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ABSTRACT:  We present a Bayesian method for estimating small area parameters under an inverse 
Gaussian model. The method is extended to estimate small area parameters for finite populations. The 
Gibbs sampler is proposed as a mechanism for implementing the Bayesian paradigm. We illustrate the 
method by application to household income survey data, comparing it against the usual lognormal 
model for positively skewed data. 
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INTRODUCTION 
 
Small domain estimates are required by policy 
makers for a diversity of subpopulations in order 
to make decisions on issues relating to small areas. 
These small domains need not be geographical 
locations, but can represent distinct subdomains 
defined by several stratification factors. Sample 
survey data are available for a number of small 
domains, cross-classified by non-overlapping and 
exhaustive subgroups of the population, requiring 
estimates for small areas and the corresponding 
interest in methods for producing such estimates. 
Various branches of governments have been 
involved in research to obtain small area estimates 
for use in decision making in local areas. Examples 
of some of the research include, studies of per 
capita income for states and local government 
areas (Fay and Herriot, 1979); estimates of crop 
yields, population counts  and unemployment rates 
(Schaible, 1996); and studies of health needs (Malec 
et al., 1999). 
 Several authors have also considered the 
problem of small area estimation from various 
perspectives primarily using the Gaussian model 
and the classical techniques of estimation. 
 An early work by Purcell and Kish (1979) 
presented a comprehensive review of sample 
survey research in small area estimation. Ghosh 
and Meeden (1986) introduced an empirical Bayes 
approach in normal model finite population 
sampling theory for small area estimation. Ghosh 
and Rao (1994) and Rao (1999) presented accessible 
reviews of several of the techniques for small area 

estimation and indicated the advantages of the 
Bayesian and empirical Bayes approaches over the 
classical methods. In a recent book, Rao (2003) 
provides details of various methods of estimation, 
the wide range of available models and issues 
associated with small area studies. 
 The importance of non-normal models in small 
area estimation has also been investigated by some 
authors. For example, MacGibbon and Tomberlin 
(1989) have considered estimating small area rates 
and binomial parameters using empirical Bayes 
methods. Stroud (1991) used hierarchical Bayes 
approach for univariate natural exponential 
families with quadratic variance functions in 
sample survey applications, while Chaubey et al. 
(1994) extended the work by Fries and 
Bhattacharyya (1983) to include the maximum 
likelihood analysis of the two-factor inverse 
Gaussian model for the unbalanced and interaction 
case for the estimation of small area parameters in 
finite populations. 
 The object of this article is to develop a Bayesian 
approach for small area estimation under an 
inverse Gaussian model, denoted Inverse Gaussian 
(θ, σ2), whose density function is given by 
 
 f(y; θ, σ2) = (2πσ2)—1/2y—3/2 exp{—(yθ—1—1)2 /2σ2},  

y > 0, θ > 0, σ 2 > 0, 
 
with E(y) = θ, and V (y) = ?3s2. Note that neither ? 
nor s2 is a location or scale parameter under this 
model. A reciprocal-linear model for the factor 
effects is motivated from the context of the 
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underlying Wiener process (see Bhattacharyya and 
Fries, 1982). Specifically, if Y (t) is a Wiener process 
with drift µ > 0, then the random time when the 
process first hits a specified positive barrier, has an 
inverse Gaussian distribution (Cox and Miller, 
1965). The interpretation of the inverse Gaussian 
distribution as a first passage time distribution 
suggests its potential usefulness in modeling 
lifetimes as an alternative to other conventional 
models such as the Weibull, gamma and 
lognormal. 
 We consider the common two-factor model yijk = 
µij + eijk,  k = 1, . . .,  nij, where the eijk are independent 
error terms having an inverse Gaussian density 
with mean zero, and the µij are unknown mean 
parameters. A Bayesian analysis involves a prior 
specification for the µij conditional on 
hyperparameters ?,  i.e.,  µij =  g(?) +t ij , where g(?)  
is a prior mean parameter and the tij are random 
errors distributed independently of the eijk 
according to a density π  with mean zero. Adaptive 
Markov Chain Monte Carlo (MCMC) integration 
methods, such as the Gibbs sampler (Gelfand and 
Smith, 1990), have proved to be a powerful tool for 
analyzing conjugate Bayesian hierarchical models. 
The Bayesian paradigm allows us to use 
information from similar sources in constructing 
estimators and predictors, in addition  to the most 
directly available source of information. This is 
extremely useful in small area estimation theory, 
where one can improve the estimates in a certain 
area by incorporating information from similar 
neighboring areas.  
 In the next few sections, we will discuss our 
Bayesian model specification and provide a 
general paradigm for the Bayesian modeling of 
positively skewed data using an inverse Gaussian 
model. This model is compared with the usual 
lognormal model. We illustrate our approach by 
application to a household income data obtained 
from Statistics Canada (1987). The data set contains 
comprehensive information on each household, 
such as number of persons, number of adults, type 
of dwelling, educational level of the head of 
household, etc. We choose the domains of the 
study as the ten regions stratified by six education 
classes. The principal characteristic of interest is 
household income. Although the problem is 
characterized as a small area estimation, the 
discussion can apply to any stratified random 

