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Abstract 

Liriopogons (Liriope and Opiopogon) species are used as the main medicinal ingredient in traditional 
medicine in several Asian countries. The roots or tubers of Liriope plants (Liriopes radix; LR) have 
traditionally been used for hundreds of years to treat cough, insomnia, constipation, asthma, and 
inflammation. The present review discusses extensively the available knowledge on its phytochemical 
and pharmacological activities in vitro and in vivo. The review does not include other parts of these 
plants. Literature evidence has been analyzed to identify responsible phytochemicals and their wide 
range of pharmacological activities. Further studies are needed for the isolation of purified compounds 
in order to understand their mechanisms of action and for clinical application. 
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INTRODUCTION 
 
The uses of bioactive natural products derived in 
traditional oriental medicine are attractive 
sources for developing novel therapeutics 
because of their safety, affordability, long-term 
use, and ability to target multiple pathways. The 
present review aims to summarize and discuss 
the available information about the advances in 
the phytochemistry, toxicology, and 
pharmacological properties of Liriopes Radix 
(LR) in order to facilitate future research and 
support the utilization of it as a novel drug. LR is 
the swelling part of the roots from Liriope 
platyphylla Wang et Tang, Ophiopogon japonicus 
Ker-Gawl., O. stolonifer Levl. et Vant., Mondo 
japonicum (L. f.) Farwell, and Liriope spicata 
(Thunb.) Lour. Botanically, liriopogons may be 
either Liriope or Ophiopogon belonging to the 
Liliaceae family, and are abundantly distributed 
in subtropical and temperate regions globally. LR 

has been used as a therapeutic drug for the 
treatment of cough, expectoration, nutrition, 
sthenia, diuresis, suppression of thirst, blood 
glucose regulation, and xerostomia. It has been 
demonstrated to have multiple pharmacological 
activities for the treatment of cough, 
inflammation, airway inflammation, obesity, and 
diabetes [1]. 
 
PHYTOCHEMISTRY 
 
Quality evaluation of traditional medicinal 
products is very important for guaranteeing 
safety, efficacy, and stability. Almost all 
traditional medicines contain multiple known or 
unknown constituents that vary greatly in 
content, chemical, and physical properties. Many 
studies have revealed steroidal saponins and 
their glycosides, phenolic compounds, secondary 
metabolites from L. platyphylla and L. spicata, 
whereas steroidal glycosides and 
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homoisoflavones from O. japonicus are 
considered as active constituents in LR. The 
saponins and steroidal glycosides were tabulated 
in Table 1. (-)-liriopein A, and B, (3R)-3-(20,40-
dihydroxybenzyl)-5,7-dihydroxy-6-methyl-
chroman-4-one, (3R)-3-(20,40-dihydroxybenzyl)-
5,7-dihydroxychroman-4-one, (3R)-3-(40-
hydroxybenzyl)-3,5-dihydroxy-7-methoxy-6-
methylchroman-4-one, (3R)-3-(40-
hydroxybenzyl)-5,7-dihydroxy-6-methyl-chroman-
4-one, (3R)-3-(40-hydroxybenzyl)-5,7-
dihydroxylchroman-4-one, 3-(40-
hydroxybenzylidene)-5,7-dihydroxychroman-4-
one,  stigmasteryl-β-D-glucoside, β-sitosteryl-β-
D-glucoside, (+)-platyphyllarins A and B, 
isoliquiritigenin, (S)-N-cis-feruloyltyramine, (S)-N-
cis-p-coumaroyloctopamine, (S)-N-trans-

