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Abstract 

Purpose: To develop QSAR modeling of the inhibition of cytochrome P450s (CYPs) by chloroquine and 
a new series of 4-aminoquinoline derivatives in order to obtain a set of predictive in-silico models using 
genetic algorithms-multiple linear regression (GA-MLR) methods. 
Methods:  Austin model 1 (AM1) semi-empirical quantum chemical calculation method was used to find 
the optimum 3D geometry of the studied molecules. The relevant molecular descriptors were selected 
by genetic algorithm-based multiple linear regression (GA-MLR) approach. In silico predictive models 
were generated to predict the inhibition of CYP 2B6, 2C9, 2C19, 2D6, and 3A4 isoforms using a set of 
descriptors. 
Results: The results obtained demonstrate that our model is capable of predicting the potential of new 
drug candidates to inhibit multiple CYP isoforms. A cross-validated Q2 test and external validation 
showed that the models were robust. By inspection of R2

pred, and RMSE test sets, it can be seen that 
the predictive ability of the different CYP models varies considerably. 
Conclusion:  Apart from insights into important molecular properties for CYP inhibition, the findings 
may also guide further investigations of novel drug candidates that are unlikely to inhibit multiple CYP 
sub-types. 
 
Keywords: Antimalarial, Chloroquine, Cytochrome P450, Genetic algorithm-based multiple linear 
regression, QSAR. 
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INTRODUCTION 
 
Malaria is one of the most serious parasitic 
diseases throughout tropical and subtropical 
regions, and it remains a major health problem in 
developing parts of the world [1]. Chloroquine 
(CQ), a low-cost drug, is widely used as an 
antimalarial agent. However, the emergence of 
CQ-resistant malarial parasite strains has 
prompted the search for alternative strategies to 
combat the disease.  

Application of predictive methods such as 
quantitative structure-activity relationships 
(QSAR) and structure-based designs to 
absorption, distribution, metabolism, elimination 
and toxicology (ADMET) has become a very 
active area. Among the ADMET properties, drug 
metabolism is a key determinant of several 
important drug processes in vivo, such as 
metabolic stability, drug–drug interactions and 
drug toxicity [2]. Cytochrome P450 enzymes 
(CYPs) are an extremely important class of 
enzymes that are involved in Phase I oxidative 
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metabolism of structurally diverse chemicals. 
The human genome contains about 60 P450s, 
but more than 90 % of all therapeutic drugs are 
metabolized by five main CYP isoforms: 
CYP2B6, CYP2C9, CYP2C19, CYP2D6, and 
CYP3A4 [3]. A considerable number of 
quantitative structure-activity relationship models 
have been generated for CYP inhibitors [4-11]. 
The objective of this study was to demonstrate 
possibility of obtaining a set of predictive in-silico 
models for cytochrome P450 2B6, 2C9, 2C19, 
2D6, and 3A4 inhibitions, using relatively 
interpretable descriptors in conjunction with 
genetic algorithm-based MLR methods. 
 
EXPERIMENTAL 
 
Ensemble ADME data and molecular 
descriptors 
 
We used a series of 4-aminoquinoline 
antimalarial compounds with experimentally-
determined ADME properties [12]. Based on the 
results of this research group [12], antimalarial 
compounds that are effective against drug-
resistant strains of P. falciparum by varying the 
chemical substitutions around the heterocyclic 
ring and the basic amine side chain of the 
popular antimalarial drug chloroquine have been 
developed [13,14]. Several of these novel 
antimalarial compounds have been screened for 
improved leads based on the evaluated ADMET 
properties [12]. Figure 1 depicts the structures of 
the compounds used in this study. The panel 
includes a small number of CQ analogues with 
altered substitutions on the quinoline ring, 
although the majority of the compounds in the 
panel contain substitutions of the alkyl groups 
attached to the basic nitrogen position on the 
aminoalkyl side chain. 
 
