
West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

116

Addressing Software Engineering Issues in Real-Time

Software Development Environment

1Anujeonye Nneamaka Christiana

,

2
Okonta, Okechukwu Emmanuel,

3
Wemembu,

Uchenna Raphael ,
 4
Imiere, E. E. ,

5
Aghware Fidelis

1,2

Department of Computer Science, Federal College of Education (Tech) Asaba.
2
 Department of Mathematics Federal College of Education (Tech) Asaba.

3
 Department of Mathematics, College of Education Agbor.

4
Department of Physics Federal College of Education (T) Asaba

5
Department of Computer Science College of Education Agbor.

Abstract

Real-time systems are normally deployed in a wide range of applications such as

transportation systems, manufacturing process, process control, military, space exploration,

and telecommunications. These systems must satisfy not only logical functional requirements

but also physical properties such as timeliness, Quality of Service and reliability. The cross-

cutting behaviours imposed by these functional properties and dependencies on operational

characteristics such as hardware, Operating System and firmware platforms that are used;

have traditionally led to hard-to-code, hard-to-understand and hard-to-change software that

are engineered. In this research paper we have identified few software engineering issues in

the development of real time systems and provided brief description of each of those issues

and strived to make serious effort to proffer creditable and functional solutions.

Key Words: Real time systems, logical functional requirements, Quality of Service,

Reliability, software engineering issues

__

Introduction

 Real-time computing is an enabling

technology for many important application

areas, including process control, nuclear

power plants, agile manufacturing,

intelligent vehicle highway systems, air-

traffic control, telecommunications,

multimedia, real-time simulation, virtual

reality, medical applications, and military

applications. In almost all safety-critical

systems and many embedded computer

systems are visible real-time systems.

Further, real-time technology is becoming

increasingly important and pervasive, e.g.,

more and more infrastructure of the world

depends on it. Strategic directions for

research in real-time computing involve

addressing new types of real-time systems

including open real-time systems, globally

distributed real-time, and multimedia

systems. For each of these, research is

required in the areas of system evolution,

the actual software engineering, the

science of performance guarantees,

reliability and formal verification, general

system issues, programming languages,

and education. Economic and safety

considerations, as well as the special

problems that timing constraints cause,

must be taken into account in the

solutions. [2]

 In this research paper, we will be

surveying some research activities carried

out in the field of Software Engineering

with relation to Real-Time systems. A hard

real-time computer system is required to

produce the intended result before a

specified point of physical time, the

deadline. This point of time is determined

by the application the computer system is

West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

117

intended to service. The controlling real-

time software must be designed to

generate the correct behaviour of the

computer both in the value domain and in

the temporal domain to meet these

application requirements. Since the

temporal behaviour of the software

depends on the performance of the

computer hardware, software engineering

for real-time systems must take into

consideration the architectures and

capabilities of the available computer

hardware. It follows that the software

design methods and architectures of real-

time systems will be strongly influenced

by the given hardware environment and

consideration. [1]

 These are some of the software

engineering issues we identified in the

development of real-time systems:

 Requirements Analysis

 Re-engineering

 Validation

Requirements Analysis

 All engineering is about how to produce

products in a disciplined process. In

general, a process defines who is doing

what, when and how to reach a certain

goal. A process to build a software product

or to enhance an existing one is called a

software development process. A

software development process is thus often

described in terms of a set of activities

needed to transform a user’s requirements

into a software system.

 The client’s requirements define the

goal of the software development. They

are prepared by the client (sometime with

the help from a software engineer) to set

out the services that the system is expected

to provide, i.e. functional requirements.

The functional requirements should state

what the system should do rather than how

it is done. Apart from functional

requirements, a client may also have non-

functional constraints that he or she would

like to place on the system, such as the

required response time or the use of a

specific language standard. We must bear

in mind the following facts which make

the requirement capture and analysis very

difficult:

 The requirements are often incomplete.

 The client’s requirements are usually

described in terms of concepts, objects

and terminology that may not be

directly understandable to software

engineers.

 The client’s requirements are usually

unstructured and they are not rigorous,

with repetitions, redundancy,

vagueness, and inconsistency.

 The requirements may not be feasible.

Therefore, any development process

must start with the activities of

capturing and analyzing the client’s

requirements. These activities and the

associated results form the first phase

(or sub-process) of the process called

requirement analysis. The purpose of

the requirement capture analysis is to

direct the development towards the

right system. Its goal is to produce a

document called requirement

specification. The whole scope of

requirement capture and analysis forms

the so-called requirement engineering.

