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ABSTRACT
University course timetabling is the problem of scheduling resources such as lecturers, courses,
and rooms to a number of timeslots over a planning horizon, normally a week, while satisfying a
number of problem-specific constraints. Since timetabling problems differ from one institution to
another, this paper investigated the case of the University of Dar Es salaam, based on the
combination of Simulated Annealing (SA), and steepest descent in a two-phase approach.
Solutions have been generated which greatly outperform the manually generated ones.
Furthermore, the method compares well with previous work on Tabu Search but with faster
execution time and higher quality on rooms allocation. It is concluded that the approach gives
good results given a careful selection of parameters.

Keywords: Timetabling Problem, Simulated Annealing, Combinatorial Optimization, Steepest
Descent  

INTRODUCTION
Timetables play very important roles
especially in educational institutions.
Essentially, timetabling involves the
allocation of resources such as courses,
lecturers and rooms to a fixed time period
while satisfying a given number of
constraints. These constraints can be divided
into hard and soft. Hard constraints must be
satisfied, while it is desirable, though not
essential, to satisfy soft constraints. Many
varieties of timetables exist, including high
school, University Course, and Examination
timetables, where each group differs
significantly from another. Timetabling
problems are of much interest because of
their real life applications. However, they are
known to be NP-Hard (Cooper and
Kingston, 1996), and vary from one
institution to another. This paper addresses
the course timetabling problem at the
University of Dar es Salaam (UDSM) in
Tanzania, East Africa.

Many approaches have been suggested in
tackling this problem, including
Mathematical Programming (de Werra 1985,
Daskalaki et al. 2004), Constraint logic

programming (Abdennadhar and Marte,
1998; Panagiotis 1998); Graph Coloring
(Miner 1995) as optimal solution strategies.
However, since it is NP-Hard, no optimal
algorithm is known which can give a
solution within reasonable time. Many
authors have attempted to solve variations of
the problem by applying heuristic
techniques which do not guarantee an
optimal solution but produce a better
solution which is tolerable in many
timetabling applications. White and Xie
(2001) and White et al (2004), successfully
applied Tabu Search techniques with longer-
term memory to examination timetables.
Genetic algorithms have been widely
attempted for specific Universities including
Corne et al. (1993), Hiroaki et al. (2004),
Hitoshi et al. (2002) and Kragelund (1997).

The most recent heuristics include Harmony
Search, Al-Betar et al. (2008), and Particle
collision, Abuhamdah & Ayob (2009).
Simulated Annealing has also been used
with some success in a number of problems.
A comparison of annealing techniques is
given by ElMohamed and Fox (1998).
Nanthini and Kanmani (2009) provide a
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su rvey  o f  Simulated Annealing
methodologies for University course
timetabling problem for the past ten years.
They conclude that despite the success of
Simulated Annealing, the real world
application depends on the institution where
it is applied; therefore finding a standard
framework is difficult. In general, articles
describing solution procedures can easily be
found but few discuss the actual
implementation of a practical problem.
Some of these practical implementations
include Stallaert (1997), Phala (1988) and
Daskalaki et al. (2004). Mushi (2006)
described UDSM course timetabling
problem using Tabu Search heuristic and
present promising results.

This paper presents another heuristic
approach to UDSM course timetabling and
compares the results with the previous work
on Tabu Search. The rest of the paper is
organized as follows; description of the
course timetabling at UDSM, description of
the  two-phase  a lgor i thm,  and
implementation details are discussed before
presenting summary of results and
conclusion.

Course timetabling at UDSM
UDSM has been undergoing Institutional
Transformation which involved among other
issues, the expansion of student enrolment.
Currently, there are approximately 15,000
students in the main campus. The exercise
necessitated a central timetable for all
programs so as to optimize the use of the
available resources. This paper focuses on
course timetabling at the main campus
which involves approximately 15,000
students. There are two semesters per each
academic year with approximately 750
courses per semester. These are also
increasing annually due to curriculum
reviews compelled by the challenge to meet
the rapidly changing needs of the job
market. There are currently 106 rooms which
include classrooms and laboratories, about
1000 lecturers, and 15,000 students to be
scheduled on five days week. Each day is