The inhibitory activity of the test compounds at 
two concentrations, 1 and 10 μM, was tested on 
various CYPs in pooled human liver microsomes 
(HLMs) including CYP2B6, CYP2C9, CYP2C19, 
CYP2D6, and CYP3A4. In this assay, HLMs 
were incubated with a test compound and a 
cocktail of specific P450 substrates for each 
enzyme. The known major metabolites of the 
substrates were subsequently quantified by 
LC/MS/MS to compute the percentage of 
inhibition due to the test compound in 
comparison to the percentage in non-drug-
treated controls. As a rule of the thumb, enzyme 
activity levels of <70 % of the level observed for 
the untreated controls were considered to be 
significant inhibition. The majority of the 
compounds inhibited the CYP2D6 enzyme. 
Table 1 shows the data for 21 chloroquine 
analogues and their percent inhibition. 

The molecular structures of all the chloroquine 
derivatives were built with Hyperchem (Version 
7, HyperCube, Inc.) software. AM1 semi-
empirical calculation was used to optimize the 
3D geometry of the molecules. The Polak-Ribier 
algorithm with root mean squares gradient 0.1 
kcal/mol was selected for optimization. By using 
DRAGON [15], we derived a total of 1481 1D, 
2D, and 3D molecular descriptors from the 3D 
structure of each compound.  
 
The list and meaning of the molecular 
descriptors is provided by the DRAGON 
package, and the calculation procedure is 
explained in detail, with related literature 
references, in the Handbook of Molecular 
Descriptors [16]. 
 
MLR modeling procedure  
 
Multiple Linear Regression (MLR) which 
demonstrates great ease of implementation 
along with the interpretability of resulting 
equations was the statistical method of choice 
for building the QSAR model. The forward-
stepping variant of Multiple Linear Regression 
(MLR) was utilized, starting with the selection of 
a single variable which contributes most to the 
model based on its highest F-statistics or lowest 
p-value. At each step, MLR alters the model from 
the previous step by adding predictor variables 
and terminating the search when a statistically 
significant model has been obtained [17,18]. 
Genetic algorithm (GA) search was carried out 
exploring MLR models. The GA used was the 
same as that previously used [19,20]. 
 
The Selected Descriptors 
 
The majority of the selected descriptors in our 
GA-MLR modeling are composite descriptors, 
which can be divided into five groups: 
GETAWAY, 3D-MoRSE, RDF, WHIM and 2D 
autocorrelations descriptors. Table 2(a) and 2(b) 
depicts the names and meanings of the 
molecular descriptors used in this work. 
 
Validation of the models 
 
A good fit was assessed based on the 
determination squared correlation coefficients 
(R2), adjusted determination coefficient (R2

adj), 
standard deviation (s), root-mean-square error 
(RMSE), Fisher’s statistic (F) and number of 
variables. The robustness and predictive ability 
of the model was evaluated by Q2 based on 
leave-one-out (LOO) cross-validation. This 
procedure consists of removing one data point 
from the training set and constructing the model 
only on the basis of the remaining training data 
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and then testing on the removed point. In order 
to make more realistic validation of the predictive 
power of the models, external validation was 
also performed. For that purpose, six 
chloroquine derivatives (3, 6, 8, 15, 18 and 19) 

were selected from 21 compounds at random to 
construct the external test set, and the remaining 
15 chloroquine derivatives comprised the training 
set that was employed to calibrate the QSAR 
models. 
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Figure 1: Chemical structures of 4-aminoquinoline analogues used in this study 
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Table 1: Inhibition of Cytochrome P450 isoforms by the test compounds at concentrations of 1 and 10 μM 
 

CYP inhibition (metabolite produced as % of control) 
CYP2B6  CYP2C9  CYP2C19  CYP2D6  CYP3A4a  CYP3A4b 