feruloyltyramine, (S)-N-trans-p-
coumaroyloctopamine, 3-(4-hydroxy-3-
methoxyphenyl)-N-[2-(4-hydroxyphenyl)-2-
methoxyethyl]acrylamide, N-transferuloyl 
tyramine, (-)-syringaresinol, hexadecanoic acid-
2’,3’-dihydroxypropyl ester, indole-3-carboxylic 
acid, 4-hydroxybenzaldehyde, 4-
hydroxybenzoicacid methyl ester, vanillin, and 
ethyltributanoate were isolated [2]. Moreover, 
methylophiopogonanone A and B [3], β-
sitosterol, tran-p-hydroxycinnamic acid, 2-(4′-
hydroxybenzoyl)-5,6-methylenedioxy-
benzofuran, 2-(4′-hydroxybenzyl)-5,6-
methylenedioxy-benzofuran, 5-hydroxymethyl-2-
furaldehyde, allylpyrocatechol, 2,6-dimethoxy-4-
nitrophenol, syringic acid, and vanillic acid [4] 
were also reported from LR. 

 
Table 1: Steroidal glycosides and saponins from Liriopes radix 
 
Steroidal glycosides and saponins Reference 
Daucosterol [4] 

Diosgenin 3-O-[2-O-acetyl--L-rhamnopyranosyl-(12)]--D-xylopyranosyl-
(13)--D-glucopyranoside 

[5] 

Lirioprolioside A (=25(S)-ruscogenin 1-O-[-L-rhamnopyranosyl(12)][-D-
xylopyranosyl(13)]--D-fucopyranoside-3-O--L-rhamnopyranoside) 

[6] 

Lirioprolioside B (=25(S)-ruscogenin 1-O-[3-O-acetyl--L-
rhamnopyranosyl(12)]--D-fucopyranoside) 

[6] 

Lirioprolioside C (= 25(S)-ruscogenin 1-O-[2-O-acetyl--L-
rhamnopyranosyl(l2)]--D-fucopyranoside) 

[6] 

Lirioprolioside D (= ruscogenin 1-O-[2-O-acetyl--L-rhamnopyranosyl(12)]--
D-fucopyranoside) 

[6] 

Neoruscogenin 1-O-2-O-acetyl--L-rhamnopyranosyl-(12)]--D-
fucopyranoside 

[5] 

Neoruscogenin 1-O-3-O-acetyl--L-rhamnopyranosyl-(12)]--D-
fucopyranoside 

[5] 

Neoruscogenin 1-O--L-rhamnopyranosyl-(12)--D-fucopyranoside [5] 
Neoruscogenin [5] 

Ophiofurospiside A (=26-O--D-glucopyranosyl-(22S, 25R)-furospirost-5-ene-
3, 17, 26-triol-3-O-[-l-rhamnopyranosyl-(12)]-[-D-xylopyranosyl-(14)]-
glucopyranoside) 

[5] 

Ophiogenin [5] 

Ophiogenin 3-O--L-rhamnopyanosyl-(12)--D-glucopyranoside [5] 

Ophiopogonin A (= ruscogenin 1-O-[3-O-acetyl--L-rhamnopyranosyl(12)]--
D-fucopyranoside) 

[6] 

Ophiopogonin B [5] 
Ophiopogonin D [5] 

Ophiopogonin D [5] 

Ophiopogonin E (= pennogenin 3-O--D-xylopyranosyl (14)--D-
glucopyranoside) 

[5] 

Pennogenin 3-O--L-hamnopyranosyl-(12)--D-xylopyranosyl-(14)--D-
glucopyranoside 

[5] 

Prazerigenin A [5] 

Prazerigenin A 3-O--L-rhamnopyranosyl-(12)--D-glucopyranoside [5] 

Prazerigenin A 3-O--D-glucopyranoside [5] 
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Prosapogenin I (= 25(S)-ruscogenin 1-O--D-fucopyranoside) [7] 

Prosapogenin II (= 25(S)-ruscogenin 1-O--D-xylopyranosyl (13)--D-
fucopyranoside) 

[7] 

Prosapogenin III (=25(S)-ruscogenin 1-O--D-glucopyranosyl (12)--D-
fucopyranoside) 

[7] 

Ruscogenin [5] 
Ruscogenin 1-O-sulfate [5] 
25(R,S)-ruscogenin [5] 
25(S)-ruscogenin [6] 
25(S)-ruscogenin 3-O-methylether [7] 