 High-level design of the computerized

component of a critical system is not

performed in a vacuum but strongly

depends on models and assumptions

regarding, besides device itself, the

environment, the sensors and the actuators.

 Therefore, writing the design

specifications, from which the

development of the device can start, is not

the first activity of the development

process, but must be the result of a

preliminary phase whose purpose is to

state, analyze, and prove the user

requirements (typically stated very

abstractly in terms of some safety or utility

property) by modelling the system in its

entirety, including the device and all the

other components.

 The modelling and analysis activities

must be formal, to provide a support in

West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

118

dealing with complexity, to obtain

mechanized checks for correctness,

completeness, and consistency, and to

certify the obtained results. This in turn

requires the adoption of a formal notation,

which also ensures absence of ambiguity,

thus preventing misinterpretation among

people, participating to system

requirements analysis, who often have

quite heterogeneous cultural backgrounds.

To facilitate communication, discussion,

and mutual understanding, the formal

notation must be flexible, expressive, and

high level. It must be able to model in

natural way real-world entities, basic

notions such as events, actions, states (i.e.,

properties or values of system

components, possibly having non null

duration), continuity or finite variability,

(non) determinism, and cause-effect

relations. [3]

Re-engineering

 There is a growing demand for software

tools that can assist in designing,

analyzing, and debugging embedded real-

time applications. In the literature, various

techniques based on real-time scheduling

theory and formal methods have been

proposed and many of them are

implemented into software tools. Also, a

number of commercial CASE tools have

been developed and widely used. While

most of these tools put an emphasis on the

development aspect of embedded real-time

systems, in practice, a great deal of effort

is put into re-engineering of already

developed systems. The re-engineering of

an embedded system is defined as a

development task of meeting newly

imposed performance requirements after

its hardware and software have been fully

implemented.

 In the industry, a large number of new

lines of products are released merely as

update of older designs. During product’s

re-engineering cycle, developers are often

faced with tasks which involve intensive

hand-tuning of embedded system designs.

These tasks are often very difficult to carry

out since product’s developments are

usually under very strict cost and

performance constraints. However, it is

fairly obvious that such a naïve approach

will fail in practice due to the excessive

price of the final products. Thus, it is

inevitable for the engineers to pinpoint

performance bottlenecks in the old design

and carefully choose only those parts that

can lead to about 25% performance

improvement at the least cost. Such a task

of performance re-engineering will get

even more difficult if the original

developers have been relocated to another

project, or if the original systems were

developed in an ad hoc manner. Worse

still, there are very few tools to aid in

performing such a re-engineering task,

even though engineers are under tight

deadline constraints for reduced time-to-

market. Performance re-engineering

involves analyzing a heterogeneous

distributed multiprocessor hardware

platform since an embedded real-time

system often consists of multiple

microcontrollers, ASIC (application

specific integrated circuits) chips, and

electro-mechanical components. In

addition, performance re-engineering

possesses very distinct and inherent

characteristics: (1) software and firmware

code of the underlying system has been

developed and well-tested; and (2) task

allocation and scheduling have been

already completed. [4]

Validation

 At the end of the development cycle it

must be decided whether a given system is

safe to deploy in the intended application

area. If this application area is safety

critical, i.e., a failure of the computer

system can result in high financial loss or

even a catastrophe where human lives are

endangered then this decision is difficult.

Many safety critical applications demand a

level of dependability that cannot be

established by state of the art testing

technology. Some trends in the field of

West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

119

validation of high dependability real-time

systems are:

Process versus Product

 Since it is beyond the state of the art to

validate by testing that a large real-time

system is free of critical design errors, the

validation emphasis has shifted from the

analysis of the product to the analysis of

the development process of the product in

the past few years.

Worst Case scenario

 The time specifications at the

architecture design level identify the

deadlines the component must meet under

all specified operational conditions.

During component design it must be

demonstrated, that these deadline will

never be missed. A necessary prerequisite

for this temporal validation is knowledge

about a tight upper bound of the worst case

execution time of all time-critical process

inside a component.

Simulation

 Large real-time systems require a closed

loop simulation in the laboratory to

demonstrate that the system provides the

intended services.

