

DOI: <u>http://dx.doi.org/10.4314/star.v4i2.16</u> ISSN: 2226-7522(Print) and 2305-3372 (Online) Science, Technology and Arts Research Journal Sci. Technol. Arts Res. J., April-June 2015, 4(2): 127-138 Journal Homepage: <u>http://www.starjournal.org/</u>

Original Research

Studies on the Preliminary Ecology of Invasive Phytophagous Indian Scarabaeidae of North Western Himalaya

Mandeep Pathania^{1,2*}, Chandel R.S¹, Verma K.S¹ and Mehta P.K¹

¹Department of Entomology, College of Agriculture, Chaudhary Sarvan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India

²Punjab Agricultural University, Regional Research Station, Abohar, Punjab, India

Abstract	Article Information
The present study deals with comprehensive list and preliminary ecology of invasive scarabaeid species of North western Himalayan region with background information on diversity, distribution pattern, abundance and nativity. A total of 85 invasive species of phytophagous scarabaeids under 25 genera, belonging to 5 subfamilies of family Scarabaeidae have been recorded. Among these, 55 species were recorded on light trap and 78 species occurred on host trees. Melolonthinae being most dominated subfamily representing 13 genera and 51 species, Rutelinae represents 24 species belonged to 4 genera. <i>B. coriacea, H. longipennis, A. phthisica, M. insanabilis</i> and <i>Schizonycha</i> sp. 1 were recorded as the leading species of north western Indian hills. <i>B. coriacea</i> and <i>H. longipennis</i> were the most dominant and very common species in terms of number and damage potential. The scarabaeid species composition (richness and diversity) was significantly higher in the mid hill areas of Himachal Pradesh as	Article History: Received : 30-04-2015 Revised : 23-06-2015 Accepted : 27-06-2015 Keywords: Scarabaeidae scarabaeid beetles whitegrubs Himachal Pradesh Himalayas Richness Abundance Diversity
compared to higher hills. Palampur area situated in the mid hills with long rainy seasons had the maximum Shannon Weiner index (3.03) with 39 species recorded from the region. The richness pattern also shows a positive trend with an increase in altitudinal	*Corresponding Author: Mandeep Pathania
gradient. During the study 24 species were recorded for the first time from Himachal Pradesh. Furthermore, a better planning is needed for early detection to control and reporting of infestations of spread of these invasive species.	E-mail: mandeeppathania999@gmail.com mpathania@pau.edu

INTRODUCTION

Scarabaeid beetles are the most common leaf chafers, whereas the larvae are among the most destructive soil pests. They have been a favourite group for insect collectors for their versatile habitats, marvelous coloration and sculpture as well as for their economic importance as they are polyphagous in nature and cause losses to many crops worldwide. The major ecological impact of scarabaeid beetles results from their damage potential to green plants, their contribution to breakdown of plant and animal debris and their predatory activities. Scarabaeidae is second largest family within the order Coleoptera and is cosmopolitan in distribution. The larvae of family Scarabaeidae are recognized as pests of planted crops in many parts of the world and are almost universally known as 'whitegrubs'. Among the soil macro fauna, the whitegrubs form a major component both in number of species and diversity of habits in Indian sub-continent (Veeresh, 1988). The world fauna of whitegrubs exceed 30,000 species (Mittal, 2000), and the maximum number occurs in the tropical areas of the world, particularly in the African and oriental regions. Indian sub-region is well known for richness of scarabaeid fauna, but it is yet to be fully explored (Mishra and Singh, 1999). Ali (2001) reported that the family Scarabaeidae represents about 2500 species from the Indian sub-region.

Scarabaeids are polyphagous pest both in the grub and adult stage inflicting heavy damage on various fruit/ forest trees, their nurseries, vegetables, lawns and field crops (Chandel and Kashyap, 1997). Studies on the diversity and abundance of coleopteran insects in the Himalayan regions have been carried out by Mani (1956), Singh (1963), Mishra (2001), Sushil et al. (2004, 2006), Kumar et al. (2007), and Chandra et al. (2012). Similarly, others workers have also studied the species composition and abundance in different parts of the world (Lenski 1982; Kruger and McGavin 1997; Gutierez and Menendez 1997; Weslein and Schroeder 1999; Martikainen et al., 2000; Stork et al., 2001, Jukes et al., 2002, Chandel et al., 2003 and Magagula 2009, Kishimota et al., 2011). In India whitegrubs are pest of national importance and their economic importance is primarily due to feeding activity of third instar grubs (Mehta et al., 2010). Grubs of scarabaeidae prefer to feed on fibrous roots for normal growth and the crops with tap root system suffer more as compared to adventitious root system (Yadava and Vijayvergia, 2000).

Studies on the species diversity of coleopteran insects have been carried out by Forschler and Gardner (1991), Hutcheson and Jones (1999), Romero-Alcaraz and Avila (2000), Rodriguez Jimenez et al. (2002), Zahoor et al., (2003), and Aland et al. (2010) in the different parts of the world. In addition, several studies conducted to evaluate the relationship between insect populations in the different parts of the world by various workers (Alexander and Hillard 1969; Wolda, 1987; Pardo et al., 2005; Joshi and Arya, 2007, Gracia et al., 2008, Joshi et al., 2008 and Dhoj et al., 2009). Similarly, many other workers have also studied the fluctuation in population density of coleopterans (Kaushal and Vats, 1987; Joshi, 1996; Joshi and Sharma, 1997 and Arya and Joshi, 2011). In entire north western Himalaya, the grubs of B. coriacea, H. longipennis and Melolontha spp. cause wide spread damage to potato, vegetables, groundnut, sugarcane, maize, pearlmillet, sorghum, cowpea, pigeonpea, green grass, cluster bean, soybean rajmash, ginger, pea, rice, strawberry etc., whereas the adults of these species are the defoliators of pome and stone fruits. In forest nurseries, up to 30 per cent infestation due to grubs of B. coriacea have been reported in mid hills of Himachal Pradesh (Chandel et al., 2009). More than 100 species of phytophagous whitegrubs have been reported to occur in north western Himalaya, however, large number of

Sci. Technol. Arts Res. J., April-June 2015, 4(2): 127-138

species is still unidentified and there exists lot of variation in their behaviour and biology and no systematic attempt has been made so far to identify phytophagous scarabaeid beetles in the Himachal Pradesh, India. This poses problem in the development of effective integrated pest management schedules against these pests. Keeping this in view, we explored north western Himalayan region to assess ecological aspects such as abundance, diversity, habitat preference of phytophagous Scarabaeidae.

MATERIALS AND METHODS

Study Environment: The study was conducted in the north western Himalaya covering eleven districts in 4 agroclimatic zones (Zone I: sub-tropical sub-mountane and low hills; Zone II: sub-temperate sub humid mid hills; Zone III: wet-temperate high hills and Zone IV: dry-temperate high hills and cold deserts) of Himachal Pradesh, India. The survey was conducted during the two successive years 2011 and 2012 within the altitude range from 393-2479 m amsl and the longitude and latitude varied from N 31^{0} ,27.301', E 76^{0} ,15.541' to N 31^{0} , 12.409', E 77^{0} , 25.462', respectively (Table 1 and Figure 1).

