
Introduction
Mining industry constitutes a major source 
of inorganic contamination of natural 
resources (da Rosa & Lyon, 1997, Ramani, 
2001). According to Eppinger et al. 
(1999), the composition of the ores present 
at mine sites determines the contaminants 
present. The AngloGold-Ashanti Obuasi 
mine in Ghana officially opened in 1895 
and has for many decades treated primary 
ores that consist of predominantly 
sulphides with minor quartz, composed of 
about 33% dry wt. of As  (e.g. Oberthur et 
al., 1994). 

At the mine, As contamination in the 

environment has been widely reported 
(Smedley et al., 1996; Akabzaa et al., 
1997). For example, Akabzaa et al. (2007) 
noted that As concentration ranged from < 
0.01 to 6.32 mg/l in streams. Potentially at 
risk to As exposure are: i) mine workers 
who are in frequent contact with the 
arsenopyrite-rich ores and mine spoils; ii) 
persons and animals whose water supply 
contains high levels of As; and iii) unborn 
babies of potential mothers exposed to As 
contamination (ATSDR, 2000). 

To minimise the As contamination in 
the environment, a clear understanding of 
As behaviour in the mine drainage is 
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stream profile for As concentration to reduce from the maximum value of about 2.50 mg/l to 0.01 mg/l. Using 
the porosity, bulk density and combined degradation properties of the monitored media of the mobile As, the 
estimated retardation factor was 1.96 and the solute velocity estimated to be 1.53  ́10 ms  in the borehole 

-1 -1environment, and 1.074 and 9.25  ́10  ms  along the streambed, respectively. This study shows that the 
pollution risk assessment model can be used to spatially estimate exposure to As contamination in the 
environment, while the transport characteristics can be used to determine clean-up criteria for effective As 
remediation in drainage.
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required for effective remediation 
planning. For example, Kaye (2005) 
shows that As mobilises under circum-
neutral pH conditions where it may be 
taken up by environmental receptors 
through environmental pathways. These 
pathways include i) sources of release; ii) 
mechanisms of release; iii) migration 
pathways and exposure routes; and iv) 
receptor exposure (Asante-Duah, 1996). 
Among the above-listed pathway 
elements, mechanism of As release is very 
important for establishing a risk 
assessment criterion for As management in 
drainage, through a modelled monitored 
natural attenuation programme. 

E m p i r i c a l  m o d e l s  p r o v i d e
mathematical descriptions of observed 
experimental data (EPA, 2007). For 
example, DEP (2004) has indicated that 
most degradation reactions in groundwater 
follow an approximate first-order kinetic 
behaviour and are analogous to isotherm 
expressions for sorption processes 
involving inorganic species. According to 
an EPA (2007) report and Lovanh et al. 
(2000), the above scenario can be 
expressed as:

–         = k.C. ....................................... (1);

where C = concentration, t = time and k= 
degradation rate constant. Integrating with 
the initial concentration ‘C ’, the equation O

can be expressed as:

           =            ;  or           – k t, = or log C =

–          ,  t + log C ............................ (2).O 

This relationship can, therefore, be used 
to determine whether concentration and 

time data from monitoring boreholes 
follow first-order decay behaviour and to 
determine site-specific decay constants, 
where the decay rates for the contaminants 
can be obtained from borehole data along 
the plume axis (e.g. DEP, 2004). 

According to Asante-Duah (1996), the 
retardation of contaminant species 
through sorption is influenced by the 
retardation factor (Rf) during the 
assessments under reversible equilibrium 
conditions and can be estimated from the 
Freundlich model, defined as:

m
q = AC  (Yong, 2001) ......................... (3); i

where q is the concentration of adsorbate 
on the solid phase at equilibrium and C is 
the concentration remaining in solution 
(EPA, 2007). The plot of log q versus log C 
is a straight line, with ‘A’ as the intercept 
on the q-axis and m is the gradient. ‘A’ and 
‘m’ are adjustable and ‘m’ has a value 
between 0 and 1. From the above, 
retardation factor (Rf) can be estimated as:

Rf  = 1+       (Sharma & Reddy, 

2004)  ............. (4); 
where b is the bulk density,  is the 
porosity of the transport media, while the 
other constants remain as stated in 
equation (3). The retardation factor is also 
related to groundwater velocity (Nyer,

1993) as: Rf =                                     .. (5).

The likelihood and consequence of an 

event form the basis for risk assessment of 

the danger posed by an environmental 

aspect (BCI Pty Ltd., 2007). Duoben 

(1998) has stated that the risk assessment 

process may be one of data analysis or 

0
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modelling or a combination of the two and 

utilises available scientific knowledge and 

data to establish case-specific responses to 

site management problems (Asante-Duah, 

1996). In order to achieve maximum 

remediation of As in the Obuasi 

environment, the need for an effective risk 

evaluation methodology based on As 

contamination and also the geochemical 

and geotechnical characteristics of As 

behaviour in drainage and the subsurface 

are required. 
Worldwide, acute As toxicities from 

ingestion of water containing 1.2–21.0 
mg/l shows early clinical symptoms in 
humans (Feinglass, 1973; WHO, 2003). 
For example, pigment changes occur in 
populations consuming water containing 
As concentrations > 0.40 mg/l (ATSDR, 
2000). Dermal lesions occur after a 
minimum exposure period of about 5 years 
(Tseng, 1977; Guo & Valberg, 1997). 

