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ABSTRACT
The characterisation of rainfall variability, spatially and temporally, is essential for hydrological and ecological analyses. 
Inherently, this variability is distinctly more obvious in mountainous areas compared to lowlands. The objective of this study 
was to ascertain if the use of the regression-Kriging technique would provide improved estimates and understanding of the 
rainfall distribution across the Cathedral Peak catchments in the Drakensberg escarpment region, South Africa. Findings 
showed longitude and altitude to be the overall best predictors of the distribution of rainfall for the annual period, wet 
season and dry season, with longitude explaining 72% and altitude explaining 26% of the rainfall variability for mean annual 
precipitation, 73% and 26% for the wet season and 50% and 22% for the dry season, respectively. The combination of both 
longitude and altitude showed a larger coefficient of determination, of 0.73, 0.74 and 0.51, for the annual, wet season and dry 
season, respectively. Long-term mean annual rainfall patterns showed an overall strong directional distribution from west to 
east with a distinct pattern observed during the dry season. It was concluded that regression-Kriging is a useful alternative 
method for characterising rainfall distribution as well as prediction errors for mountainous areas.
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INTRODUCTION

The characterisation of spatial and temporal rainfall variability 
is essential for hydrological and ecological analyses (Tao, 2009; 
Aghakouchak et al., 2011; Vogel et al., 2012; Masson and Frei, 
2014). Inherently, this variability is distinctly more apparent 
in mountainous areas compared to lowlands (Cegnar, 2005; 
Thompson et al., 2009; Chang et al., 2014). This rainfall charac-
teristic is mainly attributed to the interaction between atmos-
pheric circulation and topographic features of the landscape, 
particularly altitudinal variation or orography (Prudhomme 
and Reed, 1998; Mair and Fares, 2010; Tan et al., 2012; Roe, 
2005). Orographic effects influence the local distribution and 
intensity of rainfall when forced upward movements of mois-
ture-filled air, due to topographic barriers, result in more pre-
cipitation on the windward side and less precipitation on the 
leeward side (Chang et al., 2014; Arora et al., 2006; Houze Jr 
and Medina, 2005). 

Despite the above understanding, however, a precise under-
standing of the spatial distribution of rainfall in mountainous 
areas is still hindered by the typically sparse rain-gauge net-
works at higher altitudes (Ranhao et al., 2008, Masson and Frei, 
2014, Roe, 2005). Generally, rain-gauge networks cover mainly 
valley and low-lying areas, where the weather-generating 
systems and resultant spatial patterns of rainfall are different 
to those at higher elevations (Prudhomme and Reed, 1998). In 
South Africa, Pegram et al. (2014) mention both a decrease in 
the cover of rain-gauge networks since the year 2000, as well as 
the lack of rain-gauges located at high altitudes.

Rainfall interpolation using data from a limited number 
of rain-gauges is one method that hydrologists use to derive 
the spatial distribution of precipitation in mountainous areas 
(Groisman et al., 2005, Masson and Frei, 2014, Vogel et al., 
2012, Duethmann et al., 2013, Jacquin and Soto-Sandoval, 
2013). Numerous interpolation methods have been proposed to 
interpolate rainfall from rain-gauge observations (Guan et al., 
2005, Putthividhya and Tanaka). Several studies have reported 
that conventional techniques such as Thiessen polygon, inverse 
distance weighting, isoheytal methods and splines do not fully 
account for both climatological and spatio-statistical properties 
of rainfall fields ( e.g. Prudhomme and Reed, 1998; Guan et al., 
2005; Vogel et al., 2012). Nevertheless, improved computing 
facilities and development of robust methods, especially geosta-
tistically-based methods, have the potential of increasing our 
understanding of rainfall characteristics in mountainous areas 
(Hengl et al., 2007)2007. 

Geostatistical methods such as Kriging are capable and have 
been shown to produce better estimates than traditional interpo-
lation approaches (Goovaerts, 2000; Mair and Fares, 2010; Meng 
et al., 2013; Omran, 2012; Saffari et al., 2009). Additionally, they 
also provide some measures of accuracy and certainty in the 
predictions (Ly et al., 2013). Another advantage of geostatisti-
cal methods is the use of auxiliary variables to improve rainfall 
estimates (Mair and Fares, 2010). According to Ly et al. (2013), 
the use of multivariate geostatistical methods has shown more 
accurate interpolations compared to deterministic interpolation 
methods. Geostatistical methods (such as regression-Kriging) for 
the estimation of rainfall are flexible, comprehensive, robust and 
free from serious bias (Hengl et al., 2007). Regression-Kriging is 
a spatial prediction method that combines a regression analysis 
of the dependent variable on auxiliary variables with the interpo-
lation of the residuals from that regression (Hengl et al., 2007). 
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Regression-Kriging has been applied widely in various fields 
such as climatology (Bajat et al., 2013; Tadić, 2010), soil sci-
ence (Hengl et al., 2004; Omuto and Vargas, 2015; Zhu and Lin, 
2010), and species distribution modelling (Meng, 2006; Hengl 
et al., 2009).