Formal Verification

 A safety case is the accumulation of

evidence from different sources that

establishes the rational basis for the

decision that a safety critical complete

system is safe to deploy. The formal

analysis of critical algorithms that are used

in the system can form a convincing

argument in the safety case. [1]

Composing Modules with Synchronization

and Real-Time Constraints Using

 Category Theory

 Nowadays, complex real-time,

embedded software systems are typically

being composed out of reusable and

mostly deployable components. The

authors are aware of the paper presented

by Varma and Sinha which presents a

formal framework that utilizes the

concepts of category theory to provide for

a rigorous, consistent and traceable

composition of modules with constraints.

 The main contributions of the paper are

to:

 Introduce the formal framework to

facilitate the composition process.

 Define modules and their contracts for

their interactions.

 Illustrate composition with constraints

and its correctness using concepts of

category theory.

 Their paper gives an overview of

component (module) composition utilizing

concepts of category theory. [8]

Figure 1: Module Interfaces

 Module specifications are defined by

utilizing the notion of push-out operation

from category theory. Given specifications

A and B, and a specification R describing

syntactic and semantic requirements along

with two morphisms f and g, the push-out

operation gives specification R which

contains A and B.

Composition of module specifications:

 The composition scheme allows two

modules to be interconnected via export

and import interfaces. The push-out of the

two modules is the resulting specification

of the composed module.

West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

120

Figure 2: Composition of two modules

 Figure 2 depicts the composition

operation, where Module 1, M1 = (R1, A1,

B1, P1) and Module 2 = (R2, A2, B2, P2).

In Fig (a), Module 1 imports via

specification B1 whatever Module 2

exports via specification A2. The

compatibility of the parameters is

governed by morphism t. In this case, the

resulting composed module M12 is (R1,

A1, B2, P12), where P12 is the push-out of

P1 and P2 over B1. Furthermore, as the

composed module commuted, i.e., its

construction being proven correct, it can

also be reused for subsequent composition.

Specifications with Constraints:

 A module specification with constraints

written as MC = (RC, AC, BC, P, f, k, g,

h) consists of three specifications with

constraints: (a) RC = (R, Cr), (b) AC = (A,

Ca), (c) BC = (B, Ca), a specification

without constraints P, and four morphisms

f, k, g, h such that the basic part of M of

MC given by M = (R, A, B, P, f, k, g, h) is

a module specification without

constraints).

Composition with Constraints:

Figure 3: Composition of two modules

with constraints

 Given two module specifications with

constraints MC1 and MC2 and an interface

passing morphism v from MC1 to MC2

i.e., a pair v = (s, t) of specification

morphism s: (B1, CB1) -> (A2, CA2) and

t: (R1, CR1) -> (R2, CR2), the

composition MC12 of MC1 and MC2 via

v written as MC12 = {(R1, CR1), (A1,

CA1), (B2, CB2), P12}.

Union with Constraints:

 Given module specifications with

constraints MCj for j = 0, 1, 2 and module

morphisms f1: MC0 -> MC1 and f2: MC0

-> MC2, the weak union MC3 of MC1 and

MC2 via MC0 is written as MC3 = MC1 +

mcoMC2. Furthermore, PC3 = PC1 +

pcoPC2, RC3 = RC1 + rcoRC2, AC3 =

AC1 + acoAC2, and BC3=BC1+bcoBC2.

Proposed Framework

 The main objective of proposed

framework is to facilitate the composition

of modules with constraints. The initial

step is the identification of modules

(components) based on the working

principles of the system. These

components are then specified formally by

defining sorts, operations and equations

for the parameter, import and export

interfaces of the component. A set of

contracts or constraints for each of these

components are defined along with their

specification. Currently, contracts being

defined include timing and

West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

121

synchronization constraints in the

components. Other non-functional

properties such as bandwidth and memory

constraints can also easily be described as

contracts. The composition of theses

modules to result in a complete system is

achieved via category theoretic operations.

The final system is when verified for the

correctness against a set of requirements

prescribed for the system and the

constraints resulting over the composition.

Concept of Contracts:

 A software component can be defined as

an independently deployable unit of

composition with contractually specified

interfaces. Internal contracts are

constraints imposed on the stand-alone

component. This generally deals with the

initial values and constraints on the

operations that can be performed by the

component. External contracts are

introduced as a result of inter-component

interaction. The resulting constraints being

imposed effect on the operation of the

interacting components.