In Taiwan and China, well water with As 
concentrations > 0.60 mg/l indicated a 
clear dose-response relationship between 
exposure and the frequency of dermal 
lesions and skin cancer (Tseng, 1977). In 
northern Chile, defects were observed in 
children consuming water of As 
concentration of 0.6 mg/l over a period of 
about 7 years (Zaldivar, 1980; WHO, 
2003). Tseng (1977; Guo & Valberg, 1997) 
observed that the long-term ingestion of 
elevated levels of As are causally related to 
increased risks of cancers in humans 
(WHO, 2001; FAO/WHO, 2011a) and can 
be classified in relation to compliance 
concentration ranges (e.g. BCI Pty Ltd., 
2007; Foli et al., 2012).

WHO (2001) and FAO/WHO (2011a 
and b) reports indicate that As 

concentrations < 0.050 mg/l 
0.05–0.01 mg/l is classified as the zone 
where As impacts are possible (Murphy et 
al., 1981). Values greater than 0.5 mg/l are 
classified as the zone within which As 
impacts are very certain, while about 0.1– 
0.5 mg/l is also classified as the zone where 
impacts are certain to occur (Tseng 1977; 
Zaldivar, 1980; ATSDR 2000). Values 
ranging from 0.10 to 0.05 mg/l are 
considered as zones of non-conclusive 
impacts (Murphy et al., 1981; Wesbey & 
Kunis, 1981; WHO, 2003). To define the 
above ranges, therefore, standard 
environmental compliance values are 
necessary to serve as a guide. 

For example, the concentration values 
of 0.5 mg/l and 0.05 mg/l exist as drinking 
water standard for As in water for livestock 
consumption and the primary maximum 
contamination limit (MCL) for drinking 
water (Wilson & Salomon, 2002) 
respectively. The value of 0.01 mg/l 
conforms to the World Health Organisation 
guideline for As concentration in Drinking 
water (WHO, 2010), while the value of 0.1 
mg/l is the EPA standard for Industrial/ 
facility discharges into water bodies and 
water courses (EPA [Ghana], 1994). The 
above limits constitute the compliance 
value ranges that can be used for impact 
rating purposes during the As impact risk 
assessment.

At the Obuasi mine, risk assessment 
evaluations are dependent on likelihood by 
consequence risk matrix (Foli et al., 2012). 
Expressions of this kind are, however, not 
very informative because they equate 
scenarios that have low probability but 
catastrophic effects to those that are of high 
probability but have only minor 

or in the range 
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consequences (Landis et al., 1998). 
Furthermore, chemical pollutions at the 
mine are managed using environmental 
management plans (Foli et al., 2010), 
which are only focused on effluent 
discharges, without adequate evaluation of 
the subsurface material characteristics 
(Anon, 2007). The objectives of this 
research are, therefore, to 1) use mass-time 
and distance analysis to establish an 
empirical model for determining As 
impact intensity in the environment, 2) 
evaluate bulk density and porosity of the 
subsurface material to be used for 
estimating compliance values for As in 
water.

Study area
The research area is located in the 

Obuasi municipality in the Ashanti Region 
of Ghana. The total land coverage is about 

2162.4 km . A sketch map of Ghana showing 
the location of Obuasi is presented in Fig. 
1. 

The area is situated within the semi-
equatorial climatic zone which is 
characterised by high rainfall and 
temperature. The rainfall pattern is of the 
double maxima regime. The wet South-
West monsoon trade winds and the dry 
dust-laden North-East trade winds affect 
the climate of the area. The wet season 
spans April to July and September to 

Fig. 1. A sketch map of Ghana showing location of Obuasi
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October and a dry season from November 
to March. Mean annual rainfall ranges 
between 1250 mm and 1750 mm while the 

o
average annual temperature is 25.5 C. 
Annual  means  of  humidi ty  and 
evaporation values are 78% and 
3.3mm/day respectively; while the 
vegetation is a degraded and semi-
deciduous forest type with topographic 
heights ranging between 200 m and 500 m 
above sea level (Anon, 2009). 

Stream flow rates vary between 0 and 2 
3

000 m /hour in the dry season with average 
3

value as 1 000 m /hour for 5 months in the 
3

year, and between 374 and 10 454 m /hour 

in the wet season with an average flow rate 
3

of 5 410 m /hour for 7 months in the year 

(Foli et al., 2012). Annual flow velocity is 

determined as 0.993 m/s,  while 
-7

permeability varies from 1.0  ́10  m/s in 
-7

the mottled zone to 5.0  ́10  m/s in the 

pallid zone (Kumapley, 1983)
Obuasi is underlain by the Birimian 

formations which are classified into meta-

sedimentary and meta-volcanic groups 

(Kesse, 1985; Taylor et al., 1992). The 

meta-sedimentary rocks occupy the north-

western half of the area and comprise of 

low-grade metamorphosed rocks, that are 

associated with mica-rich ‘basin’ type 

granitoid (Kesse, 1985; Taylor et al., 

1992).The meta-volcanic group, separated 

from the meta-sedimentary group by the 

main Obuasi mineralised shear zone, is 

dominated by basalts with intercalated 

pyroclastic rocks, are also associated with 

the hornblende-rich ‘belt-type’ granitoid 

(Kesse, 1985; Taylor et al., 1992). 
Overlying the Birimian is the younger 

arenaceous and clastic Tarkwaian group, 

which occupy the south-eastern corner of 

the area (Kesse, 1985; Taylor et al., 1992). 

