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Abstract 

Snow is a common global meteorological phenomenon known to be a critical component of the 

hydrological cycle and an environmental hazard. In South Africa, snow is commonly limited to the 

country’s higher grounds and is considered one of the most destructive natural hazards. As a result, 

mapping of snow cover is an important process in catchment management and hazard mitigation. 

However, generating snow maps using survey techniques is often expensive, tedious and time 

consuming. Within the South African context, field surveys are therefore not ideal for the often 

highly dynamic snow covers.  As an alternative, thematic cover–types based on remotely sensed 

data-sets are becoming popular. In this study we hypothesise that the reduced dimensionality using 

Principal Components Analysis (PCA) in concert Normalized Difference Snow Index (NDSI) is 

valuable for improving the accuracy of snow cover maps. Using the recently launched 11 spectral 

band Landsat 8 dataset, we propose a new technique that combines the principal component imager 

generated using PCA with commonly used NDSI, referred to as Normalised Difference Principal 

Component Snow Index (NDPCSI) to improve snow mapping accuracy. Results show that both 

NDPCSI and NDSI with high classification accuracies of 84.9% and 76.8% respectively, were 

effective in mapping snow.  Results from the study also indicate that NDSI was sensitive to water 

bodies found on lower grounds within the study area while the PCA was able to de-correlate snow 

from water bodies and shadows. Although the NDSI and NDPCSI produced comparable results, the 

NDPCSI was capable of mapping snow from other related land covers with better accuracy. The 

superiority of the NDPCSI can particularly be attributed to the ability of principal component 

analysis to de-correlate snow from water bodies and shadows. The accuracy of both techniques was 

evaluated using a higher spatial resolution Landsat 8 panchromatic band and Moderate Resolution 

Imaging Spectroradiometer (MODIS) data acquired on the same day. The findings suggest that 

NDPCSI is a viable alternative in mapping snow especially in heterogeneous landscape that 

includes water bodies.  

1. Introduction 

Snow is a common global meteorological phenomenon. On some of the earth’s higher grounds, 

snow is known to be a valuable source of fresh water and therefore regarded as an important 

component of the hydrological cycle (Brown 2000; Yang et al., 2003; Zhou and Li 2003; Tong and 

Velicogna 2010). According to Bonan (2002), snow plays a significant role in influencing heat 

regimes and local, regional and even global radiation balance. Snow is also known to strongly 

influence regional soil characteristics, plant composition and plants community structure (Darmody 

et al., 2004; Löffler 2005). At local levels, snow cover is known to affect several soil parameters 
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such as permeability, temperature, moisture, microbial activity and carbon sequestration (Monson et 

al., 2006; Isard et al., 2007) According to Lu et al., (2005), snow’s distinct high surface reflectance 

and low thermal conductivity are believed to influence biological, chemical and geological 

processes. A number of studies (Chinn 2008; Kargel et al., 2005 among others) note that snow is a 

sensitive indicator to climate change. 

In South Africa, snow is mainly experienced during winter months (June to August) and is 

common in the Western Cape mountains, western parts of the Northern Cape Province, interior high 

grounds of the Eastern Cape and the Drakensburg mountains in KwaZulu-Natal.  Whereas the 

prevalence of snow in South Africa is not as high as the northern hemisphere’s mid-latitudes and 

Polar Regions, the effects of annual snow is well documented. Like in other parts of the world, in 

South Africa, snow causes substantial ground transport disruptions, particularly on the country’s 

high ground mountain passes, agricultural damage, overload on utilities like electricity and solar 

power output among others (Cheshire 1997; Andrews and Pearce 2012). Miller (1998) suggests that 

snow is a valuable physical process that promotes soil water infiltration that re-invigorates 

grasslands and other natural vegetation. In this regard, mapping snow is critical for sustainable 

utilisation of catchments, water points as well as planning and mitigation of associated disasters. 

Traditionally, field surveys have been used to generate snow maps (Brown and Braaten 1998).  