sampling design considered for estimation at the 
stratum level. 
 
 

THE MODEL 
 
Consider a population U divided into J 
nonoverlapping small areas labelled j = 1, . . ., J, 
and a second classification of the population into I 
groups labelled i = 1, . . ., I. The total sample n is 
thereby cross-classified into IJ nonoverlapping cells 
of size nij , n = Σi,j  nij. In practice a simple random 
sample is drawn from the entire population, so 
that the n units are post classified into the cells, and 
the cell counts nij are random. We will assume that 
a stratified random sample design is used such that 
each cell defines a stratum from which a random 
sample of size nij is drawn. Following the 
terminology of a two-factor model in factorial 
experiments we let I denote the number of levels of 
the row factor A and J denote the number of levels 
of the column factor B. At each factor setting or cell 
(i,j), a sample of size nij is selected. 
 We focus on the additive or no-interaction model 
which assumes that the drift of the Wiener process 
corresponding to each cell is the sum of the factor 
effects. Since the mean is inversely proportional to 
the drift of the Wiener process, the usual 
parameterization of additive effects suggests the 
following model: 
 
 yijk ∼  Inverse Gaussian(θij, σ2),  k = 1, . . .,nij, 

 ,0,0, 21 >>+=− σθβαθ ijjiij ..................(1) 

 
 with E(yijk) = θij, 3 2( )  .ij ijV y θ σ=   Let y denote 

the collection of data over all IJ domains. The main 
problem of interest is to combine the data y with 
prior information about the unknown parameters 
φ = ({αi}, {βj}, σ2) and obtain their posterior 
distributions. By Bayes theorem, for a given prior 
pdf π(φ), the posterior of interest is given by π(φ/y) 
∝π(φ)f(y/φ). Other questions of interest include 
making inferences about functionals of the 
parameters, such as the predictive density of future 
yijk's. Due to the nonlinearity arising from the 
parametrization of the model, these posterior 
computations are intractable if approached directly 
via Bayes theorem. However, the model has a 
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convenient conditional structure that lends itself to 
the method of Gibbs sampling. 
Gibbs sampling 

 A series of papers discuss Gibbs sampling for 
conjugate Bayesian models and the calculation of 
marginal posterior densities and moments (see 
Gelfand and Smith, 1990; 1991; Gelfand et al., 1990;  
1992; Gelfand and Smith, Casella and George, 
1992). It is assumed that our collection of random 
variables are such that specification of all full 
conditional densities uniquely determines the full 
joint density. Then the Gibbs sampler is an iterative 
Monte Carlo method designed to extract marginal 
densities from these full conditional densities. 
Consider three variables θ1, θ2, θ3  with joint density 
[θ1, θ2, θ3].  Suppose the full conditional densities 
are [θ1, |θ2, θ3], [θ2, |θ1, θ3], and [θ3, |θ1, θ2]. After M  
cycles of iterations, the sample  
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regularity conditions, as M → 8 , the sampled 
values converge in distribution to the relevant 
marginal and joint distributions, i.e., 
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j=M+1,..., M+N are Markov sample from [θ1, θ2, θ3]. 
In order to cover a significant portion of the space 
generated by the posterior density, Gelman and 
Rubin (1992) recommend the use of multiple runs 
wherein the sampler is replicated with different 
starting values and the Mth iterate from each run is 
retained. 
 The burn-in length M, is dependent on starting 
values and the convergence rates of algorithm to a 
stationary distribution depends on the targeted 
posterior. Several approaches to handle these 
problems have been suggested in the literature (see 
e.g., Cowles and Carlin, 1996; Roberts and 
Rosenthal, 1998, and the references cited there). 
However, in single as well as multiple runs, 
posterior inference is straightforward since the 
entire posterior sample is available. For instance, 
the marginal density of θ1 is obtained as a finite 
mixture, 
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 The expectation of a function g(θ) of the 
parameters is estimated via the sample average 
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 It is possible to improve our estimation by taking 
advantage of the full conditional densities. If for 
any s, the conditional expectation gs(θr, r ≠ s) ≡ 
E(g(θ)θr, r ≠  s) is available in closed form, then by 
a Rao-Blackwell argument, an estimator with 
smaller mean squared error is 
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 With regard to density estimation, again if for 
any s, θs appears as an argument of f, the 
conditional density [fθr, r≠ s] can be obtained by a 
univariate transformation from [θsθr,  r≠ s]. The 
resulting Rao-Blackwellized sample-based density 
estimate of f is 
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Full conditional distributions 