Table 1: Description of locations surve	ved for studying scarabaeid	I diversity during 2011 and 2012

District	Area surveyed	Zone	Latitude	Longitude	Altitude (masl)	Soil type	Host crops surveyed
Kangra	Palampur	II	N 32 ⁰ ,05.666'	E 76 ⁰ ,32.781'	1222	Silty clay loam	<i>Toon</i> , pear, peach, apple, walnut, poplar, <i>khirak</i>
.	Panchrukhi	П	N 32 ⁰ ,06.350'	E 76 ⁰ ,57.980'	1078	Silty clay loam	citrus, poplar, <i>toon, khirak</i> ,
Kullu	Seobagh	II	N 32 ⁰ ,02.958'	E 76 ⁰ , 37.533'	1327	Clay loam	Apple, pear, pear, plum, <i>ficus</i> , pomegranate, wildrose, appricot
Kullu	Dallash	ш	N 31 ⁰ ,23.036'	E 77 ⁰ , 26.024'	2020	Clay loam	Apple, pear, peach, plum, apricot, pomegranate, <i>toon</i> , robinia, poplar
Shimla	Shillaroo	ш	N 31 ⁰ ,12.409'	E 77 ⁰ , 25.462'	2479	Sandy loam/ clay loam	Apple, walnut, pear, apricot, berberris, <i>indigofera</i> , grasses
Kinnaur	Reckong Peo	IV	N 31 ⁰ ,31.348'	E 77 ⁰ , 47.856'	2117	Gravelly loamy sand	Apple, pear, peach, apricot, wildrose, almond, grass
Solan	Nauni	ш	N 30 ⁰ ,51.818′	E 77 ⁰ , 09.105'	1255	Sandy loam/ clay loam	Apple, pear, pear, plum, walnut, apricot <i>, toon,</i> robinia, <i>kachnaar</i>
	Kwagdhar	Ш	N 30 ⁰ ,45.409'	E 77 ⁰ , 09.235'	1774	Sandy loam/ clay loam	Apple, pear, peach, walnut, wildrose
Sirmaur	Kheradhar	ш	N 30 ⁰ ,50.035'	E 77, 20.634'	2032	Sandy loam/ clay loam	Apple, apricot, rubus, berberris, <i>indigofera</i> , grasses
Chamba	Bharmour	IV	N 32 ⁰ ,26.505'	E 76 ⁰ , 31.949'	2169	Sandy loam	Apple, pear, plum, apricot, walnut
Bilaspur	Berthin	I	N 31 ⁰ ,12.310'	E 76 ⁰ ,23.458'	461	Deep loamy- skeletal soils	Guawa, <i>Grewia</i>
	Kheri	Т	N 31 ⁰ ,53.299'	E 76 ⁰ , 35.759'	456	Sandy loam	Grewia, taali
Hamirpur	Jahu (Bhararei)	I	N 31 ⁰ ,38.630'	E 76 ⁰ ,41.062'	838	Loamy skeletal soils	Grewia
	Jogindernagar	П	N 31 ⁰ ,59.248'	E 76 ⁰ ,49.362'	1465	Clay loam	Paddy, grasses
Mandi	Karsog	П	N 31 ⁰ ,26.599'	E 77 ⁰ ,04.599'	1860	Clay loam	Apple, pear
Una	Rampur	I	N 31 ⁰ ,27.301'	E076 ⁰ ,15.541'	393	Sandy loam/ clay loam	Guava

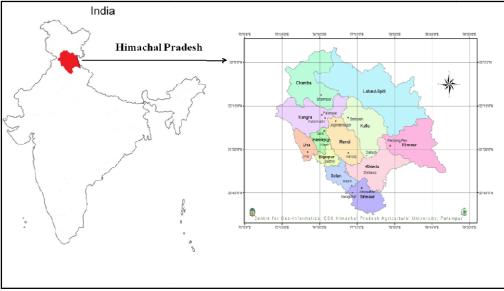


Figure 1: Study area (Himachal Pradesh in north western Himalayas, India)

Light Trap Catches: The monitoring of scarabaeids' adult population was carried out over two consecutive years in 2011 and 2012. The light traps utilized for the study was fitted with a bulb of 120 watt with UV radiation with visible spectrum having bluish light. The light traps were used for about seven months from March - September and beetles were monitored regularly. These light traps were installed at 9 different locations and there was one trap at each location. The light trap was placed in the centre of the field at a height of about 10 feet and operated from 7:00 PM to 11:00 PM to attract the adults of scarabaeid beetles. The trapped beetles were collected daily and segregated species- wise and cumulative count of each species at each location was taken.

Host Tree Catches: Adult surveys to determine the occurrence and relative abundance of scarabaeid adults to different host plants were conducted in the nine important fruit growing areas of Himachal Pradesh, India March-September during starting from the two consecutive years in 2011 and 2012 and also roving survey to other areas was conducted (Table 1). Generally the scarabaeid beetles are nocturnal in behaviour and come out of soil at dusk. Chandel et al. (1995) reported that beetles come out of soil around 7:50 PM at light intensity of 3 lux and settle on host trees for mating and feeding. Therefore, it was ensured to reach at the collection site by 7:30 PM on the day of collection and trees 3-5m high were commonly selected. Five plants were marked at random in each orchard/farm in all the surveyed localities and three branches of almost equal length were selected. The beetles were collected between 18:30-20:30 hours using a powerful flash light. This collection was done during the activity period of beetles from March-September for different species by fortnightly observations. A simple umbrella method was used for collecting beetles from trees as suggested by Chandel et al. (1997). All the collected beetles were brought into the laboratory for identification and preservation. For the purpose of this survey, any tree on which scarabaeid adults could be collected feeding and/or mating was considered to be a host tree. Trees in and around a selected location were sampled in a semi-systematic manner ensuring that all the tree species at the locality

were examined. Also the roving surveys were conducted to some new areas of the northwestern Himalaya except the regular visited sites.

Identification

The scarabaeid adults collected during the surveys from different locations were identified to the species level based on the keys and characters listed by Veeresh (1977), Mittal and Pajni (1977), Khan and Ghai (1982) and Ahrens (2005). The identity of adult beetles was confirmed by Dr. V.V. Ramamurthy, Indian Agriculture Research Institute, New Delhi, India. Some of the beetles were compared with samples available in the Museum of Forest Research Institute, Dehradun, India.

Data Analysis

Abundance status was assessed on an arbitrary frequency scale as suggested by Davidar *et al.* (1996) as very common (VC), collected more than in eight spots from the nine areas; common (C), collected from four to seven spots from the nine areas; uncommon (UC), collected from two or three spots from the nine areas and rare (Ra), collected from one spot from the nine areas.

Species Diversity

Survey of diversity is essential for understanding the distribution of the forms. The Shannon index (H') explains the evenness of the abundance of species, but more sensitive to the most abundant species (Whittaker, 1960; Whittaker, 1965). The species diversity index was based on all the information recorded during study period at each site by using the following indices (Krebs, 2001). The species diversity in the present study was calculated by using "Shannon Wiener Index (1963)", which is defined as.

$$\mathbf{H}^{s} = -\sum_{i=1}^{s} (\mathbf{p}_{i}) (\log_{2}\mathbf{p}_{i})$$

Where,

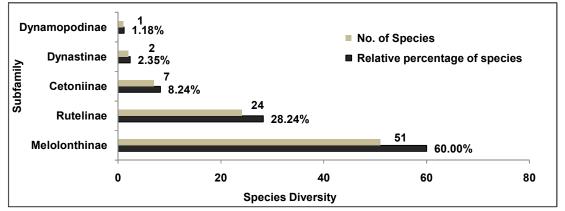
H'= Shannon diversity index

p_i= Proportion of total sample belonging to the ith species.

S= Number of species.