Superficial deposits occur as alluvium, 

soils, laterite and terrace gravel. Three 

major types of gold ore occurrences exist 

within the Ashanti belt; these are quartz 

reef and disseminated sulphides associated 

with the Birimian formation (Kesse, 

1985). The geology of the Obuasi area is 

presented in Fig. 2.
The gold ores contain varieties of 

sulphide minerals such as arsenopyrite, 
pyrite, pyrrhotite chalcopyrite and galena 
(Oberthur et al., 1994) with key 
geochemical signature as Fe-As-Pd-Sb-
Cu-Zn-S-Au system. Ore treatment 
methods are by both pyrometallurgy and 
hydrometallurgy, while the tailings are 
discharged to a repository, where, they 
may be rewashed to retrieve some residual 
gold. 

Methodology
Water sampling and analysis 
Tailings dam monitoring boreholes and a 
stream draining through the network of the 
tailings dams were sampled for As-mass 
time and As-mass distance analysis 
respectively. Sampling and analysis were 
designed according to APHA (1998) and 
AngloGold Ashanti Mine Laboratory 
Manual (Anon, 1994). The tailings 
monitoring borehole sites are labelled as 
g1, g2, g3, g4, g5 and g6, while the stream 
sampling sites are labelled as P1, P2, P3, 
P4, P5, P6, P7 and P8 over a distance of 
about 9.0 km. The sampling map for 
borehole monitoring, stream profile 
monitoring, as well as key environmental 
receptors such as tailings dams, streams, 
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Fig. 2. Geological sketch map of the study area

retaining pond and road infrastructure is 
presented in Fig. 3.

A total of 108 monitored water samples 
were taken from the six (6) borehole sites 
(g) for the purpose of As mass-time 
analysis. During the water sampling, 
about 500 ml-sized water bottles were 
washed using nitric acid, distilled water 
and de-ionised water and then dried in the 
sunshine. At each site, the water samples 
were drawn from the boreholes with about 
1-litre plastic bottles attached to a sling; 
the bottles were flushed three times with 
sample water before samples were taken. 
The samples were taken in multiples of six 
(6) for eighteen (18) sampling events that 
were spread over 24 months (Foli et al., 

2013) indicating six (6) missing data, short 
of achieving a monthly sampling regime, 
due to seasonal factors. Results were 
consolidated per event and considered as 
one sample on each occasion, as done by 
Newell et al. (2007). 

According to Newell et al. (2007); 1) a 
minimum of four boreholes is adequate for 
measuring contaminant per borehole 
during at least six sampling events spread 
over the monitoring period, 2) missing 
periods must not exceed two consecutive 
sampling times, 3) a minimum monitoring 
session of a year on quarterly basis was 
needed to establish a trend. In this 
research, however, sampling conditions 
were in excess of the minimum 
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requirements stated above, in order to 
obtain a more statistically meaningful 
correlation between the contaminant mass 
and time, as done by Barcelona et al. 
(1994). 

For the As  mass-distance monitoring, a 
total of 32 water samples, taken in batches 
of eight (8) which covered sampling points 
designated P1 to P8, was done along the 

stream monitored. The streambed was 
about 3.2 m from the ground surface. The 
sampling was done on a quarterly basis to 
minimise errors, as well as capture As 
behaviour at the specific sampling points 
over the periods (Newell  2007). This 
was at the time that all operational 
activities in the sampling area remained 
virtually the same.

et al.,

Fig. 3. Locations of tailing dam sites and sampling points.

P. M. Nude et al.: Arsenic Intensity Risk Assessment at AngloGold Obuasi Goldmine 7



Samples were not acidified in the field, 
but rather delivered to the laboratory 
within a maximum time of about one hour 
due to the proximity of the sampling 
locations to the laboratory. At the 
laboratory, samples were filtered with 
cellulose nitrate membrane filters of pore 
size 0.45 mm using vacuum filtration. The 
filtrates were acidified with concentrated 
HNO  at pH 2 to prevent precipitation of 3

metals. Samples were analysed for As 
concentration in water, using the Varian 55 
Atomic Absorption Spectrometry (AAS).

The certified reference material NIST 
CRM 1643d (National Institute of 
Standard and Technology) containing trace 
elements in water and total As at a certified 
concentration of 56.02 ± 0.73 mg/l 
(Anthemidis, 2005) had a measured value 
of 54.67 ± 0.89 mg/l with an accuracy of 
96.41% from certified levels of p > 0.05 
(e.g. Levman, 2011). The analytical 
characteristic for As determination was 
done by spiking with known concentra-
tions to equal fractions. Samples spiked at 
10 mg/l fortification level yielded mean ± 
standard deviation of 92.2 ± 0.55% in 
borehole data and 94.8 ± 0.37% in stream 
water data.