 
Compound 

1 μM 10 μM  1 μM 10 μM  1 μM 10 μM  1 μM 10 μM  1 μM 10 μM  1 μM 10 μM 
1  112 134  114 128  113 111  99 90  105 110  102 106 
2 119 118  118 115  120 126  101 72  114 125  102 125 
3 99 109  105 145  109 115  81 57  107 120  108 120 
4 97 121  103 126  93 107  94 94  94 111  96 113 
5 95 112  102 121  107 115  83 63  101 108  103 105 
6 108 107  109 73  104 114  61 13  89 30  76 26 
7 98 117  98 96  104 120  55 22  103 92  102 82 
8 111 108  113 104  97 108  60 15  101 94  99 89 
9 114 115  119 122  117 136  23 8  109 96  107 84 
10 104 117  107 108  108 110  85 49  108 85  102 89 
11 96 113  97 106  103 119  56 15  103 85  94 57 
12 98 114  96 79  108 107  98 10  97 63  80 39 
13 96 100  98 79  90 102  61 13  90 69  87 75 
14 108 128  107 128  110 113  94 87  105 102  102 88 
15 98 113  93 63  107 115  64 17  101 68  92 53 
16 106 109  104 100  104 127  73 20  100 82  99 87 
17 94 107  85 46  101 106  53 11  97 57  89 46 
18 99 110  102 93  94 123  79 4  89 66  84 62 
19 94 112  98 115  104 121  76 29  99 66  96 70 
20 103 98  102 102  100 119  91 56  101 102  103 90 
21 105 105  108 108  113 122  96 69  106 108  108 97 

a Data expressed as % metabolism of known substrates for each isoform compared to control. The known substrates are as 
follows: CYP2B6 (bupropion, 25 μM), CYP2C9 (diclofenac, 10 μM), CYP2C19 (mephenytoin, 50 μM), CYP2D6 (bufuralol, 10 
μM), CYP3A4a (midazolam, 4 μM), and CYP3A4b (testosterone, 50 μM). Values of < 70% are considered to be significant 
inhibition. 
 
Table 2(a): Brief description of GETAWAY and 3D-MoRSE molecular descriptors used in the different modeling 
approaches    

GETAWAY  
H3u H autocorrelation of lag 3 / unweighted 
HTm H total index / weighted by atomic masses 
HATS7e leverage-weighted autocorrelation of lag 7 / weighted by ase 
RTu R total index / unweighted 
R1u+ R maximal autocorrelation of lag 1 / unweighted 
R4m R autocorrelation of lag 4 / weighted by atomic masses 
R5m+ R maximal autocorrelation of lag 5 / weighted by atomic masses 
R7m+ R maximal autocorrelation of lag 7 / weighted by atomic masses 
R8v R autocorrelation of lag 8 / weighted by avv 
R5v+ R maximal autocorrelation of lag 5 / weighted by avv 
R8v+ R maximal autocorrelation of lag 8 / weighted by avv 
R5e+ R maximal autocorrelation of lag 5 / weighted by ase 
R7e+ R maximal autocorrelation of lag 7 / weighted by ase 
R8e+ R maximal autocorrelation of lag 8 / weighted by ase 
3D-MoRSE   
Mor12u 3D-MoRSE - signal 12 / unweighted 
Mor16u 3D-MoRSE - signal 16 / unweighted 
Mor22u 3D-MoRSE - signal 22 / unweighted 
Mor23u 3D-MoRSE - signal 23 / unweighted 
Mor02m 3D-MoRSE - signal 02 / weighted by atomic masses 
Mor04m 3D-MoRSE - signal 04 / weighted by atomic masses 
Mor12m 3D-MoRSE - signal 12 / weighted by atomic masses 
Mor28m 3D-MoRSE - signal 28 / weighted by atomic masses 
Mor03v 3D-MoRSE - signal 03 / weighted by avv  
Mor06v 3D-MoRSE - signal 06 / weighted by avv 
Mor11v 3D-MoRSE - signal 11 / weighted by avv 
Mor24v 3D-MoRSE - signal 24 / weighted by avv 
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Table 2(b): Brief description of RDF, WHIM and 2D autocorrelations molecular descriptors used in the different 
modeling approaches 
RDF   
RDF060u Radial Distribution Function - 6.0 / unweighted 
RDF140u Radial Distribution Function - 14.0 / unweighted 
RDF055m Radial Distribution Function - 5.5 / weighted by atomic masses 
RDF095m Radial Distribution Function - 9.5 / weighted by atomic masses 
RDF155m Radial Distribution Function - 15.5 / weighted by atomic masses 
RDF030v Radial Distribution Function - 3.0 / weighted by avv 
RDF060v Radial Distribution Function - 6.0 / weighted by avv 
RDF065v Radial Distribution Function - 6.5 / weighted by avv 
WHIM  
G2v 2st component symmetry directional WHIM index / weighted by avv 
G3v 3st component symmetry directional WHIM index / weighted by avv 
P1e 1st component shape directional WHIM index / weighted by ase 
P2e 2st component shape directional WHIM index / weighted by ase 
Du D total accessibility index / unweighted 
2D autocorrelations  
MATS3m Moran autocorrelation - lag 3 / weighted by atomic masses 
MATS2p Moran autocorrelation - lag 2 / weighted by atomic polarizabilities 
GATS4m Geary autocorrelation - lag 4 / weighted by atomic masses 
Avv: atomic van der Waals volumes, ase: atomic Sanderson electronegativities 
 