Contracts and Morphism Definitions:

 Morphisms define a rule in which two

categories or components combine to form

a composed category or components

combine to form a composed category or a

subsequently reusable component.

Contracts play an important role in the

morphism function definition. The

morphism that combines two components

is the functional implementation of the

internal and external contracts that exist in

each of the components. Thus, it can be

summarized that morphisms are derived

from the contracts that exist in each of the

components.
Architecture for Embedded Software

Integration using prototype Components
 Behaviours of integrated software in the

architecture proposed by Shige Wang and

Kang G. Shin [12] are modelled as Nested

Finite State Machines (NFSMs). The

NFSM model supports compositional

behaviour specifications. It further

supports incremental and formal behaviour

analysis. The behaviour correctness of

such an integrated system can be verified

using an approach similar to that in [10].

Furthermore, since a given behaviour can

be implemented by different FSMs [11],

different components may be selected for

integration to meet different constraints

while achieving the same behaviour. The

behaviours specified in other models or

languages can be converted to this model

using translators. The integrated

behaviours can then be specified in a

Control Plan program for remote and

runtime behaviour reconfiguration. This

architecture also separates other non-

functional constraints, especially timing

and resource constraints, from

functionality and behaviour integration so

that these constraints can be analyzed and

verified incrementally and as early as at

design phase.

Component Structure

 Components are pre-implemented

software modules and treated as building

blocks in integration. The integrated

embedded software can be viewed as a

collection of communicating reusable

components. Figure 4 shows the embedded

software constructed by integrating

components.

West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

122

 Fig. 4: Integration of embedded software

 The component structure defines the

required information for components to

cooperate with others in a system. The

software component is modelled as a set of

external interfaces with registration and

mapping mechanisms, communication

ports, control logic driver and service

protocols, as shown in Figure5.

Figure 5: Reusable component structure

External interfaces:

 External interfaces define the

functionality of the component that can be

invoked outside the component. In this

model, external interfaces are represented

as a set of acceptable events with

designated parameters. A component with

other forms of external interfaces, such as

function calls, can be integrated into the

system by mapping each of them to a

unique event

Communication ports:

Communication ports are used to connect

reusable components, i.e., they are

physical interfaces of a component. Each

reusable component can have one or more

communication ports.

Finite State Machine driver:

 The control logic driver, also called the

FSM driver, is designed to separate

function definitions from control logic

specifications, and support control logic

reconfiguration. The FSM driver can be

viewed as an internal interface to access

and modify the control logic, which is

traditionally hard-coded in software

implementation.

Service protocols:

 Service protocols define the execution

environment or infrastructures of a

component. Example service protocols

include scheduling policies, inter-process

communication mechanisms and network

protocols.

System Integration

 Software integration includes

component selection and binding, and

control plan construction (both control

logic and operation sequence). A runtime

system can be generated by mapping the

integrated software onto a platform.

West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

123

Composition Model

 The composition model defines how

software can be integrated with given

components. Since each reusable

component is implemented with a set of

external interfaces that uniquely define its

functionality, components can be selected

based on the match of their interfaces and

design specifications. The integration of

reusable components can be viewed as

linking the components with their external

interfaces. Reusable components in

integrated software are organized

hierarchically to support integration with

different granularities, as illustrated in

Figure6.

Figure 6: Hierarchical composition

model

 The behaviour of an integrated

component can then be modelled as

integration of its member component

behaviours. The control logic and

operation sequences of each component

can be determined individually and

specified in a Control Plan. The behaviour

specifications can further be classified as

device-dependent behaviours and device-

independent behaviours. The device-

independent behaviours depend only on

the application level control logic, and can

be reused for the same application with

different devices. The device-dependent

behaviours are dedicated to a device or a

configuration, and can be reused for

different applications with the same

device.

 With such a composition model, both

components for low-level control such as

algorithms and drivers and for high- level

systems can be constructed and reused.

However, additional overhead is

introduced as the component level is

increased, and may results in associated

performance penalties due to excessive

communications and code size.

Runtime System Construction

 The integrated software obtained from

the composition model cannot be executed

directly on a platform since the

composition model only deals with

functionality. To obtain executable

software, components have to be grouped

into tasks, which are basic schedulable

units in current operating systems. Each

task needs to be assigned to a processor

with proper scheduling parameters (e.g.,

scheduling policy and priority) determined

by an appropriate real-time analysis. Also,

communications among components

should be mapped to the services

supported by the platform configuration.