The likelihood function for ({αi}, {βj}, σ2) under the 
inverse Gaussian model is 
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where ijji nn ,Σ= , 
ij

ijk

n
y

kijy Σ=  and 

)( 11
ijijk yykij −Σ=ν . The natural conjugate priors 

for αi and βj given σ2 are found to be truncated 
normal distributions (Chhikara and Folks, 1989). 
The set of conjugate priors for all parameters are 
then given by 
 

αi/σ2  ~  Normal(0,σ2c -1);  βjσ2 ~ Normal( µb, σ2d-1) )( ij
I αβ > ; 

σ2 ~Inverse Gamma( )22
00 , δν

; µbσ2 ~ Normal(0,σ2f-1) )0( >b
I µ ; 

c ~ Gamma ( )22 , cc δν
; d ~ Gamma ( )22 , dd δν

 ; 

  f ~ Gamma ( )22 , ff δν
 , .......................................(6) 

 

where )0( >b
I µ denotes the indicator function. Then 

by standard hierarchical Bayes calculations (see 
Gelfand and Smith, 1990), the full conditional 
distributions obtain as: 
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 Each of the full conditional distributions has a 
simple form and is easily sampled from, thus 
providing via the Gibbs sampler, a complete 
sample from the joint posterior of the parameters. 
To generate from the constrained full conditional, 
we use Devroye's method (1986) or alternatively, 
sample from the unconstrained full conditional 
and retain the variate value only if it falls in the 
constraint region. Diffuse priors over (c, d,  f,σ 2) 
can be specified by setting the prior 
hyperparameters at their null-values, i.e., ν0→(-I-J-
1), νc→(-I) νd→(-J), νf→(-1), δ0=0, δc=0, δd=0, and 
δf=0. 
 
Posterior inference 

The cell mean is µij = θij =  (αi+βj)-1. Due to the 
nonlinearity of the cell mean parameters µij , its 
posterior mean and variance are estimated (using 
(3)) via the sample averages as 
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j

t
i

t
ij βαµ  and  ).(ˆ

ijij E µµ =  

The posterior densities of model parameters αi, βj, 
σ2 and prior parameters µb,  c, d,  f are obtained 
using (2). 
 
Predictive inference 
Based on the posterior sample it is straightforward 
to derive the posterior predictive density of a 
future observation ijky  and the mean ij(m)y  of m 

future observations from cell (i, j). Since 

[ ]ijky y = ∫ ][][ y??y d ,y ijk , the posterior 

predictive density of ijky  and ij(m)y  are estimated 

respectively, by finite mixtures as 
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where )ijkf(y is the density of inverse Gaussian 

(θij, σ2) and  )ij(m)yf(  is the density of inverse 

Gaussian (θij, σ2/m) (see Fries and Bhattacharya, 
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1983). Furthermore, predictive means and 

variances of ijky  and ij(m)y  can be easily calculated 

from the generated posterior sample. For instance, 

the predictive mean of ijky  is [ ]ijky yE = 

∫ ][], y??y dijkyE[ , which is estimated as 
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and the predictive variance is ][ yijkyV = 
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estimated as 
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where )()()(2)(
),( tt

ij
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ijijk dE ==θσθy say, and d  

is the average of the d(t).  Similar calculations give 
the posterior predictive density of the mean 

 ij(m)y and its predictive mean and variance. 