This work builds on previous work done by Schulze (1976), 
who used deterministic methods such as trend surface analysis 
for rainfall estimation in the Cathedral Peak catchments. Trend 
surfaces of long-term annual precipitation and the use of the 
weighted average method for two short-term precipitation events 
were analysed. A 46-year data record is now available for the 
catchments compared to the 20-year record used by Schulze in 
1976, and there have been recent advancements in interpolation 
methods which have the ability to provide error surfaces together 
with the rainfall prediction surfaces. Additionally, consideration 
of the increasing pressure on water resources, and the envi-
ronmental, social and economic importance of high-altitude 
catchments such as Cathedral Peak compels immediate atten-
tion to provide accurate estimations of rainfall for the Cathedral 
Peak research catchments. The objective of this research was to 
ascertain if the use of a contemporary geostatistical interpola-
tion method called regression-Kriging provided any improved 
estimates and understanding of the rainfall distribution across 
the high-altitude Cathedral Peak catchments in the Drakensberg 
escarpment region.

MATERIALS AND METHODS

Study area

The Cathedral Peak research catchments (29° 00’ S; 29° 15’ E) are 
located on the Little Berg sandstone plateau in the northern part 
of the uKhahlamba Drakensberg area (Fig. 1). The uKhahlamba 
Drakensberg area constitutes one of South Africa’s most impor-
tant watersheds (Sycholt, 2002; Briggs, 2008) as it is the source 
of a major river – the Thukela River. The Thukela-Vaal (TUVA) 
transfer scheme is an inter-basin transfer scheme that has its 
upper catchments in the Cathedral Peak area and feeds the drier 
interior of South Africa (Nel and Sumner, 2008). The research 
catchments are situated at the head of three isolated Little Berg 
spurs, and range in altitude from 1 820 m amsl to 2 463 m amsl 
(Fig. 2). The Little Berg is a plateau below the basaltic cliffs of 
the main uKhahlamba Drakensberg range that is dissected by 
deep ravines (Scott et al., 2000; Briggs, 2008). The Cathedral 
Peak research catchments fall within the summer rainfall region 
of South Africa, thus the area experiences wet, humid summers 
and cold, dry winters (Everson et al., 1998).The mean annual 
precipitation (MAP) for the area is approximately 1 400 mm, 
with 84% of the MAP occurring between the months of October 
and March.

Data and processing

Historical rainfall data were obtained for the rain-gauge network 
of the Cathedral Peak catchments (I–X). The data were obtained 
from various historical sources, but these data are now available 
from the South African Environmental Observation Network 
(SAEON). The catchments are considered to have a fairly dense 
rain-gauge network (1 gauge per 0.352 km²; Schulze, 1976), with 
the highest density of rain-gauges in the eastern catchments 
(VIII–X). The dataset consisted of a time-series with hourly, 
daily, weekly and/or monthly rainfall totals at 22 stations dur-
ing the 46-year research period stretching from August 1948 to 

March 1994. Various types of rain-gauges have been used in the 
catchments (Table 1). Not all of the rain-gauges were active for 
the full 46-year period and during the monitoring period some 
rain-gauges that were read manually were replaced by automatic 
logging rain-gauges (Schulze, 1974). Although rainfall measure-
ments were available at hourly and daily time steps for some 
rain-gauges, the shortest common recording period for all rain-
gauges was monthly; hence data were analysed on a monthly 
basis for this study.

In order to exclude the most obvious errors from the 
Cathedral Peak historical rainfall dataset, quality control pro-
cedures included checking for the completeness of the dataset 
and the detection of outliers or physically impossible values, as 
outlined by Einfalt and Michaelides (2008). Varying periods of 
records at individual gauges required the adjustment of rainfall 
to a standard base period. The 20 -year period from October 
1965 to October 1985 was one during which most gauges 
recorded simultaneously; thus it was chosen as the base period. 
Although the World Meteorological Organization (WMO) 
recommends the use of 30-year means, several authors (e.g. 
Marquı́nez et al., 2003; Arora et al., 2006) have used shorter time 
periods for data analysis.

Five rainfall patching methods were tried to infill the miss-
ing monthly rainfall data: nearest neighbour by distance; nearest 
neighbour by correlation; inverse distance weighted; average 
of gauges selected by correlation and multiple linear regression 
analysis. The performance of all methods was compared using 
three error statistics: root mean square error (RMSE); mean bias 
(MB); and a correlation coefficient (R2). Of these, multiple linear 
regression had the least error based on the above error statistics 
evaluation and thus was used to infill gaps in the monthly rain-
fall data for 21 of the 23 gauges. The remaining two rain-gauges 
were excluded from further analysis due to insufficient data 
lengths during the 20-year base period and also their increased 
distance from the catchments.

Seasonal analysis

Analysis of the mean annual, wet and dry season rainfall con-
firmed a strong wet and dry season trend. On average, 83% of 
the annual rainfall occurs during the wet season (September 
to February) with the north-facing gauges receiving the most 
rainfall during both wet and dry seasons (Table 2). This finding 
is reported in Schulze (1974). This analysis was expected con-
sidering the altitudinal differences between the rain-gauges with 
different aspects, where north-facing rain-gauges average 2 007 
m amsl and east- and west-facing rain-gauges average 1 932 m 
amsl and 1 895 m amsl, respectively. Rainfall data for the area is 
strongly seasonal, therefore mean rainfall for both the dry season 
(March to August) and wet season (September to February) was 
calculated for further analysis. Based on previously considered 
auxiliary variables (altitude, longitude and latitude) for the area 
(Schulze, 1976) and a comprehensive literature review, it was 
therefore hypothesized that factors such as altitude (m amsl), 
slope angle, slope orientation (aspect), latitude and longitude 
could be used to predict rainfall for the ungauged sites.