However, generating snow maps using survey techniques is often expensive, tedious and time 

consuming (Kavzoglu and Colkesen 2009). Field surveys are therefore not ideal for the often quick 

melting snow covers ( Lu et al., 2005). Therefore, thematic cover–types based on remotely sensed 

data-sets are becoming popular (Foody, 2002; Gillanders et al., 2008). Remotely sensed data-sets 

are particularly well suited for measurement of snow cover due to their uniquely high incident 

radiation, which contrasts with most natural and artificial surface types (Stroeve et al., 2005). The 

suitability of remotely sensed datasets in snow cover mapping is further facilitated by repetitive 

temporal coverage, wide swath width, improved classification algorithms and acquisition of data 

from remote and inaccessible sites (Foody 2002). 

To date, a number of techniques have been exploited by scientists to reliably map snow at 

various scales. Köning et al., (2001), Foppa et al., (2007) and Lu et al., (2005) provide a detailed 

overview of some the common remote sensing datasets and methods used in snow mapping. One of 

the most successful image based snow mapping techniques is the Normalized Difference Snow 

Index (NDSI) proposed Hall et al. (2001). This technique exploits the ratio between snow’s high 

reflectance and strong absorption in the visible and short-wave infrared sections of the 

electromagnetic spectrum respectively (Hall et al., 2001). Like most ratios, Salomonson and Appel 

(2004) notes that one of the major advantages of NDSI is its resilience to atmospheric effects and 

influences caused by viewing geometry. In this regard use of NDSI has been widely adopted by the 

remote sensing community (see; Tong and Velicogna 2010; Andreassen et al., 2008; Aniya et al., 

1996; Sidjak and Wheate, 1999; Corripio 2004 and Lu et al., 2005 among others).  

As aforementioned, accurate mapping of snow cover is valuable for planning, management and 

the mitigation of adverse bio-physical and social process. Whereas the use of NDSI has been widely 

used in mapping snow, the reliability of such maps is often compromised by its reflectance 

similarity with other cover types like water, shiny rock surfaces and even vegetation covers. 

According to Hall et al., (2002), such features are characterised by low reflectance due to their high 

absorbance ability and low NDSI denominator. Under such circumstances, even a small increase in 

in the infra-red band may ultimately increase the NDSI and therefore a misclassification of the 

alternative land-cover’s type pixel as snow (Hall et al., 2002).  Köning and Sturm (1998) note that 

there is still a need for techniques that can be used to improve the classification accuracy of snow 

cover maps. One of the techniques with great potential is the use of imagery principal components, 
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also known as Principal Component Analysis (PCA). The PCA is a multivariate statistical 

technique used in remote sensing to reduce the number of spectral components to fewer principal 

components with most of the variance contained in the original multispectral images (Singh, 1989). 

Typically, remotely sensed image dataset are characterised by multiple bands.  However, some of 

the bands within the dataset are often highly correlated and therefore redundant for land-use-land-

cover mapping (Muchoney and Haack 1994; Munyati 2004). In PCA, spectral bands are combined 

into a new set of less correlated eigen images (Jackson 1983).  In this study we hypothesise that the 

reduced dimensionality using PCA in concert NDSI is valuable for improving the accuracy of snow 

cover maps. Whereas there is a huge body of literature on the use of PCA in land-use-land-cover 

mapping, there is paucity of literature on the integration of PCA in NDSI for snow cover mapping. 

Using the recently launched 11 spectral band Landsat 8 dataset, we propose a new technique that 

combines the imagery principal components generated using PCA with commonly used NDSI, 

referred to as Normalised Difference Principal Component Snow Index (NDPCSI) to improve snow 

mapping accuracy. 

2. Study Area 

The Koue Bokkeveld mountain range is located north of Ceres town in the Western Cape 

Province of South Africa (Figure 1). The Koue Bokkeveld has an elevated escarpment which 

extends to about 1,600m above sea level. At this altitude, it is one of the coldest places in the 

Western Cape and experiences snow fall every winter season. The mountain range forms part of the 

Koue Bokkeveld mountain catchment draining into the Olifants and Doring River networks. The 

area is regarded as an important natural ecosystem and a critical water source that is used to irrigate 

approximately 50% of the agricultural fields within the catchment (IWRM Report 2011). This area 

was selected due to the significance of snow to the catchments hydrological system and other 

aforementioned reasons.  