 
The lognormal model 
We compare the inverse Gaussian model with the 
usual lognormal model for positively skewed data. 
The lognormal model is stated as 

 ~ijky lognormal  )ij
2,σθ( ,  k = 1, . . ., nij , σ2 > 0, 

 E(yijk) = exp(θij + σ2/2),  
 V (yijk) = exp(2θij + σ2)(exp(σ2) –1). ................... (12) 
 
 Let zijk = ln (yijk). Then zijk ~ normal (θij , σ2),  k = 
1,…,nij. An additive model for factor effects is 
given by θij = αi +βj,  and the likelihood function for 
({αi}, {βj} σ 2) is 
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 2
aσ ~ Inverse Gamma(νa/2, δa/2); 

 2
bσ ~ Inverse Gamma(νb / 2, δb / 2); 

 2σ  ~ Inverse Gamma(ν0 / 2, δ0 / 2). ............... (13) 
 
 By standard hierarchical Bayes calculations, the 
full conditional distributions obtain as 
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0=bδ   and  00 =δ . The cell mean parameter is 

µij = exp(θij + σ2/2). Using (4), its posterior mean is 
estimated as 
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where )(~ t
jβ , and )(1~ t

jb − are the mean and variance 

of βj obtained from its full conditional distribution. 
Its posterior variance V (µijy) = E(V (µijy, η) + V 
(E(µijy, η)), η being the hyperparameters, is 
estimated by the sum of the two components 
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 and d  is the average of the d(t). The posterior 
densities of model parameters αi,  βj,  σ2 and prior 

parameters  22 ,, bab σσµ  are obtained using (2). 

 The posterior predictive density of a future 
observation yijk is [yijky] = ∫[yijky, θ]d[θy] which 
is estimated as a finite mixture 
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where f(yijk) is the density of lognormal (θij, σ 2). 
Furthermore, the predictive mean and variance of 
yijk are estimated using formulas similar to (10) and 

(11). The predictive density of the mean )(mijy  of m 

future observations and its predictive mean and 
variance are estimated in a similar fashion, except 

)( )(mijf y  is defined as the large-m normal 

approximation with mean exp(θij+ 2s /2) and 
variance m-1 exp(θij+ 2s /2)(exp( 2s ) -1). 
 
Estimates for finite populations 

Consider a finite population Uij with units labelled 
1, . . ., Nij . Let yijk denote the value of a single 
characteristic attached to the unit k in population 
Uij. The vector {yijk; k = 1, . . ., Nij} is the unknown 
state of nature. We assume that the population of 
Nij elements for area (i, j) is generated by the super 
population model yijk = µij + εijk; k = 1, . . ., Nij.  
Assume also that nij observations are available for 
area (i, j). The mean of the nij observations is the 
observed mean )ij(n ij

y  and the mean of the 

unobserved (Nij – nij) elements, )( ijij nN −ijy , and its 

variance are estimated by the Bayes predictors 
similar to the results (9) through (11) for inverse 
Gaussian and lognormal errors. Letting fij= nij /Nij, 
we obtain the estimator of the finite population 
mean )ijij(Ny  as 
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)()()( ijijijij nNijnijN ff −−+= ijijij yyy  .........(18) 

 
 

APPLICATIONS 
 
The method is applied to the 1986 Canadian data 
on household income obtained from Statistics 
Canada (1987). Subsets of the population were 
obtained by geographic region and education 
status of the head of household. The variable of 
interest, total income (yijk), is defined as the sum of 
total earnings, total income from investment, total 
government transfer payments, retirement 
pensions, superannuation and annuities and other 
money income. This variable may be positive, 
negative or zero. For the purpose of conducting the 
analysis, only cases with positive values were 
retained and all others were discarded. Out of a 
sample of 30,741 there were exactly 98 cases with 
non-positive values. The reduced sample size of 
positive sample values was 30,643. 
 The geographic regions were chosen as the ten 
provinces of Canada: (1) Newfoundland, (2) Prince 
Edward Island, (3) Nova Scotia, (4) New 
Brunswick, (5) Quebec, (6) Ontario, (7) Manitoba, 
(8) Saskatchewan, (9) Alberta, and (10) British 
Columbia. The education classes were defined as 
(1) No schooling or elementary, (2) 9 or 10 years of 
elementary and secondary, (3) 11–13 years of 
elementary and secondary, (4) Some post-
secondary, (5) Post-secondary certificate or 
diploma, and (6) University degree. The 
parameters αi, i = 1, . . ., 6; βj,  j = 1, . . ., 10,  
represent the effects due to the six education levels 
and the 10 provinces, respectively. 
 Table A in the Appendix shows the cross-
classification of the sample into six education 
classes and 10 provinces with corresponding cell 
counts and cell means. Note that sample sizes are 
of order not exceeding 1000. For the purpose of 
illustrating the two models in finite population 
sampling theory, a 10% random sample was 
selected from each of the 10×6 = 60 
subpopulations. 
 