RESULTS 
 
QSAR models for human cytochrome P450 
Inhibitors (CYPs) 
 
Inhibition of CYPs can lead to drug-drug 
interactions and therefore it is considered 
important to evaluate potential drug candidates 
for CYP-inhibitory activities. Percent inhibition of 
CYP activities by the chloroquine analogues was 
calculated from the ratios of the activities of 
inhibited to control samples. Incubation 
conditions (enzyme concentration and 

substrates) for each of the inhibition assays are 
summarized in Table 1. 
This section describes the pharmacophore 
models that have been constructed for various 
P450s by using the QSAR techniques. A genetic 
algorithm was used to remove descriptors 
irrelevant to the prediction of CYP450 inhibitors. 
The retained descriptors from this process were 
used for representing the compounds studied in 
this work. Summaries of the relevant datasets 
employed for generating the QSARs relating the 
various molecular descriptors to the CYP-
inhibitory potencies of Chloroquine analogues 
used in this work are shown in Table 3 (a), 3(b). 

 
Table 3(a): Multivariate Linear regression models and statistical parameters for 2B6, 2C9 and 2C19 P450 
Inhibitors 
 

CYPa Equation R2 R2
adj RMSE F Q2

 
2B6 

(1μM) 
3.137(0.092) - 0.591(0.046) R4m - 5.761 (0.555) G2v + 
0.077(0.013) Mor11v + 0.393(0.060) MATS2p - 
0.215(0.044) R1u+ + 0.452(0.143) R5m+ 

0.95 0.93 0.01 45.98 0.88 

       
2B6 

(10μM) 
2.083(0.046) + 0.148(0.011) Mor22u + 10.149(2.239) 
GATS4m - 0.007(0.001) RDF095m - 0.006(0.001) 
Mor02m - 0.168(0.052) P2e 

0.93 0.91 0.01 40.69 0.85 

       
2C9 

(1μM) 
3.227(0.135) - 0.012(0.001) HTm - 7.055(0.849) G2v + 
0.041(0.006) Mor04m - 0.044(0.010) Mor12m + 
1.015(0.375) R8v+ 

0.90 0.87 0.01 27.76 0.83 

       
2C9 

(10μM) 
12.436(1.344) + 0.095(0.008) Mor03v - 11.280(1.346) 
MATS3m - 0.346(0.052) Mor28m + 6.527(1.444) G3v + 
1.284(0.322) R7m+ 

0.95 0.94 0.03 60.06 0.90 

       
2C19 
(1μM) 

3.096(0.105) - 5.977(0.701) G2v - 2.086(0.326) R8v+ - 
0.585(0.076) HATS7e + 2.254(0.429) R5v+ -
0.071(0.029) Mor24v 

