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ABSTRACT
Zangemar River is an ephemeral river located in the northwestern part of Iran. Maku and Poldasht are hydrometric stations 
located upstream and downstream of Zangemar River, respectively. The measured flood hydrograph indicates that the 
output hydrograph volume from Poldasht station is significantly less than the input hydrograph for Maku station, though 
there are no lateral outflow branches and the amount of evaporation and direct removal from the river reach during flood 
events is negligible. These transmission losses can be caused by infiltration into the streambed and floodplain. Due to 
transmission losses and lack of initial flow, flood routing in these rivers is impossible to achieve through conventional 
methods and it is essential to develop new flood routing methods. Therefore, in this study a computer model for natural 
river cross-sections has been developed in which partial differential equations of non-uniform unsteady flow (Saint-Venant 
equations) are solved by finite difference methods. These equations have been developed by adding Muskat’s equation in 
such a way that seepage losses can be calculated simultaneously. The results showed that with consideration of seepage 
losses the developed model can predict the output hydrograph with good accuracy, compared to the field data. The results 
of flood routing for 13 input hydrographs showed that the seepage loss volume in the river reach is about 74% of the input 
hydrograph volume, on average. The model predicts seepage losses with a mean error of about 9.93% and the maximum 
error is less than 20%.
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INTRODUCTION

Flooding flow volume in seasonal streams decreases due to 
evaporation as well as channel wall and bed penetration. 
Effective parameters determining transmission losses are 
(Joseph et al., 2004): (i) runoff volume and velocity; (ii) channel 
geometry; (iii) vegetation presence on the river path; (iv) man-
made hydraulic structures like dams, checks and bridges; (v) 
location of groundwater table; (vi) characteristics of river side 
and bed soil; (vii) total volume of porosity of side and bed soil 
and pore size, shape and continuity; and (viii) the evaporation 
process. Boroto and Görgens (2003) revealed that the trans-
mission losses could be as high as 30% of the runoff discharge. 
In dry regions, the groundwater table is fed mostly by trans-
mission losses, which are considered to be the key factor for 
replacing the freshwater extracted from the groundwater table 
(De Vries and Simmers, 2002). Knighton and Nanson (1994) 
studied a long river (400 km) and a short river (32 km) in 
Australia. Their results showed that the Muskingum method-
ology could only estimate the short river’s output hydrograph 
correctly. Vivarelli and Perera (2002) classified the methods 
for estimating transmission losses into 5 groups: (i) simple 
regression equation; (ii) simplified differential equation; (iii) 
combined use of simplified differential and regression equa-
tion; (iv) flow routing model (kinematic wave, Muskingum, 
and Saint-Venant equation); and (v) hydrologic budget. Using 
each of these methods has certain restrictions, such as the 
scale of the problem. Simple methods require less information 
about the physical features of the channel but are less general 
in application. According to Lane et al. (1980), the combined 
method, because of its ability to take losses into consideration, 

and the regression method, due to its development of predic-
tion equations, are the most reliable amongst the mentioned 
methods.

Dynamic wave-based flood routing models can be useful 
for flow analysis and transmission loss estimation. But infil-
tration and seepage losses are complex issues in flood events, 
and model accuracy depends on using a suitable equation for a 
special condition (Liu et al., 2011). Ghobadian (2011) evaluated 
seepage losses for a branch of Hughes wash ephemeral stream 
(in Walnut Gulch watershed in southeastern Arizona) by solv-
ing 1-D flow equations (Saint-Venant) coupled with seepage 
equations such as Muskat’s, Davis-Willson, and Ingham. He 
demonstrated that Muskat’s equation estimates seepage losses 
better than other equations for single channels. Ghobadian 
and Fathi-Moghadam (2013) developed a computer model to 
calculate unsteady transmission losses in ephemeral branching 
unsteady streams. The Saint-Venant equations in their model 
were coupled with seepage equations in order to evaluate leak-
age losses. Their analysis indicated that Muskat’s equation is 
able to estimate seepage losses much more realistically than 
Davis-Willson’s and Ingham’s equations. Also, the results of 
their model for a complex network of channels showed that 
seepage is sometimes high enough to change flow direction in 
a branch.