 Σ = Sum from species 1 to species S

RESULTS


Species Composition

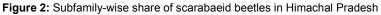

The detailed list of the collected scarabaeid beetles (Coleoptera: Scarabaeidae) from different farming areas in north western Himalaya in India is summarized in table 2. There exists lot of biodiversity among phytophagous scarabs in Himachal Pradesh and this diversity of insect composition results from diversity in the topography, climate and soil in north western Himalaya. A total 46,536 individuals of phytophagous scarabaeid beetles i.e. 13,569 on light traps and 32967 on host trees belonging to 85 species within 5 subfamilies were recorded during the study period (Table 2). Out of the total recorded species 67 were identified completely and 18 were up to genus level. On the basis of number of identified species, Melolonthinae was the most dominant subfamily with 51 species (Figure 2), followed by Rutelinae (24), Cetoniinae (7), Dynastinae (2) and Dynamopodinae (1). Per cent contribution of relative number of species and individuals of different families of beetles collected from study area are presented in (Figure 2). Subfamily Melolonthinae was the most dominant subfamily of Scarabaeidae, which constituted 60.0% of the total collected phytophagous scarabaeids. Rutelinae was the second most dominant subfamily with 28.24% of the total collected phytophagous scarabaeids followed by Cetoniinae (8.24%) and Dynastinae (2.35%). Subfamily Dynamopodinae was reported for the first time from Himachal Pradesh represented by one species (Table 2). The presence absence data of the recorded scarabaeid species are given in table 2. There were 25 genera of phytophagous scarabaeids have been documented out of which subfamily Melolonthinae being most predominant with 13 genera's followed by Rutelinae representing 4 genera (Figure 3). Among different documented genera, Brahmina was highly diverse genus with 15 species (Figure 4) and closely followed by Anomala (14 species) and Holotrichia (9 species). However, thirteen genera in the present study were represented by a single species each (Figure 4). Brahmina coriacea Hope was the most dominant species which constituted 48.4% of total individuals, followed by H. longipennis (9.70%), A. phthisica (5.19%), M. insanabilis (4.95%), Schizonycha sp. 1 (3.88%).

Table 2: Checklist and ecological data of	f nhytonhaqous scarabaeids	s of different sites of Himachal	Pradesh
	i priviopriagous scarabacius		raucon

No	Species	Palampur	Kullu	Dallash	Shillaroo	Kheradhar	Kwagdhar	Bharmour	Reckong Peo	Solan	Collected on	Abundance	Months of Dominance
	Family: Scarabaeidae												
	Subfamily: Melolonthinae												
1.	Apogonia carinata Barlow	+									Light trap	Rare	June - Sep
2.	Apogonia ferruginea Fabricius		+								Light and host	Rare	June - Sep
3.	Apogonia proxima Waterhouse									+	Host trees	Rare	June - Sep
4.	Apogonia villosella Blanchard	+	+								Light and host	Uncommon	June - Sep
5.	Autoserica phthisica Brenske	+	+								Light and host	Uncommon	June - Sep
6.	Aserica sp.										Host trees	Rare	May - Aug
7.	Brahmina bilobus Fabricius		+					+	+		Light and host	Uncommon	May - Aug
8.	Brahmina coriacea (Hope)	+	+	+	+	+	+	+	+	+	Light and host	Very common	June - Aug
9.	Brahmina comata Blanchard			Coll	ecte	d fror	n Ka	rsog			Host trees	Rare	June - Aug
10.	Brahmina crinicollis Burmeister		+				+	+	+		Light and host	Common	June - Aug
11.	Brahmina flavosericea Brenske	+		+	+		+	+	+	+	Light and host	Common	June - Aug
12.	Brahmina kuluensis Moser							+			Light and host	Rare	April - June
13.	Brahmina poonensis Frey		+								Host trees	Rare	June - Sep
14.	Brahmina sp. 1		+				+				Light and host	Uncommon	June - Aug
15.	Brahmina sp. 2				+			+			Light and host	Uncommon	June - Aug
16.	Brahmina sp. 3							+			Light and host	Rare	June - Aug
17.	<i>Brahmina</i> sp. 4							+	+		Light and host	Rare	July - Sep
18.	Brahmina sp. 5								+		Host trees	Rare	July - Sep
19.	Brahmina sp. 6								+		Host trees	Rare	July - Sep
20.	<i>Brahmina</i> sp. 7								+		Host trees	Rare	July - Sep
21.	Brahmina sp. 8								+		Host trees	Rare	July - Sep
22.	Holotrichia insularis Brenske									+	Host trees	Rare	July - Aug
23.	<i>Holotrichia longipennis</i> Blanchard	+	+	+	+	+	+	+	+	+	Light and host	Very common	June - Sep
24.	Holotrichia nigricollis Brenske	+									Light and host	Rare	June - Sep
25.	<i>Holotrichia problematica</i> Brenske				+						Light and host	Rare	June - Sep
26.	Holotrichia serrata Fabricius									+	Host trees	Rare	July - Aug
27.	Holotrichia setticollis Moser									+	Host trees	Rare	July - Aug
28.	Holotrichia sikkimensis Brenske	+	+	+		+				+	Light and host	Common	July - Aug
29.	<i>Holotrichia</i> sp. 1									+	Light and host	Rare	July - Aug
30.	Holotrichia sp. 2			Co	llect	ed fro	om U	na			Host trees	Rare	July - Aug
31.	Lepidiota stigma (Fabricius)		+								Light and host	Rare	July - Aug
32.	Maladera bimaculata Hope	+									Host trees	Rare	July - Aug