 

Figure 1. Location of the study area.  
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3. Data and Methods 

The area’s Landsat 8 level 1A dataset was acquired on the 9th of June 2013 from the South 

African National Space Agency (SANSA). This image was captured on the earliest cloud free day 

after a snow fall. The dataset is characterised by 11 spectral bands operating in the visible, near-

infrared, shortwave infrared and thermal infrared spectral regions. The imagery is further 

characterised by 30m spatial resolution bands from the visible and shortwave infrared, 100m for  

thermal infrared and 15m spatial resolution for the, panchromatic band. For this study we only used 

the 30m spatial resolutions bands for deriving the snow indices and the 15m panchromatic band for 

validation. A detailed description of the characteristics of Landsat 8 imagery is available on the 

United States Geological Survey (USGS) Landsat Missions website at http://landsat.usgs.gov. 

The level 1A Landsat image acquired for this study consisted of quantized and calibrated scaled 

digital numbers representing multispectral image (USGS 2013). The digital numbers of the images 

were converted to surface reflectance to obtain the Top of Atmosphere (TOA) reflectance as 

suggested by Smith et al. (2013). To exploit the high reflectance of snow in the visible and the 

shortwave infrared wavelength regions, and to accentuate the presence of snow in the study area, 

we employed the NDSI. This technique was preferred over other snow identification methods such 

as the Relative Spectral Mixture Analysis (RMSA) and the Relative Multiple Endmember Spectral 

Mixture Analysis (RMESMA). Unlike NDSI, Shreve et al (2009) noted that RMSA and RMESMA 

yield inferior snow classification accuracy. In this study, NDSI was computed by dividing the 

difference in reflectance observed in the Landsat 8 green band (0.53-0.59µm) and the shortwave 

infrared band (1.57-1.65µm) with the sum of the two bands as per equation 1.  

𝑁𝐷𝑆𝐼 =
𝐺𝑟𝑒𝑒𝑛0.53−𝑆𝑊𝐼𝑅1.65

𝐺𝑟𝑒𝑒𝑛0.568+𝑆𝑊𝐼𝑅1.65
                                                                                          [1] 

As recommended by Hall et al., (1995), Kulkarni et al., (2006) and Xiao et al., (2002), we used a 

NDSI threshold of greater than 0.4 to highlight the presence of snow. As suggested by Kulkarni et 

al., (2006) and Xiao et al., (2002) a near-infrared reflectance value greater than 0.11 was used to 

mask out water pixels so as to improve NDSI classification accuracy. 

To accentuate tonal variations and to reduce dimensionality and correlated principal components, 

we applied the PCA technique to all the Landsat 8’s visible, near-infrared and short wave infrared 

bands. This procedure generated eight spectrally independent principal components. Each principal 

component was then independently analysed to detect snow.  A Normalised Difference Principal 

Component Snow Index (NDPCSI) was then computed to accentuate the presence of snow using 

principal component 1 and 2 as illustrated in the equation 2. 

𝑁𝐷𝑃𝐶𝑆𝐼 =  
𝑃𝐶𝑏𝑟𝑖𝑔ℎ𝑡𝑒𝑠𝑡−𝑃𝐶𝑑𝑎𝑟𝑘𝑒𝑠𝑡

𝑃𝐶𝑏𝑟𝑖𝑔ℎ𝑡𝑒𝑠𝑡+𝑃𝐶𝑑𝑎𝑟𝑘𝑒𝑠𝑡
                                                             [2] 

A flow chart of procedures followed in the study is detailed in Figure 2.  
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Figure 2. Processing flow diagram of the study.  

4. Validation and evaluation 

Given the challenge of obtaining same day snow ground reference data for validation in 

inaccessible mountain terrains, MODIS data was used as reference dataset for accuracy assessment. 