Lang (2005) predicted seepage losses for 14 flood events 
in 150 km of the Kuiseb River in the Namib Desert, Namibia. 
His results showed that input hydrographs with higher peak 
discharges have greater seepage losses. Cataldo et al. (2005) 
proposed that discharge appears to be the initial factor affect-
ing transmission losses, not only in the arid west of the United 
States but also in some Midwestern streams. Moreover, they 
indicated that in regions in which most flood events result from 
intensive convectional storms, the location of the storm over 
the watershed also affects transmission losses. Tewolde and 
Smithers (2006) assessed the Muskingum-Cunge method for 
flow routing in ungauged river reaches both with and without 
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lateral inflows. Their results showed that the computed outflow 
hydrograph generated using the Muskingum-Cunge method, 
with variables estimated using both the empirical relationships 
or assumed cross-sectional shapes, was reasonably accurate 
with respect to volume, peak discharge, timing of peak flow, 
and shape.

Al Faruque and Balachandar (2013) investigated the effect 
of seepage on different turbulent characteristics for an open 
channel flow. Their results revealed that the effect of seepage 
on different turbulent characteristics was not restricted to the 
near-bed region but could be seen for most of the flow depth. 
Also the effect of injection on different turbulent characteristics 
was more evident with the lower flow rate. 

Battle-Aguilar and Cook (2012) artificially flooded 7 m 
of an ephemeral stream in southern Australia to calculate 
stream infiltration rates and to determine how the infiltration 
rate varies with stream depth. Infiltration rates were found to 
vary between 0.3 and 1.8 m2/d for water depths between 0.2 
and 0.38 m. in some studies, satellite imagery has been used 
to discern flow loss rates along a stream reach (Walter et al., 
2012) where an adequately long period of record is available 
and a number of flow events are captured. In another use of 
satellite imagery, Costa et al. (2012) integrated gauged flow 
measurements with satellite imagery to determine riverbed 
geometry and river dynamics between stream gauges, in order 
to estimate relationships between input flow and transmission 
losses for 60 km of the Middle Jaguaribe River, Brazil. Using 
this method they were able to develop an empirical relation-
ship for transmission losses over a range of input flows. Owing 
to the inability of the kinematic wave to match flood wave tim-
ings in several large, very gently sloped channels in Colorado, 
USA, Shanafield et al. (2014) used the more complicated 
diffusion wave comparability to better capture momentum 
losses along 0.1–0.4 km segments of the channel. Shanafield 
and Cook (2014) developed a model that couples the diffusion-
wave approximation with Philip’s infiltration equation and 
MODFLOW to estimate the streambed’s saturated hydraulic 
conductivity. 

A computer model for flow routing of seasonal streams 
must be able to evaluate transmission losses in order to provide 
the users with the correct runoff water level and rate of ground-
water recharge. In the present study a 1D computer model is 
developed in which the unsteady flow equations are coupled 
with Mouskat’s equation in order to calculate seepage losses in 
Zangemar River. In the mentioned model, a finite difference 
scheme is used to solve Saint-Venant equations. 