After these pieces of information are

obtained, the components can be mapped

to the platform by customizing their

service protocols. Error! Reference

source not found.7 shows the mapping

from functional integrated software to a

runtime system with our architecture.

West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

124

Figure 7: Runtime System Geenration from Composition

Conclusion

 This paper has put forth an initial effort

in development of a formal framework for

composition of modules that have

synchronization and real-time constraints.

Category-theoretic framework is discussed

to assist realizing such compositions. One

of the benefits of proposed framework is

that it facilitates tracing of impacts or

influences of a specific constraint imposed

on a modules could have on other modules

over an interaction.

 In addition, a component-based

architecture for embedded software

integration is discussed above. This

architecture defines components and a

composition model as well as a behaviour

model. A reusable component in the

architecture is modelled with a set of

events as external interfaces,

communication ports for connections, a

control logic driver (FSM driver) for

separate behaviour specification and

reconfiguration, and service protocols for

executing environment adaptation. Such a

structure enables multi-granularity and

vendor-neutral component integration, as

well as behaviour reconfiguration. [12]

 Lastly we discussed reusable component

architecture for real-time systems.

Accordingly these systems can be

modelled with a set of events as external

interfaces, communication ports for

connections, a control logic driver for

separate behaviour specification and

reconfiguration, and service protocols for

executing environment adaptation. The

control logic of each component is

specified in a state table separately from

the component implementation, and can be

reconfigured remotely and dynamically

which also allows the verification to be

done independently of implementation,

and incrementally as the integration

continues.

Recommendations

 The issue of reusable interface should

form further research work in this area.

 The delivery method, and error

detection in terms of quality assurance

was also not treated because the

operational specification in a real time

distributed system with fail safe

architecture was addressed and can

form further research work in order to

provide a good linking interface.

__

References

[1] Hermann Kopetz (2000). Software Engineering For Real-Time: A Roadmap. Proceedings of

 The Conference On The Future Of Software Engineering

[2] John A. Stankovic (1996) Strategic Directions in Real-Time and Embedded Systems. ACM

 Computing Service, Vol. 28, No. 4.

[3] Gargantini and Angelo Morzenti.(2001) Automated Deductive Requirements Analysis of

West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

125

Critical Systems. ACM Transactions on Software Engineering and Methodology, Vol.

10, No. 3.

[4] Minsoo Ryu, Jungkeun Park, Kimoon Kim, Yangmin Seo, and Seongsoo Hong(1999).

Performance Re-engineering of Embedded Real-Time Systems. ACM SIGPLAN

Notices , Proceedings of the ACM SIGPLAN 1999 workshop on Languages,

compilers, and tools for embedded systems, Volume 34 Issue 7.

[5] Jan Richling, Matthias Werner, Louchka and Popova-Zeugmann (2002) “Automatic

 Composition of Timed Petri-net Specifications for a Real-Time Architecture”

[6] C. L. Liu and James W. Layland,(1979) “Scheduling algorithms for multiprogramming in a

 hard-real-time environment,” Journal of the ACM, vol. 20, no. 1.

[7] Jan Richling (1999), “Komponierbare Echtzeitsysteme — Entwurfsmethodeund

Architekturentwurf,” Tech. Rep. Informatik Bericht 127, Institut f¨ur Informatik,

Humboldt-Universit¨at, Berlin, Germany.

[8] Varma, N.and Sinha, P.(2003); Composing modules with synchronization and real-time

constraints using category theory. Electrical and Computer Engineering, 2003. IEEE

CCECE 2003. Canadian Conference on , Volume: 2 .

[9] Kopetz, H and Suri, N.(2003) Compositional design of RT systems: a conceptual basis for

specification of linking interfaces. Object-Oriented Real-Time Distributed

Computing, 2003. Sixth IEEE International Symposium .

[10] R. Alur and M. Yannakakis. (1998) Model checking of hierarchical state machines. In

Proceedings of the 6
th

 ACM Symposium on Foundations of Software Engineering,

Lake Buena Vista, FL.

[11] T. Villa (1997). Synthesis of Finite State Machines: logic Optimization. Kluwer Academic

 Publishers.

[12] Shige Wang and Kang G. Shin (2000). An Architecture for Embedded Software Integration

Using Reusable Components. In Proceedings of the 2000 international conference on

Compilers, architecture, and synthesis for embedded systems.