33. 34.	Maladera carinata Khan & Ghai						+ +		+		Host trees	Rare	July - Au
	Maladera insanabilis (Brenske)	+	+	+			+		+		Light and host	Common	July - Au
35.	Maladera irridescens Blanchard	+	+								Light and host	Uncommon	July - Au
36.	<i>Maladera perpendicularis</i> Khan & Ghai	+									Host trees	Rare	July - Au
37.	Maladera piluda	+					+				Light and host	Uncommon	July - Au
38.	<i>Maladera simlana</i> Brenske	+		+						+	Host trees	Uncommon	July - Au
39.	Maladera sp.							+			Host trees	Rare	July - Au
40.	<i>Melolontha cuprescens</i> Blanchard		+	+		+		+	+		Light and host	Common	July - Au
41.	Melolontha furcicauda Ancy	+	+	+		+		+			Light and host	Common	July - Au
42.	Melolontha indica Hope	+		+							Light and host	Uncommon	July - Au
43.	Melolontha virescens Brenske	+									Light and host	Rare	July - Au
44.	Microtrichia cotesi Brenske	+									Light and host	Rare	July - Au
45.	Schizonycha sp. 1		+	+	+		+	+	+		Light and host	Common	July - Se
46.	Schizonycha sp. 2				+	+					Host trees	Uncommon	July - Se
47.	Sophrops sp. 1	+					+				Light and host	Uncommon	July - Au
48.	Sophrops sp. 2			Co	ollect	ed fr	oml	Ina			Host trees	Rare	July - Au
49.	Sophrops sp. 3				ollect						Host trees	Rare	July - Au
	Trichoserica umbrinella			0.	511000	oun							
50.	(Brenske)	+						+			Light and host	Uncommon	July - Se
51.	Meloserica sp.	+									Host trees	Rare	July - Au
Subf	amily: Rutelinae												
52.	Adoretus bimarginatus Ohaus			+		+				+	Light and host	Uncommon	May - Au
53.	Adoretus lasiopygus Burmeister	+		+		+		+	+	+	Light and host	Common	May - Au
54.	Adoretus pallens Blanchard	+					+			+	Light and host	Uncommon	May - Au
55.	Anomala chlorocarpa Arrow	+									Host trees	Rare	May - Au
56.	Anomala comma Arrow	+									Light and host	Rare	May - Au
57.	Anomala elata Olivier		+								Light and host	Rare	May - Au
58.	Anomala dimidiata Hope	+	+	+							Light and host	Uncommon	May - Au
	Aomala lineatopennis										-		-
59.	Blanchard	+		+			+			+	Light and host	Common	May - Au
60.	Anomala pellucida Arrow	+								+	Light trap	Rare	May - Au
61.	Anomala polita Blanchard		+								Light and host	Rare	May - Au
62.	Anomala ruficapilla Burmeister	+					+				Light and host	Uncommon	May - Au
63.	Anomala rufiventris Redtenbacher	+	+	+		+		+			Light and host	Common	May - Au
64.	Anomala rugosa Arrow	+				+	+				Light and host	Uncommon	May - Au
65.	Anomala singularis Arrow	+	+							+	Light and host	Uncommon	May - Au
66.	Anomala stoliezkoe Hope								+		Light and host	Rare	May - Au
67.	Anomala tristis Arrow	+					+				Host trees	Uncommon	May - Au
68.	Anomala varicolor (Gyllenhal)	+		+			+			+	Light and host	Common	May - Au
69.	<i>Mimela fulgidivittata</i> Blanchard	+		+							Light and host	Uncommon	July - Se
70.	Mimela passerinii Hope				+	+		+	+		Light and host	Common	July - Se
71.	Mimela pectoralis Blanchard					+					Light and host	Rare	July - Se
72.	Popillia cyanea Hope	+			+					+	Light and host	Uncommon	July - Se
72. 73.	Popillia pilosa Arrow	•			+						Light and host	Rare	July - Se
74.	Popillia nasuate Newman				+						Light and host	Rare	July - Se
74. 75.	Popillia virescens				•	+					Light trap	Rare	July - Se
	amily: Cetoniinae					•					Light trap	T CILC	July - Se
76.	Chiloloba acuta (Weidemann)	+									Host trees	Rare	July - Se
70. 77.	Clinteria spilota (Hope)						+			т	Light and host		July - Se July - Se
77. 78.	Heterorrhina nigritarsis Hope				+		т			т	Light and host	Uncommon Rare	July - Se July - Se
70. 79.	Protaetia coensa (Westwood)	т			г	+					Light trap	Uncommon	July - Se July - Se
79. 80.	Protaetia coerisa (westwood) Protaetia impavida Janson	+				7			т	т	Light and host	Uncommon	July - Se July - Se
80. 81.	-					т		L	++	т	•		,
81. 82.	Protaetia neglecta Hope Oxycetonia albopunctata					Ŧ	+	Ŧ	т		Light and host Light and host	Uncommon Rare	July - Se July - Se
	(Fabricius)												, 50
Subf	amily: Dynastinae												
83.	Heteronychus lioderes (Fabricius)	+	+								Host trees	Uncommon	July - Se
~ 4	Phyllognathus dionysius												
84.	Redtenbacher		+							+	Light and host	Uncommon	July - Se
Subf	amily: Dynamopodinae												
85.	Dynamopus athleta									+	Host trees	Rare	July - Se

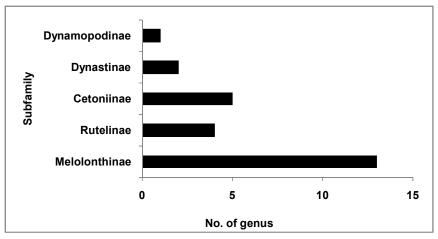
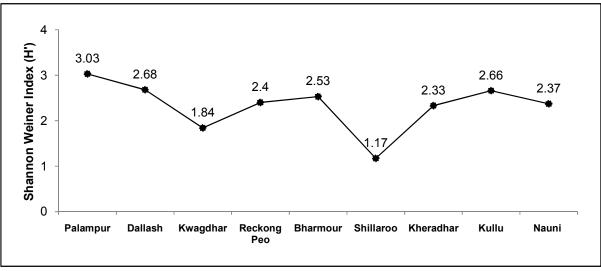


Figure 3: Genus wise distribution of scarabaeid species to different subfamilies




Figure 4: Genus wise distribution of scarabaeid species collected from different sites of Himachal Pradesh

Species Diversity

Overall diversity of phytophagous scarabaeidae of the study area was recorded to be 21.01 indicating richness and evenness of abundance of species in the north western Himalaya. Among different sites, Palampur had a highest value of Shannon index (H') during 2011-12 (H'=3.03) and at Dallash, Kullu, Bharmour, Reckong Peo, Kheradhar, Nauni and Kwagdhar the value of Shannon index (H') was moderately higher ranging from 2.68-1.84, respectively (Figure 5). During both the years of study, Palampur area with higher altitude and longest rainy

Sci. Technol. Arts Res. J., April-June 2015, 4(2): 127-138

season had the highest Shannon-Wiener diversity Index. The highest value of Shannon-Wiener diversity Index at Palampur represents higher diversity and evenness of abundance of species. The Shannon index was lowest at Shillaroo (H'=1.17) suggesting complete unevenness of abundance of species at Shillaroo during the study period (Figure 5) which was due to the reason that this region was dominated by only *B. coriacea* which constituted 97.33% of total population of the collected species.

1=Palampur, 2=Dallash, 3=Kwagdhar, 4=Kinnaur, 5=Bharmour, 6=Shillaroo, 7=Kheradhar, 8=Kullu and 9=Nauni **Figure 5:** Diversity index for phytophagous scarabaeid assemblage along 9 locations

Abundance

In the present study, Palampur supported maximum diversity (39 species) representing 17 genera belonged to 4 subfamilies, followed by Kullu with 23 species (Figure 6). However, number of species documented in rest of the locations ranged from 12-22 (Figure 6). In all the studied locations, Melolonthinae was the most dominant subfamily and its per cent share of total population count across locations ranged from 77.80-43.75% in Bharmour to Kheradhar, respectively. Rutelinae ranked second in

diversity and the rutelinids constituted 41.18-8.33% among different surveyed areas (Table 3). There were no dynastids documented from Kullu, Dallash, Kheradhar, Kwagdhar, Bharmour and Reckong Peo. This is because of the reason that the members of Dynastinae are mostly found in low hill areas (Table 2 and 3). During the study period *Dynamopus athleta* member of subfamily Dynamopodinae was recorded for the first time in Himachal Pradesh from Nauni area (Table 3).