made up of 13 one-hour timeslots starting
from 7.00 a.m. to 8 p.m. Thus, there are 65
time slots for the whole timetable period.
Lunch breaks are not considered although it
is desired to minimize the use of these hours
especially on Fridays where Muslims have
to go for prayers. The necessary data
includes the student-course registrations,
lecturer-course assignments, course
requirements, room sizes and room types.
The following definitions are applied, as
described in the previous work by Mushi
(2006);
Course – A unit of subject content to be
taught to a particular group of students.
Event – An assignment of lecturer, room
and a course to a one hour time interval. A
course can have several events according to
the number of hours set in the curriculum.
Lecture – A set of events of the same course,
which are required to be scheduled together
in the same room and the same time.  A
lecture can have one or more events.
Block – A lecture with more than one
consecutive events.
The hard constraints are as follows;
1.  No student can attend more than one
lecture at the same time
1 .  No lecturer can teach more than one
lecture at the same time
1 .  No room can occupy more than one
lecture at the same time
1. No room can be assigned a lecture with
more students than its capacity
1. Some courses are scheduled in blocks of
more than one hour, these restrictions must
be respected.
The soft constraints include;
1.  As much as possible, minimizing the
use of early morning (7.00 a.m.), lunch
hours (13-14) and evening hours (18-20).
1. Minimizing the room space wastage by
assigning lectures to rooms which have a
capacity as close to the student numbers as
possible. This also increases the chance of
having a room-feasible timetable.
1 .  Specifically minimizing the use of
Friday 13-14 hour and 18-20 hour slots to
allow for Muslim and Seventh Day
Adventists (SDA) prayers respectively.  
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1. Minimizing continuous lecturers/blocks
of the same course in a day. It is preferred to
spread them over the week as much as
possible.
1 .  As much as possible, evening lectures
starting from 18 to 20 hours should be
assigned to rooms with standby generators
so as to minimize loss of lecture hours due
to frequent power cuts.
1 .  Special preferences by lecturers,
students and University administration.

The Two- Phase Algorithm
The algorithm is implemented in two-phases
where phase I deals with timeslot
movements and phase II deals with room
movements. The algorithm is a combination
of simulated annealing and steepest descent.
Phase I uses Simulated Annealing; this is a
global heuristic technique which tries to
avoid falling into local optima by imitating
the physical cooling process. Bad solutions
are accepted by following an exponential
function which depends on temperature
value and worsening of the solution (Ingber
1993, Reeves 1993). Simulated Annealing
is chosen because of its vast successful
applications to combinatorial optimization
problems. Timeslot selection subject to
curriculum restrictions is  the most
combinatorial challenging component of the
problem. Simulated Annealing is therefore
used to tackle this part of the problem,
while ignoring room lower bound
restrictions for ease of computations.
Phase II uses steepest descent because at this
point the timetable is feasible and timeslot
optimized. Room moves are essential
because they can help to reduce room under-
utilization by some events. Shaking up of
rooms while fixing timeslots works well
with greedy algorithms such as steepest
descent. This algorithm accepts only

improved solutions and therefore best suited
to this phase. The algorithm is as shown in
Figure 1 below. It should be noted that,
Simulated Annealing and Steepest descent
are general algorithms, and the challenging
part is design of use of variables; including
the structure of the neighbourhood and type
of moves suitable for the UDSM
timetabling problem and fine-tuning of
parameters as addressed in this paper.

Implementation of the two-phase
algorithm
It is necessary to discuss all the design
features of this algorithmic framework as
applied in the implementation. The use of
this framework requires careful choice of
parameters and input data structures. These
include choice of moves, cooling schedules,
objective function structure, representation
of input data structures including solution,
courses, rooms, and modelling of
constraints. This section discusses each of
these implementation matters;
A move determines the next trial solution in
the solution space. Two types of moves
have been used in this implementation
depending on the phase of the algorithm.
The move in phase I is as follows;
1. Select a random event e in the set of all
possible events
2. Select randomly a new timeslot t in the
set of all possible timeslots.
3. Assign the new timeslot t to the event
at position e. If e is a member of a block of
events, assign sequential timeslots including
t to all members of the block.
This is identical to several moves described
by Thomson et al. (1996), ElMohamed
(1998) and Reeves (1999). It is a simple
move, yet it allows a well balanced mix of
events among all timeslots.
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Timetable_Algorithm
{ Initialize parameters T, Freeze;
Get Initial Solution (So);
Phase I: Time moves
while(T > Freeze){
Get a timeslot-move solution S in neighborhood of So(S&N(So))

Given an objective function f, find ' = f(S)- f(so);
if(' < 0)

Accept solution (So = S); 
else{ Generate a random number x between (0,1);

if(
Tex

!"