The MODIS sensor consists of 36 spectral bands between the electromagnetic spectrum of 0.4-

14µm with a spatial resolution of 250, 500 and 1000m at nadir (Hall et al., 1995). With such a wide 

spectral range, MODIS is ideal for mapping snow cover using the visible, infrared and shortwave 

infrared regions (Hall et al., 1995). Detailed characteristics of MODIS can be found in Huang et al., 

(2011). Ideally the validation process should be done using higher spatial resolution data. However, 

it was impractical to get same day reference image and to perform field verification due to the 

limited time frame as snow melted before a much higher resolution sensor overpass. Therefore to 

complement the MODIS data for accuracy assessment, a 15 metre higher resolution Landsat 8 

panchromatic band was therefore used in evaluating the classification accuracy. Stroeve et al., 

(2005) and Lydolph (1985) noted that snow reflects more than 80% of the incident radiation. In 

consistency with these observations, in this study, it was relatively easy to discern snow covers 

from the course resolution MODIS validation imagery. Consequently, the accuracy of snow covers 

based on NDSI and NDPCSI were validated using MODIS and the Landsat 8 panchromatic band 

classified as “snow” and “no snow”.   

5. Results and discussions 

In consistency with findings in literature (see; Hall et al., 1995, 2001, 2002; Kulkarni et al., 2006 

and Xiao et al., 2002 among others), at a threshold greater than 0.4, the  NDSI analysis was 

successful in distinguishing snow from other land cover types. However, results in this study also 

indicated that NDSI was sensitive to water bodies found on lower grounds within the study area 

(Figure 3a). This finding is consistent with Hall et al., (2002) who note such spectral confusion as 

the major weakness of NDSI in mapping snow in areas with reflective water bodies (see Figure 4). 

As aforementioned, to improve the snow cover classification accuracy, it was therefore necessary to 

mask out the visible water bodies from the NDSI image (Figure 3b). The resultant image showed a 

significant improvement in delineating areas of spectral confusion between snow and water bodies 

(Figure 3c). Figure 3d shows NDSI’s snow covers using a snow/no snow Boolean mask. 
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Figure 3. NDSI misclassification of snow with water bodies – rectangles (A), water bodies mask 

(B), NDSI with water masked out (C) and Binary image of areas with and without snow (D).  

 

Figure 4: Scatter plot showing snow and water overlap using NDSI. 

The 8 PCAs showed different amount of information. The greatest amount of information was 

contained in principal components (PC) 1 and 2. Generally, there was a higher variation in surface 

cover types in PC1 than in the rest of the 8 PCs. As shown in Figure 4-PC1, the high reflectance 

and high absorption for snow and water bodies respectively made them easily distinguishable. 

However, whereas PC2 had more information than the rest of lower order PCs, it was difficult to 

distinguish snow from most of the other surfaces. In PC2, the absorption of both snow and water 

reduced the contrast between the two surfaces (Figure 5 – PC 1 and PC 2). The PC 1 and 2 were 

therefore chosen for calculation of the NDPCSI as they showed high reflectance and absorption for 

snow covers respectively. The eigenvalues showed that the two PCs had over 88% of meaningful 

data (Table 1). The contrast between the two PCs and the therefore the validity of choice for 

mapping snow was further corroborated using a correlation scatterplot and were found to be 

spectrally unrelated (Figure 6).  
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Figure 5. Principal components 1 to 8 - PC 1 and PC 2 show snow reflectance and absorption 

respectively. 

 

 

Figure 6. Scatterplot between principal component 1 and 2. 

Less than 12% of the information was contained in the six higher order PCs (Table 1). These 

PCs indicated high variances of noise and were therefore not considered for calculation of NDPCSI.  
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Table 1: Eigenvalues representing information from the 8 principal components. 

PC Eigenvalues Percentages Cumulative Percentage 

1 11833725.950 65.364 65.364 

2 4248676.094 23.468 88.832 

3 1357968.744 7.501 96.333 

4 477560.191 2.638 98.971 

5 127015.446 0.702 99.672 

6 33036.812 0.183 99.855 

7 23197.801 0.128 99.983 

8 3136.417 0.017 100.000 

 

The resulting NDPCSI indicated that there was a substantial difference between snow cover and 

other land cover types in the imagery such as water bodies, agricultural fields, roads, and build up 

areas. Unlike the NDSI, NDPCSI clearly differentiated snow from water bodies without the need of 

a water mask. Ultimately, an extract of thick snow covering an area of 7km2 was delineated from 

the rest of the classes (Figure 7).  