25(S)-ruscogenin 3-O--L-rhamnopyranoside [5] 

Ruscogenin 1-O--D-fucopyranoside [5] 

25(R,S)-ruscogenin 1-O--D-fucopyranoside [5] 

25(S)-ruscogenin 1-O--D-fucopyranosido-3-O--L-rhamnopyranoside (= 
glycoside B) 

[5,6,8] 

25(S)-ruscogenin 1-O--D-xylopyranosido-3-O--L-rhamnopyranoside [8] 

25(R)-spirost-5,8(14)-diene-3-ol-3-O--L-rhamnopyranosyl-(12)-[-D-
xylopyranosyl-(14)]--D-glucopyranoside 

[5] 

25(R,S)-ruscogenin 1-O-[-D-glucopyranosyl-(12)] [-D-xylopyranosyl-(13)]-
-D-fucopyranoside 

[5, 8] 

25(S)-ruscogenin 1-O-[2-O-acetyl]--L-rhamnopyranosyl(12)][-D-
xylopyranosyl(13)]--D-fucopyranoside 

[8] 

Ruscogenin 1-O--L-rhamnopyranosyl-(12)-4-O-sulfate--L-
arabinopyranoside 

[5] 

Ruscogenin 1-O--L-rhamnopyranosyl-(12)-4-O-sulfate--L-fucopyranosido-
3-O--D-glucopyranoside 

[5] 

Ruscogenin 1-O--L-rhamnopyranosyl-(12)-4-O-sulfo--L-arabinopyranoside-
3-O--D-glucopyranoside 

[5] 

25(R,S)-ruscogenin 1-O--L-rhamnopyranosyl-(12)--D-fucopyranoside [5] 

25(S)-ruscogenin 1-O--L-rhamnopyranosyl(12)--D-xylopyranoside [5] 

25(S)-ruscogenin 1-O-[-L-rhamnopyranosyl(12)[-D-xylopyranosyl(13)]--
D-fucopyranoside 

[6] 

25(R,S)-ruscogenin 1-O-[3-O-acetyl--L-rhamnopyranosyl-(12)]--D-
fucopyranoside 

[5,8] 

25(S)-ruscogenin 1-O-[3-O-acetyl--L-rhamnopyranosyl-(12)] [-D-
xylopyranosyl-(13)]--D-fucopyranoide 

[5,8] 

25(S)-ruscogenin 1-O-[-L-rhamnopyranosyl-(12)]--D-xylopyranosyl-(13)]-
-D-fucopyranoside 

[5,6] 

25(S)-ruscogenin 1-O-2,3-O-diacetyl--L-rhamnopyranosyl-(12)-[-D-
xylopyranosyl-(13)]--D-fucopyranoside 

[5] 

Spicatoside A (= 25(S)-ruscogenin 1-O--D-glucopyranosyl (12)-[-D-
xylopyranosyl (13)]--D-fucopyranoside) 

[7,9] 

Spicatoside B (= 26-O--D-glucopyranosyl 25(S)-22-O-methyl-furost-5-en-1, 
3, 26-triol 1-O--D-glucopyranosyl (12)-[-D-xylopyranosyl (13)]--D-
fucopyranoside) 

[7] 

Spicatoside D (= 26-O--D-glucopyranosyl-25(S)-furost-5(6)-ene-1-3-22-26-
tetraol-1-O--D-glucopyranosyl(12)-[-D-xylopyranosyl-(13)]--D-
fucopyranoside 

[9] 

Yamogenin 1-O-[-L-rhamnopyanosyl-(12)]-[-D-xylopyranosyl-(13)]--D-
glucopyranoside 

[5,8] 

Yamogenin 3-O-[-L-rhamnopyranosyl(12)][-D-xylopyranosyl(13)]--D-
glucopyranoside 

[8] 
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PHARMACOLOGICAL ACTIVITIES 
 
Toxicity  
 
In ICR mice, the heart and lung tissues showed 
significantly decreased weights in the 25.0 mg/kg 
body weight/day of L. platyphylla treatment. No 
significant increase of alkaline phosphatase 
(ALP), alanine aminotransferase (ALT), aspartate 
amino-transferase (AST), and serum creatinine 
(CA) were reported. However, a significant 
enhancement of the blood urea nitrogen (BUN) 
was detected in the 100 mg/kg dosage. 
Therefore, these results suggest that L. 
platyphylla does not induce any specific toxicity in 
liver and kidney tissues of mice [10]. 
 