< )

Accept solution So = S;
else Reject solution;
} 

T = %(T); where % is a cooling function.  
}

Phase II: Room moves – Steepest descent
Initialize T;
while(T > Freeze){
Get a room-move solution S in neighborhood of So(S&N(So))

Given an objective function f, find ' = f(S)- f(so);
if(' < 0)

Accept solution (So = S);  
Else Reject solution;
T = %(T);
}

Figure 1: The general timetable algorithm

The second type of move is implemented in
the second phase where the timeslots are
fixed and changes are made to the assigned
rooms as follows;
1.  Randomly select a room r in the
set of all possible rooms
2.  Find an event e associated with a
room with the highest number of empty
seats. This is basically a room which is
most under-utilised.
3. Assign the new room r to event e.
If e is a member of a block of events, assign
r to all events of the block.
This increases the chance of finding a better
room assignment since we only concentrate
on the worst cases.
The size of this neighbourhood is |N(s)| =
|r|, where |r| = the total number of rooms.

Note that it is not necessary to check for
feasibility when making a move, it is
penalised highly in the objective function.

Cooling schedules
The rate at which temperature is reduced is
vital to the success of the algorithm as it
controls the rate of cooling. One of the most
widely used schedules involves geometric
reduction function;

( ) 1, <= awhereatt!

Another cooling schedule as suggested by
Lundy and Mees (1986) ]which involves a
much slower cooling rate is also tested;
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t

t
t

!
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+
=  where ( < 1.



Tanz. J. Sci. Vol. 37 2011

77

Creating an initial timetable
The initial solution must be feasible by
satisfying all hard constraints but can violate
soft constraints. The method used must be
quick and easy to generate an initial
solution. This is done by assigning events
to the earliest available timeslot and
available feasible room. To simplify
searching, both rooms and events are sorted
in increasing order of their sizes.

If no suitable timeslots or rooms have been
found for the block of events of a given
course, the block is kept aside and reported
as infeasible and can be dealt with manually.

Representation of the Problem
A solution is represented as a list s  of
events, where each event stores a course,
timeslot assigned and allocated room as
shown in Table 1.

Event 0 1 2 …u-1

Course ID 0 co c1 c2 …

Timeslot 1 to t1 t2 …

Room ID 2 ro r1 r2 …

Table 1: Solution data structure

The solution is therefore a matrix sux3, such
that se j = solution value associated with
event e for resource j, and resource j  =

!
"

!
#

$

room

timeslot

course

      2

   1

     0

Courses are represented by a list of course
sizes, units and maximum number of
consecutive hours per each lecture (block
size). Each unit is equivalent to one lecture
hour per week. Thus, a three unit course
with a maximum block of 2 hours per
lecture will require scheduling of one 2-hour
block of lecture session and an additional 1-
hour lecture.  This is stored as a 3-rows
table, where the 1

st
 row stores size, 2

nd
 row

stores units and 3
rd
 row stores the maximum

block size, as shown in Table 2.

0 1 2 …n-1

Course size 0 do d1 d2 …

Units 1 uo u1 u2 …

Max block
size

2 bo b1 b2 …

Table 2: Course data structure

Rooms are represented by an array whose
index represents room numbers and the
content stores the room sizes.
A conflict matrix is used to detect course
conflicts. Given a set of n  courses, the
conflict matrix is an nxn matrix M such that

Mij = 

!
"
#

Otherwise0

j course with clashes i course if1

Courses i and j  clash if they have at least
one student or lecturer in common.
This is clearly a triangular matrix, since
course i colliding with course j is the same
as course j colliding with course i.