                 

Figure 7.  Snow cover mapped from NDPCSI. 

As aforementioned, to assess the accuracy of the mapped snow, the validation using NDSI and 

NDPCSI was done using MODIS data and the Landsat 8 panchromatic band. Figure 8 shows same 

day acquisition of snow cover in the study area from both MODIS and Landsat 8 spectral and 

panchromatic imagery. Although MODIS had a courser resolution, areas covered by snow were 

visible. 
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Figure 8. MODIS and Landsat 8 multispectral and panchromatic imagery showing snow cover.  

Table 2, table 3, table 4 and table 5 present the results of the confusion matrix obtained from the 

validating NDSI and NDPCSI methods. Validation of these methods was performed using MODIS 

data which produced overall accuracies of 76.8% and 84.9% for NDSI and NDPCSI respectively. 

On the other hand, the panchromatic band produced significantly higher overall accuracy for both 

methods with 93.7% for NDSI and 94.9 % for NDPCSI.  These results indicate how significant 

these two sets of imagery were in testing NDSI and NDPCSI methods. The results obtained in this 

study indicate that the accuracy of the mapped snow using NDSI is comparable to NDPCSI. 

However, whereas the NDPCSI performed better than the NDSI, the computation for NDSI is 

simple and can be automated. Therefore, the choice of the two methods will be determined by the 

volume of the images to be processed and the level of classification accuracy required. 

Table 2. Confusion error matrix of the NDSI using MODIS.  

  (Ground Truth Pixels) 

Total   no snow 1 no snow 2 no snow 3 snow 

Unclassified 0 0 0 0 0 

no snow 20 3 0 0 23 

no snow 0 17 12 0 17 

no snow 0 0 0 0 12 

no snow 0 0 0 0 0 

snow 0 0 0 10 10 

Total 20 20 12 10 62 

Overall accuracy: 76.81% 
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Table 3. Confusion error matrix of the NDPCSI using MODIS. 

(Ground Truth Pixels) 

Total   no snow 1 no snow 2 no snow 3 snow 1 snow 2 

Unclassified 0 0 0 0 0 0 

no snow 1 0 0 0 0 1 1 

no snow 2 28 76 0 0 0 104 

no snow 3 0 23 36 0 0 59 

snow 1 0 0 0 408 11 419 

snow 2 0 0 0 0 0 0 

Total 28 99 36 408 12 583 

Overall accuracy: 84.9 % 

Table 4. Confusion error matrix of the NDSI using Landsat 8 panchromatic band. 

  Ground Truth Pixels 
Total 

  unclassified snow no snow 

unclassified 
 

0 0 0 

snow 0 98 10373 10468 

no snow 0 4713 223247 224960 

total 0 4811 233617 238428 

Overall accuracy: 93.67 % 

Table 5. Confusion error matrix of the NDPCSISI using Landsat 8 panchromatic band. 

  Ground Truth Pixels 
Total 

  unclassified snow no snow 

unclassified 0 0 0 0 

snow 0 0 7434 7434 

no snow 0 4811 226186 230994 

total 0 4811 233617 238428 

Overall accuracy: 94.86 % 

6.  Conclusions  

This study demonstrated that snow cover can be mapped using Landsat 8 imagery using NDSI 

and NDPCSI techniques. Although the NDSI and NDPCSI produced comparable results, the 

NDPCSI produced higher classification accuracy. The superiority of the NDPCSI can be attributed 

to the ability of principal component analysis to de-correlate snow from water bodies and shadows. 

The NDSI results confirmed the threshold of 0.4 widely used in literature as ideal for mapping 

snow. Although with a relatively lower accuracy, a major advantage of NDSI over NDPCSI is the 

possibility for automation. However, the use of NDPCSI offer great potential to achieve higher 

accuracy snow maps if the PCs with the greatest de-correlation can be automated. Furthermore, use 

of NDPCSI eliminates the need to masking features with similar spectral characteristics as snow. 

This study demonstrates that NDPCSI can be used successfully to map snow and is an alternative to 

the commonly used NDSI. 
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