Regression analysis

Regression analysis was used to determine if the considered pre-
dictor variables (altitude, aspect, latitude and longitude) showed 
any significance in explaining the variation in the annual, wet 
and dry season rainfall. Utilizing the above predictor variables as 
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Figure 1
Location of the Cathedral Peak Catchments I-X, in the Drakensberg 

escarpment, South Africa

Figure 2
Topographical map of the Cathedral Peak research catchments and location of rain-gauges

independent variables, and rainfall (annual, wet or dry period) as 
the dependent variable, the regression equation (Eq. 1) was used: 

Y = α + β1X1 + β2X2 + βNXn	 (1)

where:
Y	 = dependent variable (rainfall for annual, wet or dry period)
Xi	 = independent variable (altitude, aspect, latitude and  
           longitude) 
β 	 = beta weights (slopes of each independent variable) 
α 	 = Y intercept

Regression-Kriging

Kriging is an interpolation method that uses values of a variable 
at known geographical locations to estimate values at unknown 
locations. Kriging relies on the fact that observations are not 
independent (Hengl et al., 2007)2007. Regression-Kriging is a 
type of Kriging that uses secondary variables for more accurate 
predictions (Karl, 2010). The method uses multiple regressions 
to explain the relationship between the observed variable and 
the secondary variables considered. The regression and Kriging 
results are combined to produce not only a prediction surface, 
but also an error surface. Regression-Kriging is therefore essen-
tially a spatial prediction method that combines regression of the 
dependent variable on auxiliary variables (altitude, aspect, lati-
tude and longitude) with the interpolation of the residuals from 
that regression (Hengl et al., 2007). With fitted parameters of 
the regression model and of the residual variogram, regression-
Kriging was used to derive rainfall predictions at all locations. 
‘All subsets regression’ was used in regression-Kriging to select 
predictor variables with regression slopes statistically significant 

at p < 0.05. The coefficient of determination (R2) was used as a 
measure of the goodness of fit of the model. Additionally, the 
Akaike Information Criterion (AIC), which is a measure of the 
relative quality of a statistical model for a given dataset, was also 
used to assess the predictive power of the developed model. The 
combination of both the regression and Kriging methods are 
illustrated below (Eq. 2):

z = (so) = m(so) + ê(so)
=Σk=0 βk · qk(so) + Σi=1λi · ê(si)	 (2)
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TABLE 1
Location and other characteristics of the historical rain-gauge information

Gauge Type

Co-ordinates 
(decimal degrees) Elevation 

(m amsl) Aspect
Compass 

angle/ 
direction (°)

Slope
(% rise)