MATERIALS AND METHODS

General characteristics of the area

Aras catchment is located in the northwestern part of Iran and 
Zangemar River is one of the major drainages of this basin, 
draining 5 574 km2 of its area. In this study hydrodynamic data 
from Maku hydrometric station, located upstream, and Poldasht 
hydrometric station, located downstream, are used in order to 
estimate Zangemar River flood routing. Figure 1 shows the route 
of Zangemar River between Maku and Poldasht hydrometric sta-
tions. Some of the river reach cross-sections are shown in Fig. 2. 
Maku station is located at 44°31′36.8″ longitude and 39°17′20.3″ 
latitude and Poldasht station is located at 45°3′36.86″ longitude 
and 39°20′48.3″ latitude; Maku and Poldasht stations altitudes 
are 1 200 and 800 m, respectively. The length of Zangemar River 
between the two stations is 62 km; the slope of the first 10 km 
upstream is 0.02 and the slope of the 52-km downstream end of 
the river is between 0.003 and 0.007. The roughness coefficient 
varies along the 62-km length of the river reach based on char-
acteristics such as bed roughness, type and density of vegetation, 
and path shape, and ranges from 0.035 to 0.05. 

Numerical model

Due to substantial differences between the measured input/
output hydrograph volumes at Poldasht and Maku stations and 
the lack of a tributary branch between the two stations, flood 
routing is performed for this river by solving continuity and 
momentum equations known as Saint-Venant equations simul-
taneously, and by taking seepage losses into account. In the 
developed model, the following equations are solved: 

  ∂Q ___ ∂t   –   
2βQTW ∂Z

 _________ A∂t   +   
2βQqL ______ A   – β   Q

2∂A _____ A2∂x   = –gA  ∂A ___ ∂x   – g  
nm

2Q|Q|
 _______ AR(4/3)  

 (1)

  ∂Q ___ ∂x   + TW   ∂Z ___ ∂t   = q1 (2)

where: Q = flow discharge, A = flow area, Z = water surface eleva-
tion, Tw = water surface width, β = momentum coefficient, nm = 
Manning’s roughness, R = hydraulic radius, x =distance along 
the channel length, t = time, ql = lateral input/output discharge 
per unit length of canal which is considered equal to seepage 
losses in the present study. In order to calculate the seepage 
discharge through wetted boundary of river (qL), the following 
Muskat’s equation is used (Fotuhi and Hosseini, 2007):

Figure 1
Plan view of Zangemar River
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Figure 1 
Plan view of Zangemar River 
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q1 = ky  [ 1.07  (   T __ y   )  + 1.786 ]  ×  (   m ___ 1.5   )  (3)

where: k = saturated hydraulic conductivity (m/s), y = flow depth 
(m), m = side slope of channel. It should be noted that Eq. 3 has 
been written for conditions under which the groundwater level is 
extremely far away from the channel bed. The Muskat’s equation is 
valid when the distance between groundwater tables and the river 
water surface is 2 times more than the water depth in the river. 

Continuity and momentum equations are discretized 
using finite difference methods. The river reach is gridded 
using the staggered grid scheme (Fig. 3), that is, the continuity 
equation is discretized on even-numbered cross sections and 
the momentum equation is discretized on odd-numbered cross 
sections.

The input hydrograph and stage-discharge relation are used 
as upstream and downstream boundary conditions, respectively.

Figure 2
Some cross-sections of Zangemar River: A: 0.394 km, B: 4.1km, C: 26.02 km, D: 62 km from end of reach.

Figure 3
Staggered grid of the river
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• : A section on which momentum equation is discrete and discharge is calculated 
� : A section on which continuity equation is discrete and water surface is calculated 
 
Figure 3 
Staggered grid of the river 
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For the case of using Muskat’s equation for estimating the 
seepage losses, the linear form of the continuity equation on 
even nodes is used as follows:

aci × Qn+1 i–1 + bci × Zn+1 i + Cci × Qn+1 i+1 = dci (4)

where:

aci = –   θ ___ xi+1
   = –cci

bci =   
TN

W1 ____ Δt  

dci =   
(1 – θ)(Qn

i+1 – Qn
i+1)  _________________  xi+1 – xi–1

   +   
Tn

W1 × Zni
 _________ Δt   – k(zni – zmini)

  [ 1.071   
Tn

wi _________ (zn
i – zmini)