0.91 0.88 0.01 31.76 0.84 

       
2C19 

(10μM) 
2.046(0.011) - 0.011(0.001) RDF055m + 0.003(0.000) 
RDF060u + 0.027(0.005) Mor12u + 0.006(0.001) 
RDF030v 

0.93 0.92 0.01 56.06 0.88 
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Table 3(b): Multivariate Linear regression models and statistical parameters for 2D6 and 3A4 P450 Inhibitors 
 

CYPa Equation R2 R2
adj RMSE F Q2

 
2D6 

(1μM) 
3.968(0.408) - 0.054(0.005) RDF060v - 0.241(0.030) 
Mor04m + 0.146(0.039) Mor06v - 3.302(0.615) R5e+ - 
0.061(0.016) RTu 

0.93 0.90 0.04 38.41 0.80 

       
2D6 

(10μM) 
2.953(0.159) - 7.512(0.637) R8v - 0.741(0.100) Mor16u 
- 0.155(0.020) RDF155m + 0.041(0.009) RDF140u 

0.95 0.93 0.09 97.86 0.91 

       
3A4a 
(1μM) 

2.402(0.112) - 0.396(0.051) R7e+ - 0.057(0.012) Mor23u 
- 1.419(0.252) R8v+ - 0.002(0.001) RDF055m -
2.338(0.673) G2v 

0.93 0.90 0.01 39.09 0.86 

       
3A4a 

(10μM) 
-1.430(0.310) + 1.186(0.139) P1e + 11.353(1.804) G3v 
+ 2.187(0.362) Du - 2.580(0.548) R8e+ 

0.94 0.92 0.03 61.06 0.89 

       
3A4b 
(1μM) 

2.697(0.193) - 1.591(0.180) R8e+ 2.858(0.594) G3v - 
3.668(0.829) G2v - 0.114(0.010) H3u -0.004(0.001) 
Mor02m 

0.94 0.92 0.01 45.20 0.88 

       
3A4b 

(10μM) 
1.411(0.391) - 2.085(0.292) P2e - 1.466(0.306) R7e+ - 
0.025(0.006) RDF065v + 8.195(2.499) G3v 

0.92 0.90 0.05 46.31 0.86 

The known substrates are as follows: CYP3A4a (midazolam 4 μM), and CYP3A4b (testosterone 50 μM). 
 
The predictive power of the model was 
determined by using LOO cross-validation and 
by the use of a test set of 6 structurally and 
biologically diverse chloroquine analogues 
excluded from the model creation. A cross-
validated Q2, obtained as a result of this 
analysis, served as a quantitative measure of the 
predictive ability of the final QSAR models. The 
Q2 value is a statistical indication of how well a 
model can predict the activity of members left out 
of the model formation. The training and test sets 

and statistical parameters for each CYP model 
are also presented in Table 4. The quality of the 
fit of the training set of a specific model was 
measured by its R2. However, a most important 
measure is the prediction quality; the R2

pred and 
RMSE of the test set give a more realistic guide 
to the predictive power of the P450 CYP models 
(Table 4). Graphical representation of the 
performance of each approach in adjusting and 
predicting CYP inhibition data is also presented 
in Figure 2.  

 
Table 4. Evaluation of the prediction ability of the MLR models in the external 
validation set for Different P450 Inhibitors 

 
Training set  Test set CYPa 

R2 R2
adj RMSE F  R2

pred RMSE 
2B6 (1μM) 0.98 0.96 0.03 19.51  0.74 0.01 
2B6 (10μM) 0.96 0.94 0.01 43.13  0.39 0.02 
2C9 (1μM) 0.95 0.92 0.01 34.90  0.61 0.02 
2C9 (10μM) 0.97 0.95 0.02 58.67  0.91 0.04 
2C19 (1μM) 0.95 0.93 0.01 36.67  0.84 0.02 
2C19 (10μM) 0.96 0.94 0.01 55.82  0.78 0.01 
2D6 (1μM) 0.93 0.89 0.04 24.37  0.82 0.03 
2D6 (10μM) 0.95 0.93 0.08 50.51  0.92 0.13 
3A4a (1μM) 0.90 0.85 0.01 16.39  0.96 0.01 
3A4a (10μM) 0.92 0.89 0.03 28.60  0.97 0.07 
3A4b (1μM) 0.94 0.91 0.01 29.12  0.92 0.02 
3A4b 10μM) 0.87 0.81 0.05 16.32  0.89 0.07 

