 

matric, exacerbate poor pass rates (van der Berg et al., 2011). 

The results of this study indicate strongly that additional work using these spatial analysis 

techniques is called for.  Despite some of the limitations in using GWR, such as the fact that 
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boundaries of the neighbourhoods representing the spatial analysis units for contextual data, may 

not reflect real-world boundaries between communities and in fact dissect areas of social 

homogeneity, i.e. the classical modifiable unit problem, local analysis can be performed to address 

the problem of reporting averages within South African education, thereby “overestimating the 

educational achievement of students” (Spaull, 2013:436).  In addition, the method of assigning pass 

rates to sub-places as well as the measurement of proximity not only in regard to physical distance 

but using contextual similarity should be investigated.  The use of a grid-based GWR model, 

especially for use with larger data sets (Harris et al. 2010) is recommended.  In addition, spatial 

autoregressive models and spatial filtering can be investigated to characterise the spatial 

autocorrelation and spatial heterogeneity inherent in spatial data. 

Given that educational processes and variables and their effect on school performance are likely 

to vary according to geographical location and place (Xiaomin and Shuo-sheng, 2011), examining 

geographical variations will help create better understanding not only of the associations with 

geography, but help uncover relevant variables for improving model performance.  

7. Conclusion 

Pattern analysis was performed on the Cape Town municipality’s 261 secondary school’s 

locations and matric pass rates. The average nearest neighbour index suggested the physical 

location of the secondary schools are clustered with the Moran’s I autocorrelation showing that pass 

rates of schools are also clustered: there were clusters of schools that performed well, achieved high 

pass rates but there were also clusters of schools that were producing low pass rates. The local 

Moran's I identified schools that could be termed outliers. These were schools that were part of a 

cluster but were performing differently from other schools within the cluster for example, in a 

cluster of high performing schools, despite poor socio-economic conditions there was one school 

with a very low pass rate. On the other hand a few schools were also identified that were 

performing very well amongst neighbouring poorly performing schools. five high performing 

schools were surrounded by low performing schools, while eight low performing schools were 

surrounded by high performing schools. 

The regression models used to measure the spatial relationships between the school performance 

and the socio-economic attributes of the areas surrounding the school, found a relationship between 

several attributes and school performance. The attribute that accounted for most of the variation was 

employment. It was clearly shown that schools that were situated in suburbs and sub-places in Cape 

Town municipality that had a large proportion of people employed produced better matric pass rates 

than schools that were situated in areas of low employment. 

In order to improve our understanding of the matric pass rates, in this present study we examined 

the relationship between matric pass rates and the socio-economic factors of the surrounding areas 

of the school. This relationship was tested using a spatial regression modelling approach, by taking 

Cape Town, a relatively homogeneous, urban area, as a target study area. The OLS and GWR 
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models were used to study the relationship between matric pass rates and socio-economic factors, 

The GWR model explained about 50% of the variance in school performance. Since GWR has the 

advantage of providing local parameter estimates, interesting patterns of spatial variation or non-

stationary of parameters were revealed. Even within this relatively homogeneous study area, the 

spatial distribution of all parameters showed significant spatial variation.Even though this study 

found that there is a strong relationship between school performance and the socio-economic 

variables of the community where the school is situated, in particular parent and household 

characteristics, there is evidence that school characteristics need to be considered within the South 

African context.  This leads to two further areas of research: the first is to replicate this study for the 

RSA Census 2011 results in order to obtain a time-series of performance and second, to extend the 

study to other parts of South Africa. 
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