Objective function is the weighted sum of
objectives fi with weights !i representing the
importance of each constraint. Thus the
objective is to minimize a function of the

form !
=

=
k

i

ii sfsf
1

)()( " , where s is a

solution for a set of k  constraints. The
objective function caters for both hard and
soft constraints. A higher penalty is
assigned to hard constraints so as to
discourage their selection. Since there are
many soft constraints, it is impossible to
satisfy all of them, so that all hard
constraints are included but only a selected
number of soft constraints in order of their
importance to the timetabling requirements.
Other constraints, such as special
preferences, can be dealt with manually. The
hard constraints included in the objective
function are student clashes, lecturer clashes,
room clashes, and room size violations. Soft
constraints implemented are the need to
minimize distances between events of the
same course, minimizing the use of special
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times, evening standby generators, and
maximizing room utilization.
The implementation of each type of
constraints as part of the objective function
is hereby discussed; the same constraints as
modelled in Mushi (2006) are used and
summarized as follows;

Minimize 

  

! 

f (s) = " i f i (s)

i=1

7

#
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e
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Where f1(s) represents student lecturer
collisions, f2(s) is for room clashes, f3(s) is
for room size violations, f4(s) is distance
between events of the same course, f5(5) is
for use of special times, f6(s) is for room
utilization and f7(s) takes care of the standby
generator constraints.

SUMMARY OF RESULTS
The algorithm was tested on a course
timetabling problem previously solved by
manual methods for semester 1 of the
2003/2004 academic year. A program is
written in C++ and tests run on a 2.4GHz,
Pentium 4 processor. Table 3 shows data for
the specific problem.

Data Value

Students 8161

Lecturers 607

Rooms 106

Courses 729

Total events 1570

Total timeslots 65

Table 3: Data for the tested problem at
UDSM

Since the number of first years is normally
difficult to determine during timetabling, it
has been good practice to include a single
dummy student to represent first years in
each programme, since they have similar
core courses per programme. It is difficult to
determine the first year numbers because
timetables are supposed to be released before
first years have arrived and registered to the
University. Table 4 shows the weights used
in the cost function for each type of
constraint.

Weight Value Description

!1 - !3 100 Hard constraints

!4 10 Dis tance  between
events

4 Friday Muslim prayers

4 Seventh day Adventists

2 Lunch times

!5

1 Morning and evening
times

!6 1 Room utilization

!7 3 Standby generators

Table 4: Weights used in the objective
function

These weights have been assigned according
to the importance of each constraint. Hard
constraints have a large value of 100 which
was found to be sufficient to discourage
infeasible solutions from selection. Weights
on the soft constraints were set according to
the experience on user needs. For example,
Friday prayers are slightly more important
than general lunch time violations. These
values were picked after thorough testing of
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different parameters and reflect their results
to the actual output requirements.

The algorithm was tested by varying the
cooling schedules, %, ( and freezing points.
In both cases, an initial temperature value of
100 was used; higher temperature values did
not show any improvement on the final
solution. Table 5 shows a summary of
results for the tested strategies. Obviously,
the initial solution is the same for both
cases, and in this case the value was
3094.72. The resulting cost for each phase
and the percentage of improvement from the
initial solution is shown. The first group of
columns show the performance by geometric
function, followed by Lundy & Mees
(1986). The two schedules have different
freezing points as shown.

Table 5  also shows the quality of each
solution in terms of the improvement in

achieving constraints. It is worth noting
that, the presented results comes from the
algorithm whose parameters have been
thoroughly tested over a wide range of
possible values (fine-tuning) to achieve
parameters used in the results.

Results presented in each column were
obtained by picking the average solution on
the set of runs for different random number
seeds. In both cases, initial and final
solutions were found to be feasible by
satisfying all hard constraints. The cost
improvement from initial solution is very
high. The best solution was obtained by the
use of geometric function after 3,323.84
seconds which is approximately 55 minutes.
By the nature of timetabling applications,
this time is tolerable.