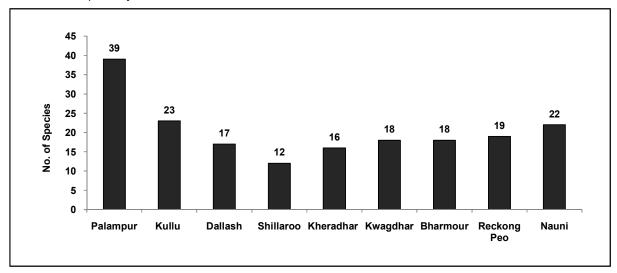


Figure 6: Phytophagous Scarabaeid species diversity at different study sites of Himachal Pradesh

Sci. Technol. Arts Res. J., April-June 2015, 4(2): 127-138

S. No.	Leastions Surveyed	Number of species										
	Locations Surveyed	Melolonthinae	Rutelinae	Cetoniinae	Dynastinae	Dynamopodinae						
1.	Palampur	21 (53.85%)	14 (35.90)	3 (7.69)	1 (2.56)	0.00						
2.	Kullu	16 (69.57)	5 (21.74)	2 (8.70)	0.00	0.00						
3.	Dallash	10 (58.82)	7 (41.18)	0.00	0.00	0.00						
4.	Shillaroo	7 (58.33)	1 (8.33)	3 (25.0)	1 (8.33)	0.00						
5.	Kheradhar	7 (43.75)	6 (37.50)	3 (18.75)	0.00	0.00						
6.	Kwagdhar	10 (55.55)	6 (33.33)	2 (11.11)	0.00	0.00						
7.	Bharmour	14 (77.80)	3 (16.67)	1 (5.60)	0.00	0.00						
8.	Reckong Peo	14 (73.68)	3 (15.79)	2 (10.53)	0.00	0.00						
9.	Nauni	10 (45.45)	8 (36.36)	2 (9.09)	1 (4.54)	1 (4.54)						

 Table 3: Diversity of phytophagous scarabaeidae across different locations of Himachal Pradesh during 2011-12

Values in parentheses are the per cent share of different subfamilies

Altitudinal Gradient and Scarabaeid Species Assemblage

The empirical species richness exhibit a mid elevation peak for the alpha diversity. The altitudinal assemblage of scarabaeidae showed richness and diversity in north western Himalayan region with different peaks corresponding to elevation gradient (Figure 7). The elevation zone 1000-1500 m was found richest in scarabaeid species assemblage representing 31.76% (Figure 7) of total species. Twenty four species of scarabaeids showed broad activity zone with in the elevation rage of 1000-2500 m, however, 4.71% species were confined only to low lying areas *i.e.* below 1000m (Figure 7). In the present study, 23.53% species were recorded within the range of 2000 m and above. The results of the survey revealed that the scarab fauna of north western Himalaya is highly diverse and speciation also changed along with altitudinal gradient.

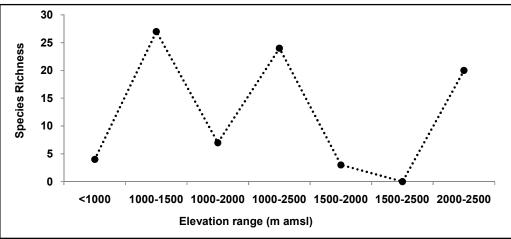


Figure 7: Species richness of scarabaeidae along 7 elevation ranges

Response of Scarabaeids to Light

A total of 85 species were recorded on light trap and host trees in Himachal Pradesh. Out of these, 5.88% species (Figure 8) were recorded only on light trap and 30.59% species occurred on host trees (Figure 8). Moreover, 63.53% species of phytophagous scarabaeids were collected on light and host trees both (Figure 8). Out of 85 species recorded from Himachal Pradesh, 26 species (A. proxima, B. poonensis, B. comata, Brahmina sp. 5, Brahmina sp. 6, Brahmina sp. 7, Brahmina sp. 8, H. insularis, H. serrata, H. setticolis, Holotrichia sp., M. bimaculata, M. carinata, M. perpendicularis, M. simlana, Maladera sp., Meloserica sp., A. tristis, H. nigritarsis, P. virescens, D. athleta, Sophrops sp. 2, Sophrops sp. 3, Aserica sp., A. chlorocarpa and C. acuta) were found only on host trees and not recorded on light trap. On the other hand, five species viz. H. nigricollis, A. carinata, A. pellucida, P. virescens and P. coensa were recorded only on light trap and not recorded on host trees. B. coriacea, A. lasiopygus, A. lineatopennis, M. insanabilis and H. longipennis were the most predominant species on light trap. On host trees, *B. coriacea*, *H. longipennis*, *A. phthisica*, *M. insanabilis* and *Schizonycha* sp. 1 were the leading species. *B. coriacea* and *H. longipennis* were found to be less phototactic in nature, whereas *M. insanabilis*, *A. lineatopennis*, and *A. lasiopygus* are more heliotactic in nature. Maximum emergence of beetles was recorded in the month of June during both the years, indicating that June month is most critical period requiring definite intervention to control whitegrubs in endemic areas.

First Reports

Twenty four species viz. D. athleta, A. carinata, A. proxima, A. villosella, Sophrops sp. 1, Sophrops sp. 2, sophrops sp. 3, M. carinata, M. bimaculata, M. perpendicularis, M. piluda, M. simlana, T. umbrinella, A. comma, A. singularis, A. tristis, A. elata, A. pallens, A. lasiopygus, A. bimarginatus, A. pellucida, H. nigricollis, P. virescens and O. albopunctata were recorded for the first time from Himachal Pradesh.

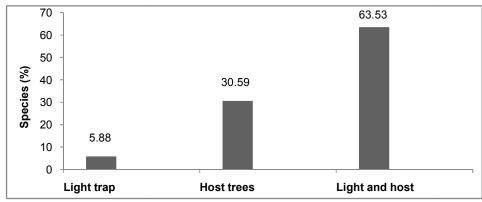
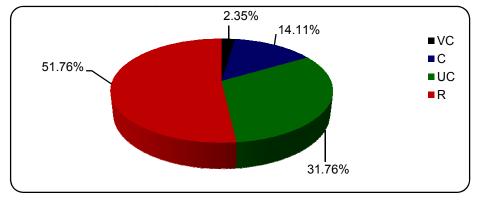



Figure 8: Occurrence of scarabaeid adults on light trap and host trees in north western Himalaya

VC: very common; C: common; UC: Uncommon and R: Rare **Figure 9:** Frequency of scarabaeid occurrence in n western Himalaya, India

DISCUSSION

This paper provides comprehensive information on the diversity, distribution pattern, abundance and nativity of phytophagous scarabaeidae in Himachal Pradesh. In the north western Himalaya, Himachal Pradesh lies between 30' 22' 40" North to 33' 12' 40" North latitude and its longitudinal extent is 75' 45' 55" East to 79' 04' 20" East and supports rich fauna of phytophagous scarabaeidae with a total of 85 species. Out of these, 80% (68) species were identified up to species level and remaining 20% (17) species were identified up to genus level. Amongst collected pleurosticti, subfamily Melolonthinae was the most dominant represented with 51 species, followed by Rutelinae (24), Cetoniinae (7), Dynastinae (2) and Dynamopodinae (1). According to Ali (2001), the family Scarabaeidae represents nearly 2500 species from the Indian sub- region and the subfamily Melolonthinae comprised 78.32% of the beetles, followed by Rutelinae (16.48%), Cetoniinae (9.8%) and Dynastinae (1.84%). Yadava and Sharma (1995) also reported that most of the destructive whitegrub species in India belong to subfamily Melolonthinae. Mehta et al. (2010) reviewed the status of whitegrubs in north western Himalaya which states that 116 species of scarabaeid beetles are known to occur in north western Himalaya and the subfamily Melolonthinae represents 82% of the total scarabaeid fauna. Chandra (2005) conducted extensive survey in Himachal Pradesh using light trap and collected 88 species of phytophagous scarabs with 34 species belonging to subfamily Melolonthinae. The present records are in accordance with the previous reports thereby substantiating our results.