Free radical scavenging and antimicrobial 
activities 
 
The electron donating ability of the L. platyphylla 
was reported as 79 . The relative inhibitory 
abilities against lipid peroxidase were also 
reported [11]. O. japonicus had a higher DPPH 
radical scavenging activity [3]. L. platyphylla 
extracts showed no antimicrobial effect against 
Staphylococcus aureus and Eschaerichia coli 
[11]. The tyrosinase inhibitory activity showed 
82.02  in LR treatment [12]. The ethanolic and 
aqueous extracts of L. platyphylla stimulate the 
immune response against Flexibacter maritimus 
in olive flounder, Paralichthys olivaceus [13]. 
 
Anti-inflammatory activity 
 
Macrophages play a central role in various 
inflammatory responses through the release of 
inflammatory mediators, such as nitric oxide 
(NO), generated by activating inducible NO 
synthase (iNOS), cyclooxygenase-2 (Cox-2), and 
proinflammatory cytokines, such as interleukin-1 
(IL-1) and IL-6 [14]. L. platyphylla tuber water 
extract significantly decreased the levels of NO, 
IL-6, IL-10, IL-12p40, interferon-inducible protein-
10, keratinocyte-derived chemokine, monocyte 
chemotactic protein-1, vascular endothelial 
growth factor, granulocyte macrophage-colony 
stimulating factor, platelet derived growth factor, 
prostaglandin E2 (PGE2), intracellular calcium 
(Ca2+), nuclear factor-B (NF-B), and cAMP 
response element-binding protein (CREB) in 
lipopolysaccharide (LPS)-induced RAW264.7 
cells [15].  
 
Treatment with prosapogenin III of spicatoside A 
potently inhibited phosphorylation of MAPKs in 
LPS-stimulated RAW264.7 macrophages. It also 
resulted in the suppression of the nuclear 
translocation of NF-B, NO production through 
suppression of iNOS, Cox-2, IL-1, and IL-6 [14]. 

The L. platyphylla exerted no significant 
cytotoxicity in the microglial BV2 cells. PGE2, NO 
levels, Cox-2, and iNOS were significantly 
decreased in the LPS and LR-treated group [16]. 
Fermented L. platyphylla extract decreased the 
generation of intracellular reactive oxygen 
species (ROS) and NO production dose 
dependently, and increased antioxidant enzyme 
activities, including superoxide dismutase (SOD), 
catalase (CAT), and glutathione peroxidase 
(GPx) in LPS-stimulated RAW 264.7 macrophage 
cells.  
 
The expressions of NF-B, iNOS, Cox-2, and 
pro-inflammatory cytokines were inhibited by the 
LR [17]. The steroidal saponins from the roots of 
O. japonicus and L. spicata showed excellent 
anti-inflammatory activities against neutrophil 
respiratory burst stimulated with phorbol 
myristate acetate (PMA) [5]. 
 
Anti-allergic activity 
 
L. platyphylla showed a dose-dependent 
decrease in histamine release at the 
concentrations of 1 to 1 000 mg/mL [18]. The 
ethyl acetate fraction (1 g/mL) showed the 
greatest inhibition of histamine release induced 
by compound 48/80. The cAMP levels in RPMCs 
treated with LR were significantly greater than in 
cells treated with compound 48/80 alone. LR also 
alleviates immediate (type 1) hypersensitivity 
reactions through the increase of cAMP levels in 
the mast cells [19]. 2-(4′-hydroxybenzyl)-5,6-
methylenedioxy-benzofuran and 2-(4′-
hydroxybenzoyl)-5,6-methylenedioxy-benzofuran 
isolated from LR exhibited significant inhibitory 
activity against neutrophil respiratory burst 
stimulated by PMA with IC50 values of 4.15  0.07 
and 5.96  0.37 M, respectively [4]. 
 