209.9700 204.9590 203.4910 203.6880 203.8340

207.9700 204.9590 201.4910 203.6880 203.8340

0.9322 0.9331 0.9342 0.9335 0.9335

508.9530 2088.2000 3323.8400 2337.1100 3642.4500

0.9950 0.9990 0.9995

0.1000 0.0100

0.0010 0.0001 0.0001

0.0010 0.0100

Student/Lecturer Collisions

Room clashes

Room size violations

Events spread

Special time violations

Largest room gap

Student/Lecturer Collisions 0.0000 0.0000 0.0000 0.0000 0.0000

Room clashes 0.0000 0.0000 0.0000 0.0000 0.0000

Room size violations 0.0000 0.0000 0.0000 0.0000 0.0000

Events spread 8.9734 4.9592 3.4911 2.6878 3.8344

Special time violations 1.0000 0.0000 0.0000 1.0000 0.0000

Largest room gap 198.0000 200.0000 198.0000 200.0000 200.0000

510.0000

200.0000

0.0000

0.0000

0.0000

2384.7200

Lundy&Mees

Time(s)
!

"

GeometricInitial Cost = 3094.72

Phase I Cost

Final Cost

% Cost Improvement

Geometric Freezing point

Lundy&Mees freezing point

P
e

rf
o
rm

a
n

c
e

In
it
ia

l
F

in
a
l

Table 5: Performance by parameter choices
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Since both solutions were feasible, the
introduction of the second phase only
yielded a small improvement over the
output of the first phase. However, this
phase is still important, since it improves
on room utilization.

Figure 2 represents the improvement in cost
by iterations for the best two performances.
Iterations presented here are in multiples of a
thousand. There is a sharp drop in objective
function value within the first 8000
iterations, followed by a slow convergence.

A closer look at Figure 2 shows that the
geometric function converges to lower cost
values when in the lower temperatures.

Manually generated solution as created in
2003/2004 academic year was used for
comparison with the automatically generated
best solution. Table 6 is a summary of the
performances in terms of constraint
violations and compared by previous work
on Tabu Search (Mushi, 2006). Both cases
were feasible by satisfying all hard
constraints.

190

200

210

220

230

240

250

1 8 15 22 29 36 43 50 57 64 71 78

Iterations

C
o
s
t

Geometric Lundy&Mees

Figure 2: Performance Comparison between Geometric and Lundy & Mees
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Constraints

Violations in 

Manual

Violations in 

automatic - Two-

Phase method

Violations in 

automatic - Tabu 

Search

Student/Lecturer Collision 0 0 0

Room clashes 0 0 0

Room size violations 0 0 0

Course event gaps 253.75 3.491 1.74

Special time penalties 659 0 0

Largest room gap 488 198 Not Tested

Standby generators 0 0 0

Total violation cost 1400.75 201.491 1.74

Table 6: Comparison of Performances

There were more violations of the soft
constraints in the manual than the automatic
one. Clearly, the automatic system performs
better than the manual system. Tabu Search
seems to have performed better than the
Two-Phase approach in terms of course-
event gaps. However, Tabu Search method
did not consider the process of reducing the
largest room gap which has been improved
by phase II of the current method.
Furthermore, Tabu Search took 1 hour and
18 minutes to compute the best solution,
while the Two-Phase method took only 55
minutes to do the same.

SUMMARY AND CONCLUSION
The paper has presented a Two-Phase
approach which combines both Simulated
Annealing and Steepest Descent. The
Steepest descent has been used to improve
on the room utilization which is not
considered in the Simulated Annealing case.
Summary of Results indicates that
Simulated Annealing and steepest descent
combination performs better, faster and with
much less effort compared to manually
generated results. The Geometric function
performs generally better than Lundy &
Mees (1986) although Lundy & Mees
(1986) show better performance on higher
temperatures. Change in parameter selections
significantly changes the performance of the
algorithm. Fine tuning of parameters is

therefore essential in obtaining a better
solution. It has been observed that the Tabu
Search performs slightly better in terms of
constraint violation detection, but took
much longer than the presented algorithm. It
has been clearly demonstrated that
timetabling at UDSM can be improved by
automated procedures.

Further Research
Traditionally, course timetabling at UDSM
has been manually done. Since timetabling
problem varies between universities, there is
a room for further research on UDSM course
timetabling. Specifically, only Tabu Search
and this two-phase technique have been
implemented for UDSM timetabling. Many
general algorithmic techniques exists;
including Genetic Algorithms (Ashish et al.
2010), Particle-Collision (Anmar and Masri
2009), Harmony Search (Mohammed et al.
2010) and many others which might bring
better results. Furthermore, the current paper
did not cover all soft constraints due to their
vast numbers and conflicts. It is worth
improving the quality of solutions by
further addition of soft constraints.
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