Inverse Gaussian errors 

Under the inverse Gaussian model, we rescale 
the data by multiplying by a factor of 10-5 in the 
Bayesian computations to maintain numerical 

stability. The prior cell mean 1−
bµ  is estimated as 

∑ =
−− N

t
t

bN
1

)(11 µ . The mean-variance structure of 

the model is assessed for each cell (i,  j) via the 
goodness-of-fit statistic 



SINET:  Ethiop. J. Sci., 28(1), 2005                                                                                                                                               3   7 

 )1(~ˆ 2

)(ˆ

))(ˆ(2
2

χχ
ij

ijij

y

yy

V

E

ij

−
= , ........................... (19) 

 
where 

  ∑
=

−=
N

t

t
ijNE

1

)(1)(ˆ θijy ,   

  ∑
=

−−=
N

t

t
ij

t
ij NnV

1
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 We used Matlab in the development of the 
algorithm and implementation of the Gibbs 
sampler. Six hundred Gibbs sequences with 
different starting values were sampled until the 
1,000-th iteration in multiple runs of the Gibbs 
sampler due to the nonlinearity of the parameters 
and due to the constraint that αi + βj > 0. These 
restrictions gave a poor parametrization of the 
Gibbs sampler which in turn caused poor 
convergence of a single run (see Hills and Smith, 
1992). The hyperparameters in (7) are set at their 

null values to give vague priors. Figures 1 and 2 
display the kernel density estimates of the sampled 
posteriors for αi, i = 1(1)6, and for βj,  j = 1(1)10, 
under the inverse Gaussian model. Figure 1 clearly 
shows the decreasing rank order of the αi which on 
the reciprocal scale gives an increasing rank order 
of (1/αi) (education effect). This agrees with the 
typical situation that as education increases, 
income also increases. As for the βj, j = 1(1)10, 
parameters from Figure 2, we can group them by 
their location parameters to detect provinces with 
similar income levels. 
 The posterior means and standard deviations, 
obtained using (8), along with the goodness-of-fit 
statistic for each cell based on (19) and (20) are 
presented in Table 1 for the inverse Gaussian 
model. Comparisons of these cell means with the 
observed cell means of Table A of the Appendix 
reveal that the amount of shrinkage of observed 
means toward the prior mean is considerable for 
the smaller sized subpopulations. 

 
Table 1. Small area estimation under the inverse Gaussian model: estimated posterior cell means, standard 

deviations and goodness-of-fit statistics.  
 

 
PROVINCE 

 
 

EDUCATION 
Posterior ell means: )(ˆ

ijyE  

 1 2 3 4 5 6 7 8 9 10 
1 22039 22224 22823 23251 24253 26183 23376 23643 25320 24333 
2 26226 26488 27343 27959 29420 32308 28138 28526 31003 29536 
3 29163 29490 30549 31321 33165 36881 31548 32034 35191 33312 
4 30092 30440 31572 32395 34372 38380 32636 33160 36555 34530 
5 31855 32246 33521 34450 36691 41293 34724 35314 39190 36873 
6 41271 41931 44099 45720 49751 58621 46208 47263 54458 50098 
   

Posterior standard deviations: )(ˆ
ijyV  

   

 1 2 3 4 5 6 7 8 9 10 
           

1 397 471 349 392 290 367 369 333 369 363 
2 591 677 546 598 488 575 533 489 529 544 
3 694 839 610 665 512 607 651 540 556 569 
4 861 988 849 866 793 934 804 812 891 830 
5 884 1051 898 938 783 897 906 806 906 861 
6 1510 1755 1411 1474 1243 1761 1497 1464 1483 1560 
    

Goodness-of-fit statistics: 
2ˆijχ  

   