Maximum numbers of species were observed from March to September and maximum abundance of species was recorded during the period from end of May to August with few exceptions. There was no activity of these beetles from November to February. Earlier surveys in mid hill areas of north western Himalaya revealed the activity of scarabaeid beetles from late February - early September in olive orchards. On pome and stone fruits, these beetles were recorded from first week of April - first week of September (Chandel et al., 1997). In the present study, the main beetle activity was recorded from April to July, however, peak beetle emergence was recorded in the month of June. Irrespective of species, 52.93% of the total number of scarabaeid beetles was collected in June. The beetles from subfamily Rutelinae outnumbered Melolonthinae in the month of May comprising 69.35% of total beetle catch. The total catch for melolonthids was about 7.22 times higher as compared to rutelinids in June. Earlier workers in HP have also reported that rutelinid beetles predominate in the month of May and melolonthids are numerically higher in June (Anon. 2007) Maximum abundance of scarabaeids in particular periods of the year (May - June) is related to seasonal variations and atmospheric temperature. Gharty Chetry et al. (2008) also observed that in Nepal the scarabaeid beetle species diversity and abundance varied highly with location and with seasons. Chandel et al. (1997) found positive correlation of temperature and rainfall with beetle catch in Himachal Pradesh. In multiple regression analysis, they reported that temperature and rainfall jointly contributes to about 30% of beetle catch. It means other factors are of much greater significance which regulates beetle emergence. It seems that a critical moisture level is

required to soften the otherwise hard earthen cells and for escape of beetles from these cells. Thus heavy rainfall in early summer may result in a condition equivalent to flooding, thereby forcing the adult beetles to come out of soil and the mild rainfall may not be of much significance. In north western Himalaya, the pre monsoon showers begin in May-June with high summer temperature triggers the emergence of scarabaeid beetles from soil. During monsoon period from July to September, there is increased growth of various type of vegetation, especially the broad leaves plants. Hence, during this period the abundance of scarabaeids is maximum and they damage many fruit and forest trees by defoliating their leaves.

In this study it was revealed that maximum diversity and abundance was present in the north western Himalaya. The north western hills had a diverse scarab beetle fauna, because they are rich in vegetation for feeding, mating and nesting (Dhoj et al., 2009; Bhalla and Pawar 1977; Kumar et al., 1996; Kumar et al., 2005). Veeresh (1988) also reported that adult food is the chief environmental factor affecting the beeltes' behavior and is one of the important considerations in the distribution of both beetles and grubs. Mehta et al., (2010) reported that vast Shimla hills in Pir Panjal ranges of north western Himalaya are highly favourable for multiplication of whitegrubs because plenty of fruit orchards exist on the slopes of Shimla hills. The scarabaeid beetles exhibit distinct preference for feeding on foliage of pome and stone fruits (Chandel et al., 1997). Palampur situated in mid hill zone of Himachal Pradesh harbor maximum diversity of phytophagous scarabaeidae with 39 species belonged to 4 subfamilies. Kullu and Nauni areas supported more than 20 species each. Similar observations were made in previous studies on diversity and habitat preference of scarabaeid beetles in various parts of India (Kumar et al., 2007; Mehta et al., 2010; Chandra and Gupta 2012; and Chandra et al., 2012). However, higher altitude areas including Shillaroo, Reckong Peo, Kheradhar and Kwagdhar supported lesser species diversity in the present study (Figure 7). This variation in the beetle species might be due to variation of hosts, vegetations, crops grown and soil types. In addition, the variation of other competing species or natural enemies might also have caused variation in the species diversity of the scarabaeid beetles. It was revealed from the results that with increase in altitude above 1500 m amsl diversity and abundance decreasing but the speciation of high altitude areas is entirely different from lower hill areas which adds up in richness of Himalayan region. Several workers have observed that in Himalayan region the scarabaeids diversity and abundance varied highly with locations (Chandel et al., 1994). The impact of altitude is clearly evident as the maximum number of species and individuals were recorded from mid hill areas (below 1500 m). The observation of Chandel et al. (2008) also vindicates this fact that the number of species and abundance of insects found at the mid hills is much higher as compared to the higher elevation sites. Thus, it was clear from the present study that the higher hills are rich in diversity and the speciation of higher hills is entirely different from those of low and mid hill zone areas. Different ecosystems of the world harbor different species composition with varying numbers. Lenski (1982) has reported 43 species of Coleoptera: Carabidae from the Blue Ridge Mountain forest of North Carolina. Kruger and McGavin (1997) reported 113 species of Coleoptera from Mkomazi Game

Sci. Technol. Arts Res. J., April-June 2015, 4(2): 127-138

Reserve, North-East Tanzania. Scarabaeids show distinct patterns of habitat utilization. The nature of vegetation is an important factor which determines the dependence and survival of a species on a particular habitat. The impact of altitude is clearly evident as the maximum number of species and individuals were recorded from mid hill zone, (1000-1500 m) supporting the observation of Joshi and Arya (2008) that the number of species and abundance of insects found at the lower elevation is higher as compared to the higher elevation site. During the two year survey, 24 species were recorded from the study area for the first time.

When relative abundance of these species was studied it was found that of these 85 species, 2 were found to be very common, 12 common, 27 uncommon and 44 were rare (Figure 9). The results indicated that the phytophagous scarabaeids are sporadic in nature and speciation changes with altitude, topography, soil and geology. Several species of these phytophagous scarabaeidae have unpredicted potential of damage to agricultural and horticultural crops grown in the region. B. coriacea, H. longipennis, A. phthisica, M. insanabilis and Schizonycha sp. 1 were the leading species in terms of abundance in the study area. The diversity indices indicate maximum species richness with more evenness in scarab communities at Palampur, Dallash, Nauni and Kwagdhar. Alexander and Hillard (1969) have reported that the maximum species diversity of insects occurs at lower altitudes (1530 m) in comparison of high altitudes (4265 m) because of the longer seasons at lower altitudes. In Shillaroo area poor species diversity and complete unevenness of abundance in scarab community recorded with only B. coriacea constituting about 97% of total scarabaeid population. Dhoj et al. (2009) also reported that a community dominated by few species is considered to be less diverse than one with a high species richness and evenness.

CONCLUSIONS

Richness in abundance of species and individuals of phytophagous scarabaeidae in the northwestern Indian Himalaya than what has been reported by some earlier workers in different ecosystems of the world indicate the availability of sufficient food plants, adaptability of scarabaeids to the ecological factors prevailing in the study area reveals that these areas are main centers of insect diversity. Furthermore for effective management of insect-pests of a particular area, knowledge about the ecology, morphology, phenology, reproductive biology and physiology of that insect species is essential. Monitoring of invasion can be done through qualitative approach like species inventory (seasonally) and quantitative approach using phytosociological methods and mapping of diversity using ground-based methods (GPS). A better planning is needed for early detection and reporting of infestations/ spread of new pest species by establishing communication links between taxonomists, ecologists and local farmers to monitor and control.

Acknowledgements

The authors would like to thank Department of Science and Technology, Govt. of India and All India Network Project on Whitegrubs and Other Soil Arthropods for providing financial support for this study. Thanks are due to scientists of CSK HPKV, Palampur & State Agriculture and Horticulture Department, Himachal Pradesh for their cooperation. We are grateful to Dr. V. V. Ramamurthy

(Principal Scientist), Division of Entomology, IARI, New Delhi for his help in identification of whitegrub species.

Conflict of Interest

Conflict of Interest none declared.