   + 1.786 ]    m ___ 1.5  

Discretizing the momentum equation on odd nodes results in 
the following linear equation:

ami × Zn+1
i–1 + bmi × Qn+1

i + cmi × Zn+1
i–1 = dmi (5)

where:

ami =   
βQn

iT
n

Wi _______ An
i × Δt   –   

gAn
iθ ________ xi+1 – xi–1

  

 b mi  =   1 ___ Δt   −   
2βθk Q  i  

n (  z n  i  −  z  min i ) [ 1.071(  
  T n  Wi  _________ (  z n  i  −  z  min i )

   + 1.786 ]   m ___ 1.5  
    ________________________________________   A  i  

n    

−   
β Q  i  

n 
 _____ ( A  i  

n  ) 2    ×   
 A  i+1  

n   −  A  i−1  
n  
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 x  i+1  
    −  x i−1 

   +   
g Q  i  

n    n  m      i  
2 
 _______  A  i  

n  R  i  
4/3   

ami =   
βQn

iT
n

Wi _______ An
i × Δt   –   

gAn
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 d mi  =   
 Q i  ___ Δt    +

   
2β(1 − θ) Q  i  

n k( z  i  
n  −  z  min i )[1.071(  

 T  Wi  
n  
 _________ ( z  i  

n  −  z  min i )
   + 1.786]  m ___ 1.5  

    ____________________________________________    A  i  
n    

−   
β Q  i  

n  T  Wi  
n  ( z  i+1  

n   +  z  i−1  
n  )
  _______________  A  i  

n Δt   − g A  i  
n (1 − θ)  

 z  i+1  
n   −  z  i−1  

n  
 ________ 

 x  i+1  
    −  x i−1 

  

where: n and n+1 show time steps, Zmini is the minimum eleva-
tion of the ith cross section, and θ is the time-related weight 
parameter. A completely explicit scheme is used for the discre-
tization of θ = 0 and a completely implicit scheme is used for 

θ = 1. In order to solve the equations set to obtain discharge and 
water level, a computer program is written, wherein the result-
ing equation set is solved with a 3-diagonal matrix algorithm 
(TDMA). 

RESULTS AND DISCUSSION

Model verification

Measured data by Putz and Smith (2000) were used in order 
to evaluate the capability of the unsteady model to simulate 
steady-state flow in natural cross sections. Their study reach is 
located downstream of the Wildwoods of Canada Ltd. effluent 
diffuser structure on the Athabasca River near Hinton, Alberta. 
The river discharge encountered during the field survey was 
close to seasonal norms and the average flow at Hinton during 
August is 354 m3/s, based on the Canada Records Water Survey 
(1961–1995).

Flow depths across each cross-section were measured with 
echo-sounding equipment and velocity measurements were 
taken across each of the cross-sections using a standard Price 
current meter. The geometry and distance between 23 of the 
river reach cross-sections, spanning a total distance of 20.6 km, 
were introduced to the model.

The upstream boundary condition had an input discharge 
equal to 354 m3/s and the downstream boundary condition was 
a stage–discharge relation that was calculated by the model 
using Manning’s equation. The model was run with a 60-s time 
step. The calculated water surface elevation and average veloci-
ties of each cross-section were compared with the measured 
values. 

Figure 4 plots the model and measured water surface eleva-
tion data against distance downstream and clearly indicates the 
model’s accuracy in simulating steady flow in natural rivers. 
Figure 4 also compares the water surface elevation calculated 
by MIKE 11 and SMS models (reported by Zargar and Salehi 
Neishabouri (2009)) with the present model. It can be observed 
that the water surface profile calculated by the model shows a 
better fit with the measured data than the MIKE 11 and SMS 
models.

Figure 5 compares the velocity calculated by the present 
model and that calculated by the MIKE 11 and SMS models 
(reported by Zargar and Salehi Neishabouri, 2009) with 
the measured data. Once again the results show that the 
present model is more accurate than the MIKE 11 and SMS 
models.