Bulk Density and Porosity of Subsurface 
Material

Bulk density (b) and porosity (0) were 
determined to establish some contaminant 
transport characteristics from both a 
disturbed and an undisturbed subsurface 
environment. First, the soil material 
trapped in a sampling pipe was extracted at 
a depth of about 3.3–3.4 m, representing 
the disturbed soil environment and similar 
to the depth of the streambed. Second, a 

percussion drill rig was used to extract soil 
core samples from bores of depth ranging 
between 3.4 and 15.5 m which also 
correspond to tailing monitoring boreholes 
which are the undisturbed environment or 
the groundwater environment. Bulk 
density and porosity of the extracted 
mater ia l  were  determined using 
procedures described in the BS 1377 
(1990).

Health impact and As pollution intensity 
assessment

The maximum threshold for lethal 
effect of As contamination is assumed to be 
> 0.50 mg/l (IPCS, 2001; FAO/WHO, 
2011a). The least As contamination value 
considered is also assumed to be < 0.01 
mg/l (WHO, 2010). A five-step intensity 
classification (BCI Pty Ltd., 2007) was 
defined by substituting the compliance 
value ranges listed in Table 1 below in As-
related model equations developed in this 
research. Descriptive terminologies for the 
quantitative classifications such as; Very 
certain, Certain, Non-conclusive, Possible 
and Rare (IPCS, 2001 and FAO/WHO, 
2011a) are assigned.

Results and discussion
Arsenic mass-time analysis
The arsenic mass-time analysis was done 
using borehole monitoring data. The 
purpose was to establish As degradation 
trend in the sub-surface. The results of As 
concentration in monitoring borehole 
samples ranged from 2.52 mg/l to 0.11 
mg/l as presented in Table 2. 

Based on Table 2, a linear regression 
analysis indicated that the regression 
coefficient between concentration and 
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TABLE 1
Variation of compliance values and remediation time range

 [As] mg/l Impact Health condition/Nature of impact References 

> 0.50 Very Certain Extreme dermal conditions and infections/ ATSDR (2000);
Life-threatening. Tseng (1977); 

Zaldivar (1980). 
0.5–0.10 Certain Cancers and skin lesions/Significant effects. Guo & Valberg (1997); 

WHO (2003).
0.10–0.05 Not-conclusive Toenail biomarker; Burning sensations; WHO (2011); 

motor sensory defects/Moderate effect. Murphy et al. (1981); 
Wesbey & Kunis (1981); 
WHO (2003).

0.05–0.01 Possible Early clinical symptoms/Minor effect. Murphy et al. (1981); 
WHO (2003).

< 0.01 Rare No discernible impacts

TABLE 2
Arsenic degradation in monitoring boreholes (g) sites

Months 1 2 3 4 5 6 7 8 9 10 11 12

As mg/l 2.52 2.00 0.93 1.22 – 1.64 1.00 – 0.97 – 0.73 0.71

Months 13 14 15 16 17 18 19 20 21 22 23 24

As mg/l – 0.54 0.52 – 0.31 0.22 0.40 0.23 0.11 – 0.14 0.11

time is 0.797. This implied that 
approximately  80% of  the  data  
demonstrated statistical significance at 
95% level of confidence (e.g. Levman, 
2011). For the same 95% level of 
significance, the spread of the data is 
observed to be between 0.45 and 1.135, 
while a t-test statistic showed that the 
model is significant at a p-value of 0.000 
(Foli et al., 2012; Foli et al., 2013). The As 
degradation curve and the Freundlich 
isotherm expression are compositely 
presented in Fig. 4.

From Fig. 4, the equations for the As 
degradation curve (left) and the Freundlich 

isotherm expression (right) are presented 
respectively as follows:

2 log [As] = 0.402 – 0.053t (R = 0.913) .. (6);
2log q = 0.615 log C – 0.415 .... (R  = 0.912 

…...... (7).
From equation 6, the negative gradient 

indicates that the As concentration 
reduced over time and under closed 
conditions, while from equation 7, the 
gradient value of 0.615, being closer to one 
(1) than zero (0) suggest that the As mass 
reduction is mainly as the result of 
adsorption (e.g. EPA, 2007). The 
remediation times in the borehole 
environment  were  es t imated by 
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substituting the compliance values of 0.5 
mg/l, 0.1 mg/l, 0.05 mg/l and 0.01 mg/l into 
equation 6, and the corresponding 
approximate times obtained were; 1, 2, 3 
and 4 years (Foli et al., 2013). Equation 6 
can, therefore, be used to establish a 
na tu ra l ly  moni to red  a t t enua t ion  
programme for the area, where the time 
expression for concentration changes can 
be used in setting environmental objectives 
and targets for use in environmental 
management plans for As in drainage. 

Arsenic mass-distance analysis
Results of stream profile study for As 

degradation at specific sampling points 
and estimated Freundlich isotherm data are 
presented in Table 3. 