Anti-asthma activities 
 
Inhaled treatment of LR extract can attenuate 
airway hyper responsiveness (AHR) in an 
ovalbumin-induced asthmatic mouse model. 
Moreover, LR decreases inflammatory cytokine 
levels, such as cotaxin, IL-5, IL-13, RANTES, and 
TNF- in the bronchoalveolar lavage (BAL) fluid 
of asthmatic mice [20]. L. platyphylla reduces 
eosinophil and total lung leukocytes numbers by 
reduction of IL-5, IL-13, IL-4, and IgE levels in the 
BALF and serum.  
 
LR decreased eosinophic CCR3 expression and 
CD11b expression in lung cells against 
ovalbumin (OVA)-induced airway inflammation 
and murine asthma model [21]. Aqueous extract 
of LR, ophiopogonin D, and spicatoside A affect 
basal or PMA-induced airway mucin production 
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and secretion from NCI-H292 airway epithelial 
cells [22]. 
 
Effect on atopic dermatitis 
 
A strong luciferase signal detected in the 
abdominal region of IL-4/Luc/CNS-1 Tg mice with 
phthalic anhydride (PA) was significantly reduced 
in treatment with aqueous extract of L. platyphylla 
(AEtLP). Common allergenic responses, 
including increases in ear thickness, lymph node 
weight, IgE concentration, and infiltrated mast 
cells were also decreased in IL-4/Luc/CNS-1 Tg 
[23] and NC/Nga mice [24]. The weight of the 
lymph node and thymus in immune organs were 
gradually decreased, while the weight of the 
spleen was slightly increased [24]. 
 
Effect on Sjogren syndrome 
 
LR polysaccharides treated for 6 weeks after 2 
weeks of acclimatization in male Wister rats 
significantly increased the amount of salivary 
secretion, and the relative weight of the spleen, 
thymus, and submandibular glands revealed that 
LR exert a protective effect against tissue 
damage in rats with Sjogren syndrome [25]. 
 
Laxative effects 
 
AEtLP increased the amounts of stool and urine 
excretion in rats. It also induced an increase in 
villus length, crypt layer, and muscle thickness in 
the constipation model. Furthermore, a dramatic 
reduction of key factors level of the muscarinic 
acetylcholine receptors (mAChRs) signaling 
pathway. AEtLP improves constipation induced 
by loperamide through an increase in crypt layer 
and stimulation of lipid droplet secretions [26]. 
 
Anti-osteoclastogenesis activity 
 
Water extract of LR significantly inhibited the 
receptor activator of NF-B ligand (RANKL)-
induced osteoclast differentiation in bone marrow 
macrophages. Expressions of c-Fos, NFATc1, 
tartrate resistant-acid phosphatase (TRAP), 
cathepsin K, and phosphorylation of p38 induced 
by RANKL was inhibited by LR [27]. The 
ethanolic extract of LR, 
dihydrobenzofuroisocoumarins, and 
homoisoflavonoids showed potential oestrogenic 
and anti-platelet activities [2]. Spicatoside A and 
25(s)-ruscogenin were downregulated the MMP-
13 expression in IL-1-treated SW1353 cells. 
Spicatoside A reduced the glycosaminoglycan 
(GAG) release from IL-1-treated rabbit joint 
cartilage culture [28]. 
 