REFERENCES

- Ahrens, D. (2005). Illustrated key of phytophagous scarabs of the Chitwan region (Nepal): Including figures of adults of white grubs recorded in the IPM project entitled "Identification of whitegrub species of Nepal". Project report NE36 (43636) Version 1.2.
- Aland, S.R., Mamlayya, A.B., Gaikwad, S.M. and Bhawane, G. P. (2010). Diversity of longicorn beetles (Coleoptera: Cerambycidae) of Amba Reserved Forest, Western Ghats, Maharashtra. *Entomon* 35(1): 61-63.
- Alexander, G. and Hillard, J.R. (1969). Altitudinal and seasonal distribution of Orthoptera in the Rocky Mountains of Northern Colorado. *Ecological Monographs* 39(4): 385-430.
- Ali, A.T.M. (2001). Biosystematics of phytophagous scarabaeidae- An Indian Overview. In: Indian Phytophagous Scarabs and their Management. Present Status and Future Strategies (G. Sharma, Y.S. Mathur and R.B.L. Gupta, eds) Agrobios (India), Jodhpur, p 5-37.
- Annonymous (2007). Annual Report, 2007-08. All India Network project on White Grubs and Other Soil Arthropods, Palampur, India.
- Arya, M.K and JOSHI, P.C (2011). Species composition, abundance and density of Hymenopteran insects in Nanda Devi Biosphere Reserve, Western Himalayas, India. Journal of Environment & Bio-Sciences 25:175-179.
- Beaudoin, L., Morin, J.P., Nguyen, C. and Decazy, B. (1995). Study of underground Adoretus versutus Har. (Coleoptera: Scarabaeidae) populations in Vanuatus: Detection of Cohabitation with other white grubs. Journal of Applied Entomology 119(6): 391-397.
- Bhalla, O.P., Pawar, A.D. (1977). A survey study of insect and non insect pests of economic importance in Himachal Pradesh, Tikku, Kitab Mehal, Bombay India. P. 80.
- Bhawane, G.P., Mamlayya, A.B., Wagh, S.R. and Chougule, A.K. (2012). Diversity of white grub beetles and their host range from northern western ghats, Kolhapur District (MS). India. *The Bioscan* 7(4): 589-596.
- Chandel, R.S. and Kashyap, N.P. (1997). About white grubs & their management. Farmer & Parliament 37(10):29-30.
- Chandel, R.S., Chandla, V.K and Sharma, A. (2003). Population dynamics of potato white grubs in Shimla hills. *Journal of Indian Potato Association* 30(1-2): 151-152.
- Chandel, R.S, Gupta, P.R. and Chander, R. (1994). Diversity of scarabaeid beetles in mid hills of Himachal Pradesh. *Himachal Journal of Agricultural Research* 20(1&2):98-101.
- Chandel, R.S., Mehta, P.K. and Chandla, V.K. (2008). Management of white grubs infesting potato in Himachal Pradesh. In: IInd Congress on Insect Science, February 21-22, PAU, Ludhiana. pp 190-191.
- Chandel, R.S., Mehta, P.K. and Sharma, S.K. (2009). White Grubs: Polyphagous Pests of National Importance. In: Forest Insect Pest and Disease Management in Northwest Himalayas (R Singh, M. Pal and R.C. Sharma, eds) Himalayan Forest Research Institute (ICFRI), Shimla, Himachal Pradesh, India. pp. 45-58.
- Chandel, R.S., Gupta, P.R. and Chander, R. (1995). Behaviour and biology of the defoliating beetle, *Brahmina*

Sci. Technol. Arts Res. J., April-June 2015, 4(2): 127-138

coriacea (Hope) (Coleoptera: Scarabaeidae) in Himachal Pradesh. Journal of Soil Biology and Ecology 15(1):82-89.

- Chandra, K. and Gupta, D. (2012). An inventory of scarab beetles (Coleoptera: Scarabaeidae) of Achanakmar -Amarkantak Biosphere Reserve, Chhattisgarh, India. *International Journal of Science and Nature* 3(4):886-891.
- Chandra, K., Gupta, D., Uniyal, V.P., Bharadwaj, M. and Sanyal, A.K. (2012). Studies on Scarabaeid Beetles (Coleoptera) of Govind Wildlife Sanctuary, Garhwal, Uttarakhand, India. *Biological Forum- An International Journal* 4(1): 48-54.
- Chandra, K. (2005). Insecta: Coleoptera: Scarabaeidae. Zoological Survey of India Fauna, of Western Himalayas (Part 2). pp 141-155.
- Cho, S.S., Kim, S.H. and Yang, J.S. (1989). Studies on the seasonal occurrence of the white grubs and the chafers, and on the species of chafers in the Peanut fields in Yeo Ju area. Research Reports of Rural Development Administration: Crop Protection 31(3): 19-26.
- Dashad, S.S., Chauhan, R. and Choudhary, O.P (2008). Emergence of different species of white grub beetles in relation to abiotic factors based on light trap catches. *Research on Crops* 9(3): 688-691.
- Davidar, P., Yogan, T.K., Ganesh, T. and Joshi, N. (1996). An assessment of common and rare bird species of the Andaman Islands. *Forktail* 12: 135-142.
- Dhoj, Y.G.C., Keller, S., Nagel, P. and Kafle, L. (2009). Abundance and diversity of scarabaeid beetles (Coleoptera: Scarabaeidae) in different farming areas of Nepal. *Formosan Entomology* 29: 103-112.
- Forschler, B.T. and Gardener, W.A. (1991). Flight activity and relative abundance of phytophagous scarabaeidae attracted to blacklight traps in Georgia. *Journal of Agricultural Entomology* 8(3): 179-187.
- Freitas, F.A.D.E., Zanuncio, T.V., Lacerda, M.C. and Zanuncio, J.C. (2002). Fauna of coleoptera collected with light traps in a *Eucalyptus grandis* plantation in Santa Barbara, Minas, Brazil. *Revista Arvore* 26(4):505-511.
- Gracia, A., Trujillo, N.A., Moron, C.D., Lopez, M.A. and Olguin, J.F. (2008). Use of fluorescent light traps for the management of white grubs (Coleoptera: Melolonthinae) in maize (*Zea mays L.*). Agrociencia-Montecillo 42:217-23.
- Gutierez, D. and Menendez, R, (1997). Patterns in the distribution abundance and body size of carabid beetles (Coleoptera: Caraboidea) in relation to dispersal ability. *Journal of Biogeography* 24: 903-914.
- Hill, M.O. (1973). Diversity and evenness: a unifying notation and its consequences. *Ecology* 54:427-473.
- Hutecheson, J. and Jones, D. (1999). Spatial variability of insect communities in a homogenous system: measuring biodiversity using Malaise trapped beetles in a *Pinus radiata* plantation in New Zealand. *Forest Ecology and Management* 118: 93-105.
- Joshi, P.C. (1996). Fluctuation in population density and biomass of Coleoptera in temperate grassland. *Uttar Pradesh Journal of Zoology* 16(3): 165-173.
- Joshi, P.C. and Arya, M.(2007). Butterfly communities along altitudinal gradients in a protected forest in the Western Himalayas, India. *The Natural History Journal of Chulalongkorn University* 7(1): 1-9.
- Joshi, P.C. and Sharma, R. (1997). Fluctuation in the population density and biomass of Coleoptera in a crop land field. *Himachal Journal of Environment and Zoology* 11:109-112.