From Table 3, ‘q’ is the concentration of 
adsorbate on the solid at equilibrium, and C 
is the total dissolved concentration 
remaining in solution at any observation 
point. The coefficient of variation (COV), 
defined as the ratio of the standard 

deviation to the mean of sample results is 
all less than 1, indicating that the data form 
a relatively close group about the mean 
value (Newell et al. 2007) and therefore 
consistent to be used. The initial 
concentration of As in the mass-distance 
monitoring is 2.49 mg/l and conforms to 
the average of 2.52 mg/l obtained for the 
mass-time analysis. The plots for As 
degradation and the Freundlich isotherm 
expression are presented in Fig. 5.
From Fig. 5 (left) As degradation with 
distance is described by:

–0.46d 2 C = 2.49e  ........ (R = 0.744) or, d  = n

2.174 In                ................................ (8), 

where C is the concentration in mg/L and 
distance in kilometres. Also, the 
Freundlich isotherm (Fig. 5 right) for the 
degradation expression is given by:
log q = 0.542 log C – 0.079 .............. (R² = 
0.850) …….….................................... (9).

From equation 9, gradient of 0.542 in 

Fig. 4. As degradation curve (left) and Freundlich isothem expression (right)
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TABLE 3
Stream profile study results for As degradation

Sampling point P1 P2 P3 P4 P5 P6 P7 P8

Distances (d) in km 0 1.13 2.42 3.49 4.49 5.23 6.97 9.00
As  (mg/l) 2.53 1.83 0.42 0.23 0.19 0.16 0.13 0.081

As  (mg/l) 2.47 0.84 0.41 0.22 0.20 0.15 0.11 0.102

As  (mg/l) 2.45 0.81 0.41 0.18 0.18 0.12 0.09 0.103

As  (mg/l) 2.51 0.80 0.42 0.20 0.17 0.13 0.11 0.094

Mean As (mg/l) [C] 2.49 1.07 0.42 0.21 0.19 0.14 0.11 0.09
Standard Deviation on [C] 0.04 0.51 0.01 0.02 0.01 0.02 0.02 0.01
Coefficient of Variance 0.01 0.47 0.01 0.11 0.07 0.13 0.15 0.11
MeanAs(mg/l)/km[q] 2.49 1.42 0.65 0.21 0.02 0.05 0.03 0.02
Log C 0.40 0.03 –0.38 –0.68 –0.72 –0.85 –0.96 –1.05
Log q 0.40 0.15 –0.19 –0.68 –1.70 –1.30 –1.52 –1.70

negative slope value and Cl > 95%, 
therefore, a decreasing trend is confirmed 
(Newell et al., 2007). The remediation 
distances along the stream profile were 
estimated by substituting the compliance 
values of 0.5 mg/l, 0.1 mg/l, 0.05 mg/l and 
0.01 mg/l, and the corresponding 
approximate distances obtained as 3 km, 7 
km, 8 km and 12 km. Also, the compliance 
values and the intervals can be used to set 
objectives and targets for setting 

Fig. 5.  As degradation curve (left) and Freundlich isothem expression (right)

the above equation, and also similarly as 
explained for the mass-time expression in 
equations 7, the reduction of As in the 
stream is mostly due to adsorption (e.g. 
EPA, 2007), as well as dilution from 
recharge sources or adsorption of the As to 
stream-sediment surfaces, as suggested by 
Carboo and Serfor-Armah (1997). From 
equation 8, the R

2
 value of 0.745 indicate a 

99% confidence interval (Cl) for the 8-data 
points used (e.g. DEP, 2004), and with the 
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TABLE 4
Logs of wet bulk density and porosity in the subsurface material

Type Bulk density Moisture content Dry density  Average bulk  Average 
(g/cc)  (%) (g/cc) density (g/cc) porosity

Boreholes (3.4–15.5m) 2.064 22.5 1.69 2.029 0.411
2.178 16.0 1.88
1.999 17.2 1.71
2.033 17.4 1.73
1.998 15.7 1.73
2.028 22.9 1.65
2.029 21.1 1.68
2.060 19.3 1.73
1.930 23.3 1.57
1.982 17.3 1.69
2.053 18.9 1.73
2.013 17.1 1.72
2.021 18.9 1.70
2.013 24.8 1.61
2.035 24.2 1.64

Pits (3.3–3.4m) 1.903 23.0 1.55 1.975 0.599
1.997 22.0 1.64
1.854 31.5 1.41
1.923 17.9 1.63
2.018 26.0 1.60
1.941 27.0 1.53
1.981 27.0 1.56
2.029 23.0 1.65
2.030 30.0 1.56
2.083 20.4 1.73
1.963 29.0 1.52

IOWA standard values  for clay/silt or fine sand material 1.0–2.4 0.26–0.60

environmental objectives and targets in 
EMPs.

Sorption Process and Retardation Factor
The logs for both wet bulk density and 

porosity determined are shown in Table 4. 
From Table 4, the wet bulk density and 

the porosity values are within the IOWA 
standard values for clay/silt material 
respectively (Domenico & Schwartz, 
1990). The pit material is comparable to 
the streambed material because of the 
depths (3.0–3.3 m) at which they occur. 

From the estimated average log values of 
the bulk density (b) of the material in 
Table 4, the intercept on the y-axes (A) and 
gradient (m) from equations 7 and 9, and 
equilibrium concentration (C ) of 0.5 mg/l e

(Foli et al., 2013), the retardation factor 
(Rf) and the solute velocity (sV) can be 
estimated. From equation 4, the 
retardation factor for the borehole and 
stream are estimated to be 1.96 and 1.074 
respectively, while from equation 5, the 

solute velocities are (sVb), as:             = 

12 West African Journal of Applied Ecology, vol. 24(2), 2016
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3.0  ́10

1.96



-11.53 ́  ms  and (sVb) as                  = 9.25              

-1
ms  respectively. 