Anti-diabetic, anti-lipidemic, and insulin 
sensitizer activities 
 
Water extract and crude polysaccharides from 
the LR did not show any appreciable effect on 
fasting blood glucose (FBG) in normal mice, but 
caused a marked decrease of FBG and a 
significant improvement on glucose tolerance and 
insulin resistance in streptozotocin (STZ)-induced 
type 2 diabetic BABL/c mice [29]. The glycogen 
content and glucokinase (GK) activity in the liver 
was significantly increased, yet the glucose-6-
phosphatase (G6Pase) activity was decreased 
[30]. The polysaccharides from L. spicata have 
possesses remarkable hypoglycemic activities in 
type 2 BABL/c diabetic mice [31]. The LR 
polysaccharides also caused a remarkable 
decrease of FBG and significant improvement of 
insulin resistance and serum lipid metabolism in 
diabetic KKAy mice [32]. It lowers total 
cholesterol, triglyceride, and LDL levels, while 
elevated the relatively HDL/TC in serum of 
BABL/c diabetic mice [29]. They significantly 
ameliorated the hepatocyte hypertrophy and 
decreased the lipid accumulation in KKAy mice 
liver [32]. Also effectively inhibited hepatic 
gluconeogenesis and increased hepatic 
glycolysis and hepatic glycogen content and 
increased expression of IR, IRS-1, PI3K, and 
PPAR in KKAy mice [32] and BABL/c mice [30]. 
 
The lipid components in serum, liver, and feces 
were lower in LR extracts (aqueous extract was 
better than MeOH extract) treated male Sprague-
Dawley rats fed with a high cholesterol diet [33]. 
LR polysaccharides treatment to high-fat diets 
fed with STZ-induced diabetic rats reduced 
hyperglycemia, inhibited damages to liver and 
pancreas tissues and glycogen content, GK and 
glycogen synthetase (GS) activities, and 
suppressed the elevation of G6Pase and 
glycogen phosphorylase (GP) activities. In 
addition, it inhibits glycogen synthase kinase-3 
(GSK-3) expression and increases IR, IRS-1, 
PI3K, protein kinase B (Akt), and glucose 
transport protein (GLUT)-4 expressions in the 
liver [34]. AEtLP dramatically decreased the 
abdominal fat mass and slightly decreased the 
glucose concentration [35], although no 
significant differences in body weight, glucose 
tolerance, and glucose concentration [36] in 
Otsuka Long-Evans Tokushima Fatty (OLETF) 
rats. AEtLP to ICR mice displayed a significant 
reduction of the glucose and increased insulin 
concentrations [37]. Significant alterations on 
serum adiponectin and lipid concentration [35,36] 
with GLUT-3, GLUT-1, JNK, and p38 pathway 
[35] and SOD expressions [37] were also 
reported. The insulin level was dramatically 
elevated upon co-treatment with high glucose 
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and AEtLP in INS-1 cells may be tightly 
correlated with calcium regulation [38,39]. The 
LR also increased the insulin-stimulated glucose 
uptake in 3T3-L1 adipocytes and glucose 
transporters contents through IRS-1-PI3K-Akt 
signaling mechanism [40]. LP9M80-H isolated 
from L. platyphylla induced a significant decrease 
in abdominal fat masses, glucose, lipids, and 
adiponectin levels, whereas an increase in the 
insulin concentration in the OLETF rats [41]. The 
expression of the level of GLUT-3 corresponded 
to the p38 protein and GLUT-1 was significantly 
increased [42]. It also induces insulin secretion in 
the HIT-T15 cells [43]. 
 
Anti-hepatitis activity 
 
Hepatitis B virus (HBV) is a causative agent that 
often leads to acute and chronic infections. 
LPRP-Et-97543 from LR was reported for 
potential anti-viral effects in HepG2.2.15 cells 
against HBV by significantly reduced Core, S, 
and PreS, but not X promotor activities. The 
nuclear expression of p65/p50 NF-B member 
proteins and cytoplasmic IB were attenuated 
and reduced the binding activity of NF-B protein 
to CS1 element of HBV surface gene [44]. 
 