 1 2 3 4 5 6 7 8 9 10 
 

1 3.215 1.126 3.355 .067 2.270 6.001 .032 0.481 .037 .182
2 .426 .615 .368 .117 .083 2.881 .072 .251 0.264 1.075
3 .037 .085 .458 .477 2.458 1.147 .069 .427 .011 2.345
4 .292 .422 2.219 .068 .072 .229 .331 .736 1.331 .697
5 2.242 1.028 .037 0.438 006 1.600 0.002 .680 .004 .001
6 1.609 1.545 .468 .116 .004 1.718 0.034 2.826 0.039 0.879
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Lognormal errors 

For the lognormal errors, the model was 
reparameterized to the logarithmic scale for 
efficient derivation of the Gibbs sampler. All 
posterior densities are displayed on the 
logarithmic scale. The prior cell mean exp(µb+σ2) is 

estimated as ∑ =
− +

N

t
tt

bN
1

)(2)(1 ).exp( σµ   

A goodness-of-fit statistic to assess the mean-
variance structure of the model for each cell (i, j) is 
given by (19), where now 

)exp()(ˆ
2

1

)(1 )(2 t
N

t

t
ijNE σθ += ∑

=

−
i jy , 

).1))(exp(2exp()(ˆ )(2)(2

1

)(11 −+= ∑
=

−− tt
N

t

t
ijij NnV σσθijy ...(21) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Kernel density estimates of the sampled posteriors for  α i,  i=1(1)6, under the inverse Gaussian model. 
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Fig. 2. Kernel density estimates of the sampled posteriors for β j,  j=1(1)10 , under the inverse Gaussian model. 
 
 
 In the implementation of the Gibbs sampler, the 
first 2,000 draws of a single run are discarded and 
the algorithm is run to obtain 1,000 draws from the 
posterior. The results for this case are presented in 
Table 2, where the estimated posterior cell means, 
posterior standard deviations and the goodness-of-
fit statistics are given. The hyperparameters in (14) 
are set at their null values to give vague priors. 
Displays of the kernel density estimates of the 
sampled posteriors for αi, i = 1(1)6, and for βj, j = 
1(1)10, under the lognormal model are not 

included in the paper in the interest of saving 
space. The results are similar to those of the inverse 
Gaussian case but with less pronounced effects 
(Chaubey et al., 2003).  
 Table 2 displays estimated posterior means and 
standard deviations obtained using (8) along with 
the goodness-of-fit statistic for each cell based on 
(19 and 21) for the lognormal model. The results 
are parallel to those given in Table 1 for the inverse 
Gaussian model. 

  



                                                                                                                                                                      Fassil Nebebe et al.  10

 
Table 2. Small area estimation under the lognormal model: estimated posterior cell means, standard 

deviations and goodness-of-fit statistics. 
 

 
PROVINCE 

 
 

EDUCATION 
Posterior ell means: )(ˆ

ijyE  

 1 2 3 4 5 6 7 8 9 10 
1 20832 21307 21880 22602 23545 27755 22284 22264 26292 24922
2 25779 26367 27076 27970 29137 34347 27576 27551 32535 30840
3 30325 31017 31850 32902 34275 40404 32439 32409 38273 36279
4 30701 31401 32245 33310 34700 40904 32841 32811 38747 36729
5 34331 35114 36057 37248 38802 45740 36723 36690 43328 41071
6 46832 47900 49187 50811 52931 62396 50096 50050 59105 56026
   

Posterior standard deviations: )(ˆ
ijyV  

   

 1 2 3 4 5 6 7 8 9 10 
           

1 403 533 374 385 316 345 376 338 357 375
2 525 681 494 509 434 480 498 454 488 505
3 578 770 535 551 447 485 538 481 505 534
4 722 891 700 722 658 747 707 664 739 740
5 738 939 704 725 636 713 710 656 716 729
6 1007 1280 960 988 867 972 967 894 976 994
    

Goodness-of-fit statistics: 
2ˆijχ  

   

 1 2 3 4 5 6 7 8 9 10 
           

1 .001 .013 .193 1.219 7.479 .006 2.353 .111 1.168 .048
2 .061 .471 .128 .137 0.001 0.236 .056 2.337 1.381 6.480
3 .359 1.422 .337 .573 12.728 59.869 1.588 .104 23.048 4.357
4 .126 .144 1.947 .601 .027 2.581 .354 .706 11.753 7.699
5 .067 .054 1.369 6.288 2.779 44.307 1.554 .006 17.059 10.149
6 .023 .001 2.251 9.376 6.226 44.458 2.622 1.695 10.669 32.869