Arsenic Impact Intensity
From Tables 2 and 3, the mean 

maximum As concentration for time (t) 
and distance (d), is 2.50 mg/l. From 
equations 6 and 8, the relative percentages 
of As intensity based on the compliance 
values estimated over the respective time 
and distance intervals are presented in 
Table 5. 

From Tables 5, the relative percentages 
of As concentrations remaining in water 
corresponding to the time and distance 
intervals were re-arranged into a model 
data layout (Table 6) and plotted using the 
excel software and presented in Fig. 6. 

From Fig. 6a, the model equations for 
both distance (d) and time (t) expressions 
are presented as: 

-1.33t -0.46d
 = 83.25e ; = 87.57e .................. (10), 
with R² values as 0.986 and 0.990 
respectively. The constants 83.25 and 
87.57 represent the intensity of As in both 

TABLE 5
Variation of compliance values in borehole and stream

As (mg/l) time distance Mass in water As (mg/ l) Time Distance % n

(yrs) km As /As % Range Range Range Rangen 1

2.50 0 0 100 – – – –
0.50 1 3 20 > 0.50 0–1 0–3 100–20
0.10 2 7 4 0.50–0.10 1–2 3–7 20–4
0.05 3 8 2 0.10–0.05 2–3 7–8 4–2
0.01 4 12 0.4 0.05–0.01 3–4 8–12 2–0.4
– – – – < 0.01 > 4 > 12 < 0.4

Fig. 6. Arsenic Impact Intensity Model [time: t (solid); distance: d (broken)]
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media. The percentage of intensity, 
however, must indicate the maximum 
100% as indicated in the model data-
layout (Table 6a). 

To obtain the maximum intensity in 
both cases, the initial data was adjusted to 
vary the intensity value upwards to 136% 
for the mass-time analysis and 124.5% for 
the mass-distance analysis to obtain the 
line-of-best-fit and also the maximum 
100% intensity expressions in the model 
plots (Fig. 6b) and in equation 11: 

-1.39t -0.47d
= 100e ; = 100e ........................ (11), 
with R² values as 0.979 and 0.987 
respectively, where the constant value of 
100 represents the maximum intensity. 

The adjusted model plots described 
above can be used for establishing 
exposure frequency and duration for As 
impact intensity risk. Although the input 
data into this composite model and the 
concept, in general, are not new, the 

application of the model for the intended 
purpose of risk assessment is an 
innovation. The spatial model can be used 
as a key methodology to initiate As risk 
assessment criteria for sulphide-rich mine 
environment with similar characteristics 
as the Obuasi goldmine.

Conclusions and recommendations
From the model, a period of about 4 years 
is required in monitoring boreholes and a 
distance of about 12 km is required along 
the stream profile for As concentration to 
reduce from the maximum value of about 
2.50 mg/l to 0.01 mg/l under closed 
conditions. The retardation factors and 
solute velocities of dissolved As in the 

-7 -1
environment were 1.96 and 1.53  ́10 ms  

-1
in the subsurface, and 1.074 and 9.25 ́  10  

-1ms  along the stream profile respectively. 
The As Pollution Intensity Risk model can 
be used for estimating the risk of As 

TABLE

Arsenic impact intensity model data layouts

(a) Non-adjusted data (b) Adjusted data

Time in yrs % Intensity Distance % Intensity    Time in yrs % Intensity Distance % Intensity

in km in km

0 100 0 100 0 136 0 124.5

1 20 1 1 20 1

2 4 2 2 4 2

3 2 3 20 3 2 3 20

4 0.4 4 4 0.4 4

5 5

6 6

7 4 7 4

8 2 8 2

9 9

10 10

11 11

12 0.4 12 0.4

 6
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contamination for low concentrations of 
the order of 2.5 mg/l and below, within the 
time and distance frames of 4 years and 12 
km respectively. The information can be 
used to establish environmental objectives 
targets for use in environmental 
management plans for remediation 
purposes. The As contaminant transport 
data can also be used to design water 
clean-up protocols for drainage sources. 
Finally, the information would serve as 
data for impact assessment and 
environmental inception plans, both of 
which are very important as inputs at the 
pre-project evaluation stages.

Acknowledgement
The authors acknowledge the Environ-
menta l  Serv ices  Depar tment  of  
AngloGold Ashanti, Obuasi mine for their 
assistance in the laboratory work.

References

Akabzaa T. M., Banoeng-Yakubo B. and Seyire J. 
S. (2007). Impact of mining activities on water 
resources in the vicinity of the Obuasi mine. West 
Afr J Appl. Ecol 11: 101–109.

Anon (1994). AGA Internal Report: Operating 
Manual for Environmental Laboratory Methods 
(Unpublished). p. 5–45 

Anon (2007). AGA Internal Report: Environmental 
Action Plan For Environmental Management: 
Revision 00; Procedure No.EMP/SHE/ 
UNIV/01 Controlled Document Level 3 
(Unpublished). p. 7–15

Anon (2009). Obuasi Municipality:http://www. 
ghanadistricts. (Accessed on the 1st of 
December, 2010).

