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ABSTRACT 

Product quality is all about reducing variations 

of key performance indicators. However, 

product manufacturing often, requires multiple 

processes with multiple indicators, which make 

reducing variation a complex task. There are 

tools used to optimize a single stage process 

independently which ensure local optimization 

only. However, there is no clear approach that 

leads to system optimization.   

The aim of this study is, therefore, to develop a 

tested approach to optimize multi-stage and 

multi-response industrial process. For this 

purpose, a conceptual model with its 

optimization procedure was developed and then 

validated by taking Harar Brewery as a case. 

Variations under each stage were evaluated 

before and after optimization. As a result, the 

new model with its optimization procedure is 

proven to ensure the stability of a process with 

reduced variation. 

Key Words: Taguchi Method, Process 

Optimization, Brewery 

INTRODUCTION 

A production process constitutes a set of inputs 

and outputs as shown in Fig. 1. The inputs X1, 

X2, …, Xn are controllable factors whereas the 

inputs Z1, Z2, …, Zn are uncontrollable or 

difficult to control factors (this study deals with 

the controllable factors). The production process 

transforms these inputs into outputs that will 

have several quality characteristics. The output 

variable ‘Y’ is measure of process quality. The 

Taguchi method is an approach for robust 

experimental design that seeks to obtain a best 

combination set of factors/levels with lowest 

variation while the mean is close to the desired 

target (Liao and Chen, 2002). Initially, the 

Taguchi method can only be used for single 

response problem. Since most products have 

more than one quality characteristics, 

researchers in the filed proposed methods to 

solve multi-response problem and a large 

amount of satisfactory implementation results 

have been published [2, 5, 7, 10, 12, 13, 14, 17, 

18, 19, and 21].  

However, previous researches have focused on 

single-stage optimization. In practice, many 

industrial processes are multi-stage in nature. 

Engineers, often, try to optimize individual 

processes and then expect an optimized system, 

which is neither systematic nor provides a 

realistic result. Studies in multi-stage process 

optimization are limited to:  

 a mathematical model which was 

developed to optimize inspection plans for 

multi-stage manufacturing systems with 

the objective to minimize costs while 

assuring a required output quality [20];  

 an optimal inspection policy proposed 

based on a Particle Swarm Optimization 

(PSO) algorithm for a serial multi-stage 

process [3];  

 an approach proposed to optimize a multi-

stage flash desalination process by using a 

two-level factorial design through 

conversion of the multi-stage process in to 

a single stage and solving with the 

conventional method. This cannot bring a 

stabilized robust system [1];  

 quality improvement of multi-stage and 

multi-response grinding processes [8]. 

The first and the second studies are mainly 

related with inspection strategies. The third and 

the forth research have taken the agenda of 

multi-stage optimization though they 

procedurally changed the multi-stage process 

into a single stage. Hence, multi-stage and 

multi-response process optimization issue is yet 

to be researched. The aim of this research is, 

therefore, to develop an approach to solve multi-

stage and multi-response problems. First a 

conceptual model is developed with its 

optimization procedure and then the model has 

been validated by taking Harar Brewery Sh.Co. 

as a case in point. 
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Fig.1: A Process as a System 

 

MULTI - STAGE – MULTI – 

RESPONSE PROCESS 

A system is defined as an entity with input 

variables and output variables. A multi-stage 

and multi-response system has input factors, 

which determine values of their immediate 

responses in each stage. These response factors, 

of course, can be the input factors for the 

succeeding stages.  Generally, it is assumed that 

all inputs in each stage are conceivably 

controllable by the designer. However, only the 

input factors in the first stage and new inputs 

added in the intermediate stages are directly 

controlled by the designer. The other input 

factors beyond the first stage are controlled 

indirectly as an immediate consequence of input 

factors of their preceding stages and finally the 

input factors in the first stage (Fig. 2). 

Response factors in each stage are assumed as 

output factors for the stage and denoted them 

FA1, FB1….FM1 for the first stage, FA2, FB2….FM2 

for the second stage, FA3, FB3….FM3 for the third 

stage, if there is any, and, apparently, Y1, Y2 

…,YQ for the response factors in the final stage. 

The input factors in the first stage are denoted 

X1, X2….XM. 
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Fig. 2: Multi-stage Multi-response System 

 

 

In a multi-stage and multi-response process