 
DISCUSSION 
 
The GETAWAY (Geometry, Topology, and Atom 
Weights AssemblY) descriptors try to match the 
3D molecular geometry provided by the 
molecular influence matrix and atom relatedness 
by topology with chemical information by using 
various atomic weighting schemes (unit weights, 

mass, polarizability, electronegativity). 3D-
MoRSE descriptors, which are representations of 
the 3D structure of a molecule and encode 
features such as molecular weight, van der 
Waals volume, electronegativities, and 
polarizabilities. The radial distribution function 
(RDF) descriptors are based on the distance 
distribution of the compounds. The RDF  
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Figure 4: Predicted versus Observed CYP enzyme 
inhibitory activities values expressed as log percent 
inhibitory. The LOO cross-validation of compounds are 
represented as grey dots and the test set as black do 

 
descriptors of a molecule of n atoms can be 
interpreted as the probability distribution of 
finding an atom in a spherical volume of radius 
R. RDF descriptors provide information about 
bond lengths, ring types, planar and nonplanar 
systems, atom types, and molecular weight and 
have been used for pharmacokinetic studies. 
WHIM descriptors are based on statistical 
indices calculated on the projections of atoms 
along principal axes. The aim is to capture 3D 
information regarding size, shape, symmetry and 

atom distributions with respect to invariant 
reference frames. 2D autocorrelations 
descriptors, in general explain how the 
considered property is distributed along the 
topological structure. Three spatial 
autocorrelation vectors including unweighted and 
weighted Moran, Geary and Broto–Moreau 
autocorrelation vectors were calculated. The 
physicochemical property considered in atomic 
masses (m), atomic van der Waals volumes (v), 
atomic Sanderson electronegativities (e), and 
atomic polarizabilities (p) as weighting properties 
[16].  
 
A cross-validated Q2 test showed that the 
models were robust (Table 3(a), 3(b)). Also 
external validation yielded statistically significant 
and accurate predictions of pIC50 values for the 
majority of the CYP enzyme isoforms. By 
inspection of the R2

pred, and RMSE test sets, it 
can be seen that the predictive ability of the 
different CYP models varies considerably. A 
weak correlation (R2

pred = 0.39) was found 
between experimental and predicted 2B6 (at 
10μM) data (Table 4). However, exclusion of one 
outlier (compound 8) resulted in a fairly good 
correlation (R2

pred = 0.79), with the descriptors. 
Although the RMSE of the 2B6 model is lower at 
0.03, suggesting this model predicts with lower 
error, this is a result of the test set observations 
having the smallest standard deviation. The 
RMSE of 2B6 model approaches the standard 
deviation of the observed data (i.e. a random 
prediction). We can conclude that the presence 
of most descriptors reveals the important role of 
size, shape, flexibility, atomic atomic van der 
Waals volume and atomic masses weighted 
terms of molecules on ligand- P450 isoenzyme 
interaction. 
 
CONCLUSION 
 
A quantitative structure–activity relationship 
(QSAR) study was applied to the series of 4-
aminoquinoline antimalarial compounds. For 
each strain, statistically significant models were 
obtained using the GA-based MLR method. 
These models may be considered as 
mathematical equations for the prediction of 
antimalarial activities of the compounds 
structurally similar to those used in this study. In 
silico models for CYP 2B6, 2C9, 2C19, 2D6 and 
3A4 inhibition was undertaken using multiple 
linear regression method and a set of 
descriptors. The CYP models range from 
moderate to highly predictive and thus could 
prove useful in assessing the P450 liability of 
molecules for a particular isoform.  
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