Anthemidis A. N., Zachariadis G. A. and Stratis J. 
A. (2005) Determination of arsenic (III) and total 
inorganic arsenic in water samples using an on-
line sequential insertion system and hydride 
generation atomic absorption spectrometry: 
Analytica Chimica Acta  547  237–242

APHA (1998). Standard Methods for the 
Examination of Water and Wastewater, 18th 
edition. American Public Health Association 
Washington D.C. p. 1/3-1/23, 2/23-2/28, 3/49-
3/52, 3/61, 3/65-3/66, 4/18-2/24 and 4/65.

Asante-Duah D.  K.  (1996).  Managing 
Contaminated Sites: Problems Diagnosis and 
Development of Site Restoration. Copyright © 
John Wiley and Sons Ltd. British Library ISBN 
0-471-96633-9

ATSDR (2000). Agency for Toxic Substances and 
Disease Registry. Case Studies in Environmental 
Medicine (CSEM): Arsenic Toxicity. ATSDR 
Publication Number: ATSDR-HE-CS-2002-
0003.

Barcelona M. J., Wehrmann H. A. and Varijen M. 
D. (1994). Reproducible well-purging procedure 
and VOC stabilisation criteria for groundwater 
sampling. Ground Water,  32(1). 12–22

BCI Pty Ltd (2007). Broadleaf Capital 
International Property Limited: The Australian 
and New Zealand Standard on Risk Management 
AS/NZS 4360:2004 (Tutorial  notes) .  
http://www.ucop.edu/riskmgt/erm/documents/a
snzs4360_2004 (Accessed on the 3rd of January, 
2012)

BS 1377 (1990). British Standard Institution: 
Methods of Test for soils for civil engineering 
purposes; Part 2, Classification tests. p. 62

Carboo D. and Serfo-Armah Y. (1997). Arsenic 
Pollution in Stream Sediments in the Obuasi 
area. Proceedings of the Symposium on the 
Mining industry and the Environment, 
KNUST/IDRC. p. 114–119.

da Rosa D. and Lyon J. S. (1997). Golden Dreams, 
Poisoned Streams, Part 1 & 2. Mineral Policy 
Centre, Washington D.C, 1997. p. 2–26

DEP (2004). Department of Environmental 
Protection: Use of MNA for Groundwater 
Remediation: Contaminated Sites Management 
Series; Appendix C. www.environ.wa.gov.au 
(Accessed on the 20th of January, 2014).

Domenico P. A. and Schwartz F. W. (1990). 
Physical and Chemical Hydrogeology, 2nd 
edition: John Wiley & Sons, Inc., New York, NY. 
ISBN: 978-0-471-59762-9 528 pages. 
http://eu.wiley.com/WileyCDA/Section/id-
302283.html. (Accessed on the 2nd Oct. 2015).

Douben P. E. T. (1998). Perspectives on Pollution; 

P. M. Nude et al.: Arsenic Intensity Risk Assessment at AngloGold Obuasi Goldmine 15



In Pollution Risk Assessment and Management. 
John Wiley & Sons Limited, Chichester. ISBN 0 
471 97297 5. p. 1–20. 

EPA [Ghana] (1994). Environmental Protection 
Agency (Standards for Industrial/facility 
Discharges into Water Bodies and Water 
Courses), Regulation 20. 8 pp.

EPA (2007). Monitored Natural Attenuation of 
Inorganic Contaminants in Ground Water 
Volume 2; Assessment for Non-Radionuclide: 
U.S. EPA Office of Research and Development 
National Risk Mgt Research Lab. Ada, 
Oklahoma 74820.  p .  57–70.  (1–32) .  
www.epa.gov/nrmrl/pubs/600r07092/600R070
92.pdf (Accessed on 1st May, 2014)

Eppinger R. G., Briggs P. H., Rosenkrans D. and 
Ballestrazze V. (1999). Environmental 
Geochemical Studies of Selected Mineral 
Deposits in Wrangell- St. Elias Alaska National 
Park and Preserve, Alaska, http://pubs.usgs. 
gov/pp/p1619 p. 1–41 (Accessed on the 21st of 
July, 2016)

FAO/WHO (2011a). Evaluation of certain 
contaminants in food. Seventy-second report of 
the Joint FAO/WHO Expert Committee on Food 
Additives. Geneva, World Health Organization 
(WHO Technical Report Series, No. 959). 

FAO/WHO (2011b). Safety evaluation of certain 
contaminants in food. Geneva, World Health 
Organization; Rome, Food and Agriculture Org. 
of the United Nations (WHO) Food Additives 
Series, No. 63; FAO JECFA Monographs 8).

Feinglass E. J. (1973). Arsenic intoxication from 
well water in the United States. New England 
Journal of Medicine 288: 828–830.

Foli G., Hogarh J. N. and Antwi-Agyei P. (2010). 
Effectiveness of planning and implementation 
stages of the ISO 14001standards EMS at the 
Obuasi gold mine, Ghana. American Journal of 
Social and Management Sciences. 1(1): 1–12.

Foli G., Nude P. M., Amedjoe C. G. and Kyei L. 
(2012). Arsenic Leaching in Mill Tailings at the 
AngloGold Ashanti-Obuasi Mine, Ghana: 
Management of Contamination in the Related 
Water Environment. West African Journal of 
Applied Ecology 20 (1): 11–23.