Figure 4
Comparison of flow profiles calculated by present model with MIKE 11 

and SMS software on Athabasca River (measurement results from Putz 
and Smith, 1998)
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Figure 4  
Comparison of flow profiles calculated by present model with MIKE 11 and SMS software on 
Athabasca River (measurement results from Putz and Smith, 1998) 
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Figure 5
Comparison of average velocity calculated by present model with MIKE 
11 and SMS models on Athabasca River (measurement results from Putz 

and Smith, 1998)
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Figure 5 
Comparison of average velocity calculated by present model with MIKE 11 and SMS models on 
Athabasca River (measurement results from Putz and Smith, 1998) 
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In order to compare the results, some statistical parameters 
were used: 

MSE =   1 __ N   [  ∑ 
i=1

   
n

  ( C cal  −  C o  ) 2   ]  (6)

RMSE =   [   1 __ N   ∑ 
i=1

   
n

  ( C cal  −  C o  ) 2   ]    1 __ 2  
  (7)

E =   ∑i=1  
n   [    C o  −  C cal  _______  C o 

   ]   2  (8)

where: C0 is the measured water surface elevation or velocity 
and Ccal is the calculated one. 

Table 1 compares the statistical analysis results for the 
present model with that of other numerical models, indicating 
that the present model generates fewer errors in calculating 
the water surface elevation and flow velocity compared to the 
MIKE 11 and SMS models. 

522 cross-sections of Zangemar River were used to determine 
whether the model is able to simulate a uniform and unsteady 
flow or not. In order to show that the computer model is able to 
satisfy the continuity equation, the riverbed was assumed to be 
impermeable. A trapezoidal shape hydrograph with a long period 
of steady-state flow (Fig. 6, blue colour) was supplied to the 
model for the upstream boundary condition. The downstream 
boundary condition was a stage-discharge relation that was built 
by the model using Manning’s equation. The model output stage-
discharge at the downstream end is shown in Fig. 6. The model 
was run with time steps ∆t = 25 s and θ = 0.75.

Figure 6 shows the input/output hydrographs calculated 
by the model in sections 200 and 500. The results of the model 
indicate the capability of the model for simulating steady flows 
because the output hydrograph’s long horizontal sections 
that demonstrate steady flow are similar to those of the input 
hydrograph.

Moreover, the calculations demonstrate that the input and 
output hydrograph volumes at sections 200 and 500 are 5 644 
800, 5 702 400 and 5 713 200 m3, respectively. An approxi-
mately 1% difference between the output and input hydrograph 

volumes indicates the model’s high precision in satisfying the 
continuity equation.

Comparison of model results with field measurements

Flood data for Zangemar River from Maku and Poldasht 
hydrometric stations were used to evaluate the model’s ability 
in simulating the output hydrograph.

In order to compare the model’s results with the field data, 
Maku hydrometric station’s measured flood hydrograph from 
22 to 23 May 2007and stage-discharge relation from Poldasht 
hydrometric station were employed as upstream and down-
stream boundary conditions, respectively. Flood routing was 
performed with time steps = 25 s and θ = 0.75. The results of 
this model are given in Fig. 7 and Table 2, and indicate that the 
model predicts the timing of the flood event and hydrograph 
peak time accurately in comparison with the field data. Also, 
the output hydrograph volume calculated by the model gives 
a 0.8% difference compared to the input hydrograph volume 
(1 000 000 m3); therefore it can be concluded that the model 
is capable of satisfying the continuity equation with high 
precision. A significant difference between the input/output 
hydrograph volumes as well as the lack of a lateral branch in 
Zangemar River attracted our attention to a phenomenon 
called water transmission losses.

Thus, in the next step, flood routing was carried out by 
modifying continuity and momentum equations to con-
sider water seepage losses from the river’s side and bed using 
Muskat’s equation. For this reason, Zangemar River’s hydraulic 
conductivity was initially calculated.