Cardiovascular activity 
 
Vascular endothelial cells (EC) cover the inner 
surface of blood vessels and serve as a crucial 
barrier between tissues and circulation. An 
imbalance in the repair and injury of EC results in 
endothelial dysfunction, which is associated with 
many vascular complications. The ethanol 
extracts of LR results no significant improvement 
of systolic blood pressure or aortic wall thickness. 
The increased expression levels of angiotensin 
converting enzyme (ACE), ACE2, endothelial NO 
synthase (eNOS), and SOD activity while the 
level of malondialdehyde (MDA) and NOx were 
recovered to the normal level of Wistar Kyoto 
rats. Furthermore, LR improves vascular 
dysfunction in the aorta of the hypertensive rats 
through up regulation of the antioxidant state and 
down regulation of aldosterone and K ion 
concentration [45]. DT-13, a saponin from LR, on 
human umbilical vein endothelial cells (HUVEC) 
through down regulation of cleaved caspase-3 
and cleaved poly (ADP ribose) polymerase 
(PARP) expression by potentially increased 
mitochondrial membrane potential and Akt 
signaling [46]. 
 
Neuritogenic activity 
 
Nerve growth factor (NGF), a member of 
neurotrophic factors, is produced physiologically 
in the brain. LR butanol fraction conditioned 

media of C6 and primary astrocyte treated to 
PC12 cells induces the neurite outgrowth, 
expression and secretion of NGF [47]. O. 
japonicus also showed neurotrophic effects for 
the NGF induction [48]. The effects of LR extracts 
on expression and secretion of NGF, the mRNA 
and protein expression were reported in the B35 
and C6 cells. The culture supernatant from B35 
and C6 cells with LR extract for 24 h were treated 
into PC12 cells and the differentiation level were 
significantly increased [49]. Moreover, B35 cells 
conditioned medium treated to PC12 cells 
showed significantly higher the levels of 
tropomyosin receptor kinase A (TrkA), ERK 
phosphorylation, and extracellular calcium levels 
with a significant decrease in the intracellular 
calcium levels [50]. LR extracts induced NGF-
secretion and NGF mRNA expression with high 
cell viability in vitro and significantly increased the 
NGF mRNA and hippocampus TrkA and inhibited 
the p75NTR signaling pathways in C57BL/6 mice 
[51]. Spicatoside A on PC12 cells induced neurite 
outgrowth similar to NGF and activated ERK and 
PI3K/Akt via TrkA, which is responsible for the 
induction of the neuritic process [52]. Saponins 
from O. japonicus also reported as potent 
inducers of neuritogenesis and ERK signaling 
pathway on PC12 cells [53]. 
 
Neuroprotective activity 
 
LR administrated mice for 3 days had restored 
memory up to 33, 32, 45, and 158  (fractions T, 
A, C, and M, respectively) against the memory 
defect due to scopolamine in the passive 
avoidance test. Induction of depolarization of 
nerve cells by AMPA (40 M) was 0.44 mV, while 
pretreatment of LR (fraction T) markedly reduced 
the level of depolarization to 0.24 mV in the 
grease-gap assay. LR (fraction T) induced a 45 
 increase in the time to induce death due to the 
brain metabolism disorder by NaNO2-induced 
cessation of respiration. ERK I/II and insulin 
receptor were markedly activated by LR 
(fractions T, A, C, and M) [1]. Water extract of LR 
had no toxicity on PC12 cells and showed a non-
significant decrease in Bax, and a significant 
increase in Bcl-2 against 4-hydroxynonenal (4-
HNE) [54]. Ethanol extract of LR attenuated the 
H2O2-induced increases of intracellular oxidative 
stress and mitochondrial dysfunction. It also 
blocked the PARP and caspase-3 cleavage by 
modulating p38 activation in SH-SY5Y cells [55]. 
The 70 % ethanol extract of LR treatments 
significantly increased the latency time with 
increased brain-derived neurotrophic factor 
(BDNF) immunopositive cells and increased NGF 
[56]. Spicatoside A also enhanced memory 
consolidation in a dose-dependent manner by 
increasing hippocampal mature BDNF levels [57]. 
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Anti-cholinesterase activity 
 