 
 
 
 

DISCUSSION 
 
The results from Table 1 under the inverse 
Gaussian model, and from Table 2 for the 
lognormal model, show that the  ‘education effect'  
reflects the typical situation that as education 
increases, income also increases. Comparisons of 
the posterior cell means from these tables with the 
actual cell means from Table A in the Appendix 
show varying amounts of shrinkage of observed 
means towards the prior means and that the 
shrinkage is more for the smaller sized 
subpopulations (higher education levels and 
smaller provinces). The shrinkages are more 
pronounced for the inverse Gaussian model than 
for the lognormal model. Further more, the inverse 
Gaussian model appears to give a better fit to the 
data than the lognormal model. From Table 1 
under the inverse Gaussian case, that at a 5% 

significance level for which 84.3)1(2
05. =χ , the fit 

is assessed to be poor only for a single cell (i = 1, j = 
6), whereas in Table 2 under the lognormal case, 
the fit is assessed to be poor for almost 25% of the 
cells. These results are confirmed from Figure 3, 
where the Chi-squares goodness-of-fit statistics 
under the two models are compared. 
 Figure 4 displays the posterior predicted finite 
population cell means under the two models in 
relation to the observed cell means from Table A, 
based on a 10% sample. We observe again that the 
inverse Gaussian model provides estimates closer 
to the true values than the lognormal model for 
this application. Furthermore, we note that 
education classes with relatively small sample 
sizes appear to give less reliable statistics in both 
cases. 
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Fig. 3. Chi-squares goodness-of-fit statistics from Tables 1 and 2 for inverse Gaussian and lognormal models for Provinces 

by Levels of Education (Ed Level i, i =1(1)6): Inverse Gaussian (o); Lognormal (+);  2
05.0,1χ̂  = 3.84 (–). 
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 Fig. 4. Posterior predicted finite population means for Provinces by Levels of Education (Ed Level i, i =1(1)6): Observed 

Means ijy (o);  Estimated Means ijµ̂   under Inverse Gaussian (+) and Lognormal (*) models. 
 
 
 
 

CONCLUSION 
 
We have used Gibbs sampling to obtain estimates 
of small area parameters under two kinds of non-
normal sampling errors. One can see that it is 
possible to obtain estimates of small area 
parameters using the Bayesian approach by 
borrowing strength from an ensemble when the 

sampling models are non -normal. It is evident 
from the illustrations provided based on the 
household survey data that the inverse Gaussian 
model appears to be more suitable for modeling 
positively skewed data compared to the lognormal 
model. Thus, the possible use of inverse Gaussian 
model should be explored side by side with the 
lognormal model. 
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Appendix : Table A. Actual cell counts and cell means. 
 

PROVINCE  a  
EDUCATION b Cell counts 

ijn  

 1 2 3 4 5 6 7 8 9 10 
1 626 285 597 729 1371 1177 636 841 698 456 
2 360 212 483 396 760 883 430 507 695 540 
3 277 197 616 567 1212 1793 672 877 1338 1081 
4 84 72 148 150 202 516 164 263 382 341 
5 215 68 203 239 471 704 233 349 693 389 
6 110 83 230 219 508 800 222 297 570 406 
   Cell means ijy  

   

 1 2 3 4 5 6 7 8 9 10 
           

1 20856 21173 21519 23423 25028 27709 23505 22033 25470 24716 
2 25488 25315 26713 27553 29152 33982 27831 29067 31540 28394 
3 29453 28959 31284 32132 31792 35977 31261 32673 35094 34741 
4 31646 32493 35041 31767 34981 39181 33973 31548 34472 33066 
5 34786 35841 33941 33067 36822 39275 34619 36792 39284 36908 
6 46394 47854 46209 44583 49599 55300 46825 52324 54987 47462 

 
aPROVINCE: 1=Newfoundland; 2=Prince Edward Island; 3=Nova Scotia; 4=New Brunswick; 5=Quebec; 6=Ontario;  

      7=Manitoba; 8=Saskatchewan; 9=Alberta; 10=British Columbia. 
bEDUCATION: 1=No schooling or elementary; 2=9 or 10 years of elementary and secondary; 3=11–13 years of elementary 

      and secondary; 4=some post secondary; 5=post secondary certificate or diploma; 6=university degree. 
 