Record period

Latitude Longi-
tude

Start 
date End date

Met station AWS −28.975 29.236 1 847 N 355 4.078 Nov 1948 Mar 1984

Ia Standard −28.988 29.234 1 961 N 62.45 26.39 Aug 1950 Sep 1985

IIa Standard −29.005 29.222 2 280 N 358.49 61.38 Aug 1948 Feb 1993

IIb Casella recorder −28.996 29.223 1 967 NE 37.09 13.85 Dec1988 Feb 1993

IIc Standard −28.996 29.235 1 870 NW 333.59 21.52 Jan 1949 Feb 1993

IIIa Standard −29.005 29.232 2 174 N 354.31 39.52 July 1950 Sep 1985

IIIb Casella recorder −28.996 29.234 1 958 E 77.35 13.54 Jan1990 Oct 1990

Iva Standard −29.003 29.238 2 116 NE 23.05 41.42 Sep1949 Feb 1993

IVb Casella recorder −28.999 29.241 1 943 N 357.56 12.68 Jan 1990 Mar 1994

IVc Casella recorder −28.991 29.244 1 839 N 340.46 8.87 Dec 1988 Feb 1993

Va Standard −28.998 29.248 2 049 N 348.5 16.23 Aug 1950 Feb 1993

VIb Casella recorder −28.993 29.252 1 908 N 343.61 14.33 Jul 1980 Oct 1985

VIIa Standard −28.993 29.256 1 957 NW 332.33 24.96 Aug 1950 Feb 1993

VIIb Casella recorder −28.990 29.257 1 904 NW 320.65 17.43 Aug 1980 Oct 1985

VIIc Casella recorder −28.988 29.253 1 845 W 291.03 11.26 Aug 1980 Aug 1990

VIIIa Shielded Snowdown −28.982 29.264 1 905 SE 130.73 12.81 Oct 1965 Feb 1993

VIIIb Shielded Snowdown −28.985 29.269 1 904 N 355.84 14.86 No Record

VIIIc Standard −28.983 29.269 1 870 E 73.41 13.22 Oct 1965 Feb 1993

IXa Standard −28.992 29.263 1 966 E 72.67 22.17 Apr 1954 Feb 1993

IXb Casella recorder −28.991 29.266 1 893 E 79.19 12.21 Jun 1954 Mar 1989

IXc Casella recorder −28.975 29.236 1 847 N 355 4.078 Nov 1948 Mar 1984

Xa Standard −28.988 29.234 1 961 N 62.45 26.39 Aug 1950 Sep1985

Xc Shielded Snowdown −29.005 29.222 2 280 N 358.49 61.38 Aug 1948 Feb 1993

where:
z 		  = predicted value of the target variable at an   
                 unknown location 
m(so)	 = the fitted deterministic part 
ê(so)	 = interpolated residual 
 βk 		  = the estimated regression model coefficients 
 λi 		  = the Kriging weights determined by the spatial dependence     
                  structure of the residual 
ê(si)	 = the residual at location si. 

RESULTS AND DISCUSSION

Predictor variables from regression analysis

The best predictor models were selected based on the criteria 
that the p-value of each predictor variable be less than 0.05 and 
the AIC value the smallest. All-subsets regressions (Tables 3 to 5) 
indicate that the overall best predictors of the distribution of 
rainfall, for the annual, wet season and dry season, are longitude 
and altitude. Longitude shows greater significance than altitude, 
explaining 72% of the rainfall variability, with altitude explaining 
only 26% of the rainfall variability for MAP (Table 3). Longitude 
and altitude explained 73% and 26% of variability for the wet 
season (Table 4) and 50% and 22% for the dry season (Table 5), 
respectively. The significant negative effect for the MAP (Table 3) 
and wet season (Table 4) indicates that an increase in longitudi-
nal direction (east–west) relates to an increase in rainfall, which 
was also reported by Schulze (1974). A small positive effect in 

the dry season (Table 5) indicates that there may be different 
rainfall variability patterns.

The high R2 and small AIC values for longitude alone indi-
cate that the overall distribution is strongly directional with an 
east–west directional gradient. The combination of both longi-
tude and altitude had a larger R2, of 0.73, 0.74 and 0.51, for the 
annual, wet season and dry season, respectively. However, when 
combined with longitude, altitude had a significant influence for 
all periods (p < 0.05). Aspect alone was shown to be significant 
for the annual and dry seasons, explaining 18% and 19% of the 
rainfall variability, respectively. 

The 3-subsets model of longitude, altitude and aspect indi-
cated a slight decrease in R2, with altitude and aspect being statis-
tically insignificant for all rainfall periods. These results cannot 
be applied throughout the Drakensberg as the orientation of the 
Drakensberg range changes. Relationships may be different due 
to different aspects. Although there are latitudinal differences in 
the station positions, latitude is found to play no significant role 
in influencing the rainfall distribution for the area and neither 
does slope. 

The regression analysis reveals that, based on the R2 values 
and small AIC values, a simple linear regression, with longitude 
alone, altitude alone or the combination of both longitude and 
altitude, can be used to satisfactorily characterise the rainfall 
variability for the Cathedral Peak area. However, the use of longi-
tude alone may be applicable only to local conditions and not in 
other areas of the Drakensberg. Regression models selected for 
each rainfall period are shown in Table 6.
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TABLE 3
Subset regression s for MAP

Model
MAP: P values

AIC R2
adj Longitude Latitude Altitude Aspect Slope

1 term
241.29 0.72 8.40 x 10-7 - - - -
261.32 0.26 - - 0.011 - -
263.41 0.18 - - - 0.03 -

2 terms
242.2 0.73 1.65 x 10-5 - 0.178 - -

243.63 0.71 6.90 x 10-6 - - - 0.43
243.93 0.71 4.85 x 10-6 0.541

3 terms
245.41 0.72 2.73 x 10-5 0.63 0.207 - -
245.62 0.71 1.00 x 10-4 - 0.185 0.80 -
245.67 0.71 2.85 x 10-5 - 0.284 - 0.875

4 terms
249.29 0.70 1.50 x 10-4 0.624 0.212 0.772 -
249.4 0.70 4.83 x 10-5 0.653 0.265 - 0.932
249.6 0.70 1.50 x 10-4 - 0.306 0.821 0.914

TABLE 4
Subset regressions for the wet season

Model 
Wet season: P values

AIC R2
adj Longitude Latitude Altitude Aspect Slope

1 term 
231.91 0.73 5.23 x 10-7 - - - -
253.08 0.26 - - 0.011 - -
255.29 0.17 - - - 0.659 -

2 terms
232.93 0.74 1.05 x 10-5 - 0.189 -
234.23 0.72 4.44 x 10-6 - - - 0.422
234.36 0.72 3.18 x 10-6 0.465 - - -

3 terms 
236.23 0.73 1.20 x 10-5 - 0.136 0.332 -
236.33 0.73 1.86 x 10-5 0.781 0.273 - -
236.41 0.73 1.88 x 10-5 - 0.310 - 0.913

4 terms 
240.10 0.71 2.10 x 10-5 0.671 0.189 0.319 -
240.23 0.71 2.20 x 10-5 - 0.242 0.345 0.894
240.33 0.71 3.37 x 10-5 0.798 0.335 - 0.946