Alzheimer’s disease (AD) is characterized by 
extraneuronal deposits of -amyloid (A) peptide, 
involved in learning and memory functions. 
Administration of LR (fractions T, A, C, and M) 
inhibited cholinesterase activity by 56, 64, 56, 
and 44 , respectively [1]. A-42 peptides level 
was significantly decreased in the brain, while the 
level of NGF in serum was higher of AEtRLP7-
treated Tg2576 mice [58] and NSE/hAPPsw Tg 
mice [59]. The TrkA and P75NTR proteins were 
suppressed along with production of A-42, -
secretase, APH-1, and nicastrin (NCT), whereas 
the expression of PS-2 and Pen-2 was 
maintained or increased in NSE/hAPPsw Tg mice 
[59]. 
 
Anti-aging activity 
 
Total saponin of L. platyphylla improves the 
memory in D-galactose-induced aging on mice. 
They also promote body weight gain and 
increase the thymus and spleen indexes of the 
aging mice. It also decreases the levels of MDA 
and lipofuscin, inhibits monoamine oxidase 
(MAO), and increases SOD and GPx activities 
[60]. 
 
Anti-cancer activity  
 
The n-BuOH fraction of LR and spicatoside A 
treatments showed growth inhibitory activity on 
A549, SK-OC-3, SK-Mel-2, XF-498, and HCT-15 
carcinoma cells [61]. DT-13 decreased the 
migratory response by hypoxia also inhibited 
hypoxia induced expression of V3 integrin, 
tissue factor (TF), and early growth response 
gene-1 (Egr-1) and decreased excretion of MMP-
9 of MDA-MB-435 cells. DT-13 also inhibits the 
up regulation of TF mRNA and protein levels and 
its pro-coagulant activity under hypoxia [62]. 
Furthermore, DT-13 inhibited the phosphorylation 
of p38 in MDA-MB-435 cells [63]. DT-13 
suppressed the increased level of hypoxia-
induced factor 1 (HIF-1), p-ERK1/2, and p-Akt 
induced by hypoxia also inhibits angiogenesis 
induced by vascular endothelial growth factor 
(VEGF) [64]. DT-13 inhibited MDA-MB-435 cell 
proliferation, migration, and adhesion 
significantly, and reduced VEGF and CCR5 
mRNAs, and decreased CCR5 protein 
expression by downregulating HIF-1 [65]. 
Treatment with LPRP-9 significantly inhibited 
proliferation of cancer cell lines MCF-7 and Huh-
7 and downregulated the phosphorylation of Akt. 
It also activates the MAPK pathways. (-)-Liriopein 
B is capable of inhibiting Akt phosphorylation at 
low concentration [66]. The nontoxic doses are 

able to inhibit AKT activation in both luminal-like 
MCF-7 and basal-like MDA-MB231 breast cancer 
cells. Suppression of EGF-induced EGFR and 
ERK1/2 activation might contribute in part to 
retardation of cancer progression. Furthermore, it 
increases sensitivity of MDA-MB-231 cells to 
gefitinib. It also has a potent inhibitory effect on 
multiple kinases, including PI3K, Sr, EGFR, Tie2, 
lck, lyn, RTK5, FGFR1, Abl, and Flt [67]. 
 
CONCLUSION 
 
Liriopes radix from traditional herbal medicine 
provides a foundation for popular remedies in 
common use. In this review, we summarized the 
existing uses of the phytochemical and 
pharmacological activities of LR. We can 
conclude that LR are a potential source of natural 
compounds mainly steroidal saponins and their 
glycosides, phenolic compounds, 
homoisoflavones, and secondary metabolites. LR 
also exerts various pharmacological activities 
that include anti-inflammatory, anti-microbial, 
anti-allergic, anti-asthma, anti-atopic dermatitis, 
anti-osteoclastogenesis, anti-diabetic, anti-
lipidemic, anti-hepatitis, anti-cancer, laxative, and 
neuroprotective. The isolation of purified 
compounds will be needed to deeper research in 
order to understand their mechanisms of action 
as a novel drug for various human diseases. 
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