Foli G., Gawu S. K. Y., Manu J. and Nude P. M. 
(2013). Arsenic sorption characteristics in 

decommissioned tailings dam environment at 
the Obuasi mine, Ghana. Research Journal of 
Environmental and Earth Sciences 5(10):  
599–610.

Foli G., Gawu S. K. Y. and Nude P. M. (2015) 

Arsenic Contamination and Secondary Mineral 

Evaluation in Mine Drainage Using Integrated 

Acid-B10.5ng the Fate and Transport of 

Monoaromatic Hydrocarbons in Groundwater: 

p. 10–11. www.iowadnr.gov/ portals/idnr 

uploads/ust/monohydrocarbonsguide.pdf 

(Accessed on the 20th of July, 2015). 
Murphy M. J., Lyon L. W. and Taylor J. W. (1981) 

Sub-acute arsenic neuropathy: clinical and 

electrophysiological observations. Journal of 

Neurology, Neurosurgery and Psychiatry, 44: 

896–900.
Newell C. J., Aziz J. J. and Vanderford M. (2007). 

Appendix A.2: Statistical Trend Analysis 

Methods: Afcee Monitoring and Remediation 

Optimization System Software: http://www.gsi-

net.com/en/software/free-software/ (Accessed 

on the 24th of May, 2015).
Nyer E. K. (1993). Practical Techniques for 

Groundwater and Soil Remediation. Lewis 

Publishers, Boca Raton, Florida. In Managing 

Contaminated Sites; Problems Diagnosis and 

Development of Site Restoration. Asante-Duah, 

K. (1996) John Wiley and Sons Ltd. British 

Library ISBN 0-471-96633-9); p. 43
Oberthür T., Vetter U., Mumm A. S., Weiser Th., 

Amanor J. A., Gyapong W.A., Kumi R. and 

Blenkinsop T. G. (1994). The Ashanti gold mine 

at Obuasi, Ghana: Mineralogical, geochemical, 

Stable isotope and fluid inclusion studies on the 

metallogenesis of the deposit. Geologisches 

Jahrbuch, D 100: 31–129.
Ramani R. V. (2001). Environmental Planning in 

the mining Industry. Progress and Prospects 

IMM  41:  5–9.
Sharma H. D. and Reddy K. R. (2004). Geo-

environmental Engineering, Site Remediation, 

Waste Containment and Emerging Waste 

Management Technologies, John Wiley & Sons, 

Inc., Hoboken, New Jersey, Chapter 8.
Smedley P. L., Edmunds W. M., West J. M., 

Gardner S.  J.  and Pelig-Ba K. B.  

2 West African Journal of Applied Ecology, vol. 24(2), 2016



(1996).Vulnerability of Shallow groundwater 

quality due Natural Geochemical Environment. 

2. Health problems related to groundwater in the 

Obuasi and Bolgatanga area, Ghana. British 

Geological Survey. BGS Technical Report 

WS/95/43
Taylor P. N., Moorbath S., Leube A. and Hirdes 

W. (1992). Early Proterozoic crustal evolution in 
the Birimian of Ghana: Constraints from 
geochronology and iso tope  geology.  
Precambrian Research. 56: 77–111.

Tseng W. P. (1977). Effects of dose–response 
relationship of skin cancer and black foot disease 
wi th  a r sen ic .  Env i ronmenta l  Hea l th  
Perspectives, 19: 109–119.

Wesbey G. and Kunis A. (1981). Arsenical 
neuropathy. Illinois Medical Journal, 150: 
396–398.

WHO (2001). Arsenic and Arsenic compounds: 
Geneva,  World Heal th  Organizat ion,  
International Programme on Chemical Safety 
(Environmental Health Criteria 224). 2nd edn. 
114 pp. https://www.google.com.gh/search?q 
=IPCS, Accessed on 2nd October 2015. 

WHO (2003) Arsenic in Drinking-water; 
Background document for development of WHO 
Guidelines for Drinking-water Quality: 
http://apps.who.int/iris/bitstream/10665/75375/
1/WHO_SDE_WSH_03.04_75_eng.pdf  
Accessed on the 5th of October, 2016

WHO (2010). Guidelines for Drinking-water 
Quality: Incorporating 1st and 2nd Addenda. Vol. 
1: Recommendations; 3rd edn., p 491.

Wilson E. and Solomon C. (2002). Metals Limits: 
Current Drinking Water Standards, EPA Office 
of Water and EPA Council on Agriculture, 
Science and Technology, and National Academy 
of Sciences.

Yong R. N. (2001).  Geo-environmental 
Engineering, Contaminated Soils, Pollutant 
Fate, and Mitigation, CRC Press, Boca Raton, 
Florida, Chapter X.

Zaldivar R. (1980). A morbid condition involving 
cardio-vascular, broncho-pulmonary, digestive 
and neural lesions in children and young adults 
after dietary arsenic exposure. Zentral blattfûr 
Bakteriologie und Hygiene, Abteilung I: 
Originale B. 170: 44–56.

P. M. Nude et al.: Arsenic Intensity Risk Assessment at AngloGold Obuasi Goldmine 17


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17