Due to the length of the river it is difficult to determine the 
river bed’s hydraulic conductivity with field methods; therefore, 
this task was performed as follows: Primarily, Maku hydrometric 
station’s flood-measured hydrographs on 22 May 2007 and 23 May 
2007 and the stage-discharge relationship from Poldasht hydro-
metric station on the same date were respectively introduced as 
upstream and downstream boundary conditions. Subsequently, 

TABLE 1
Statistical analysis of numerical models to predict values of water surface elevation and average velocity of Athabasca 

River flow

Average velocityWater level
Errors

ModelMIKE11SMSModelMIKE11SMS

0.0410.0630.1070.0041.1070.099MSE

0.0420.0520.0680.0130.2240.066RMSE

0.5300.6801.1509.58E-086.91E-052.48E-06E

Figure 6
Input hydrograph in the upstream boundary and output hydrographs 

calculated by the dynamic model

Figure 7
Input/output hydrographs measured on 22 May 2007 and 23 May 2007, 

and hydrograph simulated by the model regardless of seepage losses
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Figure 6 
Input hydrograph in the upstream boundary and output hydrographs calculated by the dynamic 
model 
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Figure 7 
Input/output hydrographs measured on 22 May 2007 and 23 May 2007, and hydrograph simulated 
by the model regardless of seepage losses 
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the model was run with a 25-s time step and θ = 0.75 for various 
permeabilities. Ultimately, the average value of the river bed per-
meability coefficient k = 4.8 x 10−6 (m/s) was calculated. 

Flood routing for measured hydrographs on 22 May 2007 
and 23 May 2007, considering seepage losses and the mentioned 
permeability coefficient, are shown in Fig. 8 and Table 3. It is 
indicated that the flood-routing process, with modified Saint-
Venant equations considering the seepage losses, completely 
matches the measured data. Therefore, the model predicts the 
hydrograph’s peak time, peak discharge and flood volume, 
measured at Poldasht station, with high precision. Also the esti-
mated and measured transmission losses are 782 784 and 788 
004 m3, respectively, which shows that the model’s estimation is 
only 0.6% lower than the field measurements.

Estimation of average seepage losses

The calibrated riverbed permeability (k = 4.8 x 10−6 (m/s)) with 
time step = 25 s, θ = 0.75 and 13 hydrographs from 2005 to 2010 
were used to verify the model and calculate the average seepage 

losses. The seepage losses were determined by subtracting the 
output hydrograph volume from the input hydrograph volume 
and then comparing this with the measured losses. The results 
are shown in Table 4.

TABLE 2
Characteristics of input/output hydrographs measured on 22 May 2007 and 23 May 2007 and hydrograph simulated by 

dynamic wave model regardless of seepage losses

Characteristic of hydrograph Hydrograph calculated by 
model

Hydrograph of Poldasht 
hydrometric station

Estimation of error of 
numerical model

Flood volume (m3) 1 000 007.2 212 029.2 78%

Time of hydrograph peak(h) 18.5 19 2.7%

Hydrograph peak discharge(m3/s) 22.42 13.43 40%

Rising time of flood (h) 17 18 5.5%

TABLE 3
Characteristics of output hydrographs measured on 22 May 2007 and 23 May 2007 and hydrograph simulated by dynamic 

wave model considering seepage losses

Characteristic of hydrograph Hydrograph calculated by 
model

Hydrograph of Poldasht 
hydrometric station

Estimation of error of 
numerical model

Flood volume (m3) 217 224 212 029.2 2.4%
Time of peak flow (h) 18.5 19 2.7%
Peak discharge of hydrograph (m3/s) 13.97 13.43 3.8%
Rising time of flood (h) 17 18 5.5%