- Joshi, P.C., Kumar, K. and Arya, M. (2008). Assessment of insect diversity along an altitudinal gradient in Pindari forest of Western Himalaya, India. *Journal of Asia Pacific Entomology* 11: 5-11.
- Jukes, M.R., Ferris, R. and Peace, A.J. (2002). The influence of stand structure and composition on diversity of canopy Coleoptera in coniferous plantations in Britain. *Forest Ecology and Management* 163: 27-41.
- Kaushal, B.R. and Vats, L.K. (1987). Population density, biomass and biomass production of Coleopterans in a tropical grassland. *Entomon* 12(2): 161-165.
- Khan, K.M. and Ghai, S. (1982). Taxonomic status of the genus *Holotrichia* Hope. (Melolonthini: Melolonthinae: Sacarbaeidae) with description of five new species from India along with redescription of two poorly described species and a key to species. *Indian Journal of Entomology* 23: 28-45.
- Kishimoto, Y.K., Itioka, T., Nakagawa, M., Momose, K. and Nakashizuka, T. (2011). Phytophagous scarabaeid diversity in Swidden cultivation landscapes in Sarawak, Malaysia. *Raffeles Bulletin of Zoology* 59(2): 285-293.
- Krebs, C.J. (2001). Species diversity measures of heterogeneity. In: Fogarty E., Dutton H., Earl W. (eds) Ecology: The Experimental Analysis of Distribution and Abundances Wesley Longman, Inc. San Fransisco, pp 617-618.
- Kruger, O. and Mcgavin, G.C. (1997). The insect fauna of Acacia Species in Mkomazi Game Reserve, North-East Tanzania. *Ecological Enotmology* 22: 440-444.
- Kumar, J., Sharma, S.D., Lal, R. and Deor, B.S. (2005). White grubs damaging maize and paddy crops in Kullu and Mandi districts of Himachal Pradesh. *Pest Management and Ecological Zoology* 13(1): 15-20.
- Kumar, J., Kashyap, N.P. and Chandel, R.S. (1996). Diversity and density of defoliating beetles in Kullu valley of Himachal Pradesh. Pest Management and Economic Zoology 4: 25-29.
- Kumar, J., Sharma, S.D., Lal, R. (2007). Scarabaied beetles of Kullu valley, Himachal Pradesh. *Entomon* 32(2): 103-110.
- Lenski, R.E. (1982). The impact of forest cutting on the diversity of ground beetle (Coleoptera: Carabidae), in the Southern Appalachians. *Ecological Enotmology* 7:385-90.
- Magagula, C.N. (2009). Dung beetle (Coleoptera: Scarabaeidae and Aphodiidae) diversity and resource utilization within a protected area in Swaziland. *Entomon* 34(4): 233-146.
- Martikainean, P., Siitonen, J., Kalia, L., Punttila, P. and Rauth, J. (2000). Species richness of Coleoptera in mature managed and old growth boreal forest in Southern Finland. *Biological Conservation* 94: 199-209.
- Mehta, P.K., Chandel, R.S. and Mathur, Y.S. (2008). Phytophagous whitegrubs of Himachal Pradesh. Technical Bulletin: Depatment of Entomology, CSK HPKV, Palampur, P. 13.
- Mehta, P.K., Chandel, R.S. and Mathur, Y.S. (2010). Status of whitegrubs in north western Himalaya. *Journal of Insect Science* 23(1): 1-14
- Mishra, P.N. (2001). Scarab fauna of Himalayan region and their management. In: Indian Phytophagous Scarabs and their Management: Present Status and Future Strategies (G Sharma, Y S Mathur and R B L Gupta, eds) Agrobios (India), Jodhpur, pp 74-85.
- Mishra, P.N. and Singh, M.P (1999). Determination of predominant species of whitegrubs in Garhwal regions of

Sci. Technol. Arts Res. J., April-June 2015, 4(2): 127-138

Uttar Pradesh hills (India). *Journal of Entomological Research* 23(1): 65-69.

- Mittal, I.C. (2000). Survey of Scarabaeid (Coleoptera) fauna of Himanchal Pradesh (India). *Journal of Entomological Research* 24: 133-141.
- Mittal, I.C. and Pajni, H.R. (1977). New species belonging to Melolonthini (Coleoptera: Scarabaeidae: Melolonthinae) from India. *Entomologist* 2(1): 85-88.
- Pardo, L.L.C., Motoya, L.J., Bellotti, A.C. and Schoonhoven A. Van (2005). Structure and composition of the white grub complex (Coleoptera: Scarabaeidae) in agroecological systems of North Cauca, Columbia. *Florida Entomologist* 88(4): 355-363.
- Rodriguez, J., Sinse Luis, M.L. and Grillo Ravelo, V.H. (2002). Timing of employment of light traps for the capture of scarabaeids (Coleoptera: Scarabaeidae) in pineapple plantations in Ciego de Avila. *Centro-Agricola* 29(1): 71-74.
- Romero-Alcaraz, E. and Avila, J.M. (2000). Landscape heterogeneity in relation to variations in epigaeic beetle diversity of a Mediterranean ecosystem. Implications for conservations. *Biodiversity and Conservation* 9:985-1005
- Stork, N.E., Hammond, P.M., Russell, B.L. and Hawen, W.L. (2001). The spatial distribution of beetles within the canopies of Oak trees in Richmond Park, U.K. *Ecological Entomology* 26: 302-311.
- Sushil, S.N., Mohan, M., Selvakumar, G. and Bhatt, J.C. (2006). Relative abundance and host preference of white grubs (Coleoptera: Scarabaeidae) in Kumaon hills of Indian Himalayas. *Indian Journal of Agriculture Sciences* 76(5): 338-339.
- Sushil, S.N., Pant, S.K. and Bhatt, J.C. (2004). Light trap catches of white grub and its relation with climatic factors in Kumaon region of North Western Himalaya. *Annals of Plant Protection Sciences* 12(2): 254-256.
- Thakare, V.G. and Zade, V.S. (2012). Diversity of beetles (Insecta: Coleoptera) from the vicinity of Semadoh -Makhala road, Sipnarange, Melghat Tiger Reserve, (MS) India. *Bioscience Discovery* 3(1): 112-115.
- Veeresh, G.K. (1988). Whitegrubs. In: Applied Soil Biology and Ecology (G K Veeresh and D Rajgopal, eds) (2nd Edition) IBH, New Delhi, pp 243-282.
- Veeresh, G.K. (1977). Studies on root grubs in Karnataka with special reference to bionomics and control of *Holotrichia serrata* F. (Coleoptera: Melolonthinae). UAS Monograph Series No. 2, Bangalore. P. 87.
- Weslein, J. and Schroder, L.M. (1999). Population, levels of bark beetles and associated insects in managed and unmanaged spruce stands. *Forest Ecology and Management* 115: 267-275.
- Whittaker, R.H. (1960). Vegetation of Soskiyou mountains, Oregon and California. *Ecological Monographs* 30:79-80.
- Whittaker, R.H. (1965): Dominance and diversity in plant communities. Science 147: 250-260.
- Wolda H. (1987). Altitude, habitat and tropical insect diversity. Biological Journal of Linean Society 30: 313-323.
- Yadav, C.P.S. and Vijayvergia, J.N. (2000). Integrated management of whitegrubs in different cropping systems, pp 105-122. In: Integrated Pest Management System in Agriculture (R K Upadhayay, K G Mukherji and O P Dubey, eds) Aditya Books Pvt. Ltd, New Delhi, India.
- Zahoor, M.K., Suhail, A., Zulfaqar, Z., Iqbal, J. and Anwar, M. (2003). Biodiversity of scarab beetles (Scarabaeidae: Coleoptera) in agroforestry area of Faislabad. *Pakistan Entomologist* 25(2): 119-126.