TABLE 2
Topographic and seasonal distribution of average rainfall for rain-gauges in different aspects

Rainfall (mm)

Aspect Gauge Altitude Wet season Dry season Annual 
(1965–1985)

Annual 
(1950–1969)

North

Ic 1 846 1 035 229 1 241 1 422
IIa 2 292 1 254 284 1 510 1 738
IIb 1 974 1 260 282 1 515 1 658
IIc 1 867 1 182 262 1 419 1 508
IIIa 2 197 1 176 270 1 418 1 573
IVa 2 134 1 098 249 1 095 1 400
VIIa 1 986 984 225 1 181 1 357
VIIb 1 910 1 087 232 1 309 1 356

Top Met 1 861 1 045 237 1 259 1 259

East

IIIb 1 973 1 098 244 1 317 1 565
VIIIc 1 883 1 095 249 1 039 1 261
IXa 1 969 960 225 1 156 1 280
IXb 1 903 905 232 1 095 1 284

South
IXc 1 828 862 187 1 030 1 264
Xa 2 009 972 207 1 157 1 337
Xc 1 848 968 198 1 145 1 254

West VIIc 1 849 1 050 237 1 262 1 405 
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Rainfall spatial variability estimation from Kriging

The annual, wet season and dry season rainfall data suggested 
higher autocorrelation in a west to east direction compared to a 
north–south direction. Semi-variogram models were therefore 
chosen based on their ability to depict the anisotropic behaviour 
of the target variables. Both manual and automatic methods of 
fitting the semi-variogram models were used. Empirical model 
variograms (spherical, Gaussian, exponential and circular 
models) were visually compared to the automated fitted mod-
els. Residual semi-variograms were then derived based on the 
semi-variograms of the target variables. The Gaussian empirical 
models were selected to model the covariance structure of both 
the target variables and the regression residuals. 

The rainfall patterns for the long-term mean annual data 
show an overall strong directional distribution ranging from over 
1 531 mm/a in the north and south-west to under  020 mm/a 
in the east (Fig. 3). The influence of altitude appears significant 
in the spatial patterns of rainfall only in the two steepest catch-
ments (namely, II and III). A similar pattern is observed for 
the wet season where the rainfall amounts range from over 1 
286 mm/a in the north to south-west to under 836 mm in the 
east. A distinct pattern is observed during the dry season where 
rainfall ranges from 285 mm in the north-west to approximately 
240 mm in the east and under 206 mm in the south-east (Fig. 3). 
The rainfall distribution during the dry season indicates the typi-
cal west to east frontal movement over South Africa.

Cross validation and error analysis

Unlike deterministic interpolation methods, for each predic-
tion map generated with regression-Kriging a prediction error 
or standard deviation map is generated using the same Kriging 
method. Prediction error maps of standard deviations were used 
to assess the accuracy of the predicted rainfall maps. Standard 
deviations for the wet season have the same pattern as the MAP; 
however, lower standard deviations in areas with few rain-gauges 

were observed (Fig. 4). The lowest standard deviations were 
observed for the dry season, especially in the north-west and east. 
The high standard deviations at the high altitude catchments II III 
and IV are due to artefacts within the Kriging processes, specifi-
cally the algorithm involved. Since the high-altitude rain-gauges 
are fewer in number compared to those in the lower altitude catch-
ments in the east, the algorithm works best for the lower altitude 
catchments. In regression-Kriging, a suitable number of point-
pairs must be available at different spacings for variogram estima-
tions (Hengl et al., 2007). To avoid overfitting, the minimal num-
ber of point pairs is recommended to be 10 (Hengl et al., 2007). 
The algorithm then estimates very high values due to the lack of 
point pairs in the high altitudes, and works well for areas that are 
well represented and collapses or overestimates at high altitudes.

Cross-validation results indicated a high root mean square 
error (RMSE) for the MAP and wet season, of 163.89 and 
137.62, respectively, and a low RMSE for the dry season. Plots 
of observed and predicted rainfall indicated a high R2 for the 
MAP and wet season (78% and 79.7%, respectively) and low 
R2 (55%) values for the dry season (Fig. 5). The consideration of 
more frontal-related variables for the dry season, such as wind 
and distance to sea, may assist in better characterisation of the 
rainfall variability.

DISCUSSION

The regression-Kriging method was shown to be a useful tool 
in characterising the rainfall distribution for the Cathedral Peak 
catchments. The method was able to use auxiliary information, 
available in the form of maps of covariates (altitude, longitude, 
aspect and slope), to explain variations in rainfall for the area as 
well as provide prediction errors. Predictions indicated that the 
overall rainfall distribution for the area is strongly directional, 
particularly for the long-term mean annual rainfall and for the 
wet season, as well as a significant effect on rainfall distribution 
due to altitude. The results are comparable to what was obtained 
by Schulze (1976). 

TABLE 5
Subset regressions for the dry season

Model 
Dry season: P values

AIC R2
adj Longitude Latitude Altitude Aspect Slope

1 term 
187.52 0.50 1.9 x 10-4 - - - -
196.98 0.22 - - 0.019 - -
197.66 0.19 - - - 0.027 -

2 terms
188.98 0.51 0.002 - 0.245 - -
190.19 0.48 0.001 - - - 0.554
190.30 0.48 0.003 - - 0.616 -

3 terms 
190.77 0.50 0.002 0.246 0.105 - -
192.26 0.49 0.013 - 0.271 0.680 -
192.39 0.49 0.013 - 0.271 - 0.680

4 terms 
194.63 0.50 0.012 0.271 0.125 0.745 -
194.76 0.50 0.003 0.272 0.153 - 0.923
196.11 0.46 0.016 - 0.312 0.648 0.736

TABLE 6
Selected regression models for annual, wet season and dry season

Period Equation F value R2

Annual = 477.37 − 139.9 longitude + 0.276 x altitude 27.04 0.73

Wet season = 476.88 − 139.8 longitude + 0.258 x altitude 28.70 0.74

Dry season = 442.2 − 130.19 longitude + 0.359 x altitude 11.20 0.50



690

http://dx.doi.org/10.4314/wsa.v42i4.19
Available on website http://www.wrc.org.za
ISSN 1816-7950 (Online) = Water SA Vol. 42 No. 4 October 2016
Published under a Creative Commons Attribution Licence

Figure 4 
Long-term mean (a) annual, (b) wet season and (c) dry season rainfall standard deviation distribution patterns 

Figure 3
Long-term mean (a) annual, (b) wet season and (c) dry season rainfall distribution pattern 
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Figure 5
Plots of predicted vs. observed for the (a) annual, (b) wet season and (c) dry season using regression-Kriging

The main difference between the methods used, however, 
was that the deterministic interpolation method used in Schulze 
(1976) did not allow for the production of error maps compared 
to the regression-Kriging technique. However, what must be 
noted is the shortfalls of the technique, specifically with regards 
to the Cathedral Peak catchments. These include the issues of 
data quality, under-sampling of rain-gauges at altitudes above 
2 000 m amsl and predictors with uneven relation to the rain-
fall for the area (Hengl et al., 2007). Results by Nel and Sumner 
(2006) and Nel and Sumner (2007) were also comparable to 
results from this study, indicating the role of altitude in charac-
terising rainfall for catchments and the insignificance of the posi-
tions of the rain-gauges (latitude) compared to eastward distance 
from the escarpment. 

Lower rainfall amounts were predicted for all rainfall peri-
ods in this study, with different rainfall patterns observed in 
the dry season. Rainfall estimates were lower by approximately 
260 mm in the south-west and approximately 220 mm in the 
east, compared to the rainfall surfaces produced by Schulze 
(1976). This may be attributable to the different record period 
used in the Schulze (1976) study (1950–1969), as well as the 
higher long-term means compared to this study. The major 
rainfall-producing systems are attributed to large-scale line 
thunderstorms and orographically-induced thunderstorms in 
summer (Nel and Sumner, 2007), which are driven inland from 
an easterly direction, while approximately 43 mid-latitude cold 

fronts originating from the western Atlantic move across South 
Africa in a west to east direction each year, resulting in winter 
rainfall (Grab and Simpson, 2000; Nel, 2008). 

Estimations clearly represented the spatial distribution of 
rainfall for the annual and wet season from east to west as well 
as the west-northeast to east-southeast spatial distribution for 
the dry season. According to Houze (2012), convective systems 
are enhanced by upslope flow and therefore higher rainfall is 
observed in the two steepest catchments during the annual 
and wet season. Convective systems moving in from the east 
are therefore enhanced in the high-altitude catchments. In the 
dry season, frontal systems, on the other hand, may rise eas-
ily over the terrain resulting in maximal rainfall on ridges and 
minimal rainfall in valleys (Houze, 2012). This spatial pattern is 
observed for the dry season where the crests of the catchments 
receive higher rainfall than the valleys in the catchments. These 
assumptions are however inconclusive considering the size of 
these precipitating mechanisms relative to the overall size of 
the catchments. 

Longitude and altitude were shown to have lower signifi-
cance in explaining the dry season rainfall variability, which may 
be due to the different effect of topography on frontal systems 
compared to convective rainfall.

However, the use of long-term means to characterise rainfall 
for an area which receives predominantly sub-daily short-dura-
tion events is not fully representative of the nature of rainfall in 
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the area and can also explain the high RMSEs. Both a temporal 
and spatial analysis of rain-event properties for the area will 
allow for better understanding and characterisations of the type 
and distribution of rainfall received in the area. The high stand-
ard deviations at the high-altitude catchments, II III and IV, are 
due to artefacts within the Kriging process, the algorithm esti-
mates very high values due to the lack of rain-gauges at the high 
altitudes but works well for lower altitude catchments in the east 
that are well represented. 

CONCLUSION

Overall, the findings of the study at Cathedral Peak indicate that 
improved computing facilities and the recent advancements 
in interpolation methods has allowed easier methods for satis-
factorily characterising rainfall variability for the area with the 
least amount of variables. The proposed interpolation technique 
(regression-Kriging) determines the spatial precipitation distri-
bution just as well as previously-used methods with the ability of 
finding the same east–west directional decrease in rainfall across 
the catchment as demonstrated in previous studies. Nevertheless, 
the models obtained so far have a modest degree of explanation 
for the spatial distribution of rainfall for the Cathedral Peak 
catchments. These results, however, were shown to be specific 
for the Cathedral Peak catchments and not for the rest of the 
Drakensberg area.
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MARQUÍNEZ J, LASTRA J and GARCÍA P (2003) estimation models 
for precipitation in mountainous regions: The use of GIS and multi-
variate analysis. J. Hydrol. 270 (1) 1–11. http://dx.doi.org/10.1016/
S0022-1694(02)00110-5

MASSON D and FREI C (2014) Spatial analysis of precipitation in 
a high-mountain region: Exploring methods with multi-scale 
topographic predictors and circulation types. Hydrol. Earth 
Syst. Sci. Discuss. 11 (5) 4639–4694. http://dx.doi.org/10.5194/
hessd-11-4639-2014

MENG Q (2006) Geostatistical prediction and mapping for large area 
forest inventory using remote sensing data. In: UCGIS Summer 
Symposium, 3 July 2006, Washington

MENG Q, LIU Z and BORDERS BE (2013) Assessment of regression 
Kriging for spatial interpolation–comparisons of seven GIS interpo-
lation methods. Cartogr. Geogr. Inf. Sci. 401 28–39. http://dx.doi.org/
10.1080/15230406.2013.762138

NEL W (2008) Observations on daily rainfall events in the KwaZulu-
Natal Drakensberg. Water SA 34 (2) 271–274.

NEL W and SUMNER P (2006) Trends in rainfall total and variability 
(1970–2000) along the KwaZulu-Natal Drakensberg foothills. S. Afr. 
Geogr. J. 88 (2) 130–137. http://dx.doi.org/10.1080/03736245.2006.
9713855

http://dx.doi.org/10.1175/2010JHM1298.1
http://dx.doi.org/10.1175/2010JHM1298.1
http://dx.doi.org/10.1007/s11269-006-8773-4
http://dx.doi.org/10.1007/s11269-006-8773-4
http://dx.doi.org/10.1007/s00704-012-0702-2
http://dx.doi.org/10.1016/j.jhydrol.2014.01.066
http://dx.doi.org/10.1016/j.jhydrol.2014.01.066
http://dx.doi.org/10.5194/hess-17-2415-2013
http://dx.doi.org/10.1007/978-3-540-77655-0_5
http://dx.doi.org/10.1007/978-3-540-77655-0_5
http://dx.doi.org/10.1016/S0022-1694(00)00144-X
http://dx.doi.org/10.1175/JCLI3339.1
http://dx.doi.org/10.1175/JCLI3339.1
http://dx.doi.org/10.1175/JHM448.1
http://dx.doi.org/10.1016/j.cageo.2007.05.001
http://dx.doi.org/10.1016/j.geoderma.2003.08.018
http://dx.doi.org/10.1016/j.geoderma.2003.08.018
http://dx.doi.org/10.1016/j.ecolmodel.2009.06.038
http://dx.doi.org/10.1016/j.ecolmodel.2009.06.038
http://dx.doi.org/10.1175/JAS3555.1
http://dx.doi.org/10.1029/2011rg000365
http://dx.doi.org/10.4067/S0718-58392013000400012
http://dx.doi.org/10.2111/REM-D-09-00074.1
http://dx.doi.org/10.2111/REM-D-09-00074.1
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000330
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000330
http://dx.doi.org/10.1016/S0022-1694(02)00110-5
http://dx.doi.org/10.1016/S0022-1694(02)00110-5
http://dx.doi.org/10.5194/hessd-11-4639-2014
http://dx.doi.org/10.5194/hessd-11-4639-2014
http://dx.doi.org/10.1080/15230406.2013.762138
http://dx.doi.org/10.1080/15230406.2013.762138
http://dx.doi.org/10.1080/03736245.2006.9713855
http://dx.doi.org/10.1080/03736245.2006.9713855


http://dx.doi.org/10.4314/wsa.v42i4.19
Available on website http://www.wrc.org.za
ISSN 1816-7950 (Online) = Water SA Vol. 42 No. 4 October 2016
Published under a Creative Commons Attribution Licence 693

NEL W and SUMNER P (2007) Intensity, energy and erosivity attributes 
of rainstorms in the KwaZulu-Natal Drakensberg, South Africa. S. 
Afr. J. Sci. 103 (9–10) 398–402.

NEL W and SUMNER P (2008) Rainfall and temperature attributes on 
the Lesotho–Drakensberg escarpment edge, Southern Africa. S. Afr. J. 
Sci. 103 399–402. http://dx.doi.org/10.1111/j.1468-0459.2008.00337.x

OMRAN EL-SE (2012) Improving the prediction accuracy of soil map-
ping through geostatistics. Int. J. Geosci. 3 (3) 1–17.

OMUTO CT and VARGAS RR (2015) Re-tooling of regression Kriging 
in R for improved digital mapping of soil properties. Geosci. J. 19 (1) 
157–165. http://dx.doi.org/10.1007/s12303-014-0023-9

PEGRAM GGS, SINCLAIR S and BARDOSSY A (2014) Accounting 
for uncertainty in the repair of daily rain gauge records. 17th South 
African National Hydrological Symposium, 1 September 2014 – 4 
September 2016, Cape Town, South Africa.

PRUDHOMME C and REED DW (1998) Relationships 
between extreme daily precipitation and topography in 
a mountainous region: A case study in Scotland. Int. J. 
Climatol. 18 (13) 1439–1453. http://dx.doi.org/10.1002/
(SICI)1097-0088(19981115)18:13<1439::AID-JOC320>3.0.CO;2-7

PUTTHIVIDHYA A and TANAKA K (2013) Optimal rain gauge net-
work design and spatial precipitation mapping based on geostatistical 
analysis from colocated elevation and humidity data. Chiang Mai J. 
Sci. 40 (2) 187–197.

RANHAO S, BAIPING Z and JING T (2008) A multivariate regression 
model for predicting precipitation in the Daqing Mountains. Mt. Res. 
Dev. 28 (3) 318–325. http://dx.doi.org/10.1659/mrd.0944

ROE GH (2005) Orographic precipitation. Annu. Rev. Earth 
Planet. Sci 33 645–671. http://dx.doi.org/10.1146/annurev.
earth.33.092203.122541

SAFFARI M, YASREBI J, FATHI H, KARIMIAN N, MOAZALLAHI M 
and GAZNI R (2009) Evaluation and comparison of ordinary Kriging 
and inverse distance weighting methods for prediction of spatial vari-
ability of some soil chemical parameters. Res. J. Biol. Sci. 4 (1) 93–102.

SCHULZE RE (1974) Catchment Evapotranspiration in the Natal 
Drakensberg. Unpublished PhD thesis, University of Natal, 
South Africa.

SCHULZE RE (1976) On the application of trend surfaces of precipita-
tion to mountainous areas. Water SA 2 110–118.

SCOTT DF, PRINSLOO FW, MOSES G, MEHLOMAKULU M and 
SIMMERS ADA (2000) A re-analysis of the South African catchment 
afforestation experimental data. WRC Report No. 810/1/00. Water 
Reasearch Commission, Pretoria.

SYCHOLT A (2002) A Guide to the Drakensberg. Struik, Cape Town. 
200 pp.

TADIĆ MP (2010) Gridded Croatian climatology for 1961–1990. 
Theor. Appl. Climatol. 102 (1–2) 87–103. http://dx.doi.org/10.1007/
s00704-009-0237-3

TAN F, LIM H and ABDULLAH K (2012) The effects of orography in 
Indochina on wind, cloud, and rainfall patterns during Typhoon 
Ketsana (2009). Asia-Pacific J. Atmos. Sci. 48 (3) 295–314.

TAO T (2009) Uncertainty Analysis of Interpolation Methods in Rainfall 
Spatial Distribution–a Case of Small Catchment in Lyon. J. Environ. 
Prot. 1 (1) 50. http://dx.doi.org/10.4236/jwarp.2009.12018

THOMPSON R, VENTURA M and CAMARERO L (2009) On the 
climate and weather of mountain and sub‐Arctic lakes in Europe and 
their susceptibility to future climate change. Freshwater Biol. 541 (2) 
2433–2451. http://dx.doi.org/10.1111/j.1365-2427.2009.02236.x

VOGEL H, MEYER-JACOB C, MELLES M, BRIGHAM-GRETTE J, 
ANDREEV A, WENNRICH V and ROSÉN P (2012) Detailed 
insight into Arctic climatic variability during Mis 11 at Lake 
El’gygytgyn, Ne Russia. Clim. Past Discuss. 8 (6) 6309–6339. http://
dx.doi.org/10.5194/cpd-8-6309-2012

ZHU Q and LIN H (2010) Comparing ordinary Kriging and regression 
Kriging for soil properties in contrasting landscapes. Pedosphere 
20 (5) 594–606. http://dx.doi.org/10.1016/S1002-0160(10)60049-5

http://dx.doi.org/10.1111/j.1468-0459.2008.00337.x
http://dx.doi.org/10.1007/s12303-014-0023-9
http://dx.doi.org/10.1002/(SICI)1097-0088(19981115)18:13%3C1439::AID-JOC320%3E3.0.CO;2-7
http://dx.doi.org/10.1002/(SICI)1097-0088(19981115)18:13%3C1439::AID-JOC320%3E3.0.CO;2-7
http://dx.doi.org/10.1659/mrd.0944
http://dx.doi.org/10.1146/annurev.earth.33.092203.122541
http://dx.doi.org/10.1146/annurev.earth.33.092203.122541
http://dx.doi.org/10.1007/s00704-009-0237-3
http://dx.doi.org/10.1007/s00704-009-0237-3
http://dx.doi.org/10.4236/jwarp.2009.12018
http://dx.doi.org/10.1111/j.1365-2427.2009.02236.x
http://dx.doi.org/10.5194/cpd-8-6309-2012
http://dx.doi.org/10.5194/cpd-8-6309-2012
http://dx.doi.org/10.1016/S1002-0160(10)60049-5

	Introduction
	Materials and methods
	Study area
	Data and processing
	Seasonal analysis
	Regression analysis
	Regression-Kriging

	Results and discussion
	Predictor variables from regression analysis
	Rainfall spatial variability estimation from Kriging
	Cross validation and error analysis

	Discussion
	Conclusion
	Acknowledgements
	References