TABLE 4
Seepage losses for Zangemar River

Estimation 
of error of 

numerical model

Seepage losses
Percentage of 

seepage losses
Volume of inflow 
hydrograph (m3)Date of measured flood

Measured in fieldCalculated by 
model

−1.34%831 729.6820 876.194%884 3762005/06/30, 2005/07/01
15%1 489 847.21 289 180.1688.4%1 685 1602005/08/04, 2005/08/05
20%1 673 1471 673 14076%2 200 6802005/08/29, 2005/08/30
3.4%1 080 064.81 118 669.772.7%1 485 5222006/07/02, 2006/07/03

0.66%788 004782 78478.79%1 000 0082007/05/21, 2007/05/22
8.29%899 164.8830 262.1176.56%1 144 4222007/06/22, 2007/06/23
18%142 4151115 953489.82%1 585 5302007/08/03, 2007/08/04
11%672 962.4594 802.896.68%696 0602009/06/14, 2009/06/15

10.49%781 115.4863 131.768.51%1 140 0482009/07/03, 2009/07/04
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Table 4 indicates that the average seepage losses in the river 
are about 74% of the input hydrograph’s volume. Moreover, 
it can be seen that the model predicts seepage losses with an 
average error of about 9.93%; however, the maximum error is 
less than 20%. These differences can be due to the following 
reasons: 
•	 Flow assumptions in Saint-Venant equations, particularly 

in rivers with high slopes: One-dimensional modelling is 
only appropriate for modelling well-defined and constant 
flow paths; the model cannot match the flexibility of two- 
or three-dimensional modelling necessary for represent-
ing complex channel/floodplain interactions. Also, many 
numerical models assume that the channel slope is less than 
1:10, therefore the sine and cosine of the channel slope can 
be assumed to be equal to zero and unity, respectively. This 
allows numerous geometric implications to be ignored; was 
the cross-section originally defined vertically or perpendic-
ular to the invert, and are the water-level results projected 
vertically or perpendicular to the invert (Toombes and 
Chanson, 2011)?

•	 Selecting a constant value for Manning’s roughness in each 
cross-section while flow depth and velocity vary with the 
changes in input discharge: The numerical models are very 
sensitive to the nm-value. Fathi-Moghadam et al. (2011) 
showed that the nm-value varies considerably with flow 
depth and velocity. Also the experimental results of Wang 
et al. (2011) showed gravel-bed channel roughness has 
significant effects on flow structure and the mean velocity 
distribution.

•	 Estimation of permeability coefficient (k) and using semi-
empirical equations to estimate seepage losses: Many 
parameters affect the permeability coefficient. In the pre-
sent study only an average permeability coefficient along 62 
km of the river reach has been calibrated. Determining the 
permeability coefficient along the studied reach using field 
and laboratory methods should be useful to enhance the 
model’s accuracy, although costly and time consuming. 

•	 Neglecting the changes in riverbed permeability and river 
cross-section geometry over time: Time-dependent ero-
sion and sedimentation along the river reach can change 
the cross-section geometry, river morphology and riverbed 
material gradation. Therefore the riverbed permeability 
changes and is not constant.

CONCLUSIONS

In order to estimate transmission losses in Zangemar, an 
ephemeral river, a 1-D computer model was developed in which 
the unsteady flow equations (Saint-Venant equation) are cou-
pled with Muskat’s equation to estimate the seepage losses. A 
trapezoidal shape hydrograph with a long period of steady-state 
flow and 522 cross-sections of Zangemar River were used to 
determine the model’s accuracy and its capability in satisfying 
the continuity equation.

The analysis showed that Muskat’s equation is able to 
predict seepage losses realistically. Considering seepage losses, 
the flood routing model’s outputs were in agreement with the 
practical field measurements. The results of flood routing for 
13 input hydrographs revealed that the seepage losses in the 
river reach are, on average, about 74% of the input hydrograph’s 
volume. The developed computer model predicts seepage losses 
with a mean error of about 9.93%. Also, the transmission losses 
in the practical field measurements and model, using Muskat’s 
equation, are 788 004 and 782 784 m3, respectively, which 

shows that the model’s estimate is only 0.6% lower than the 
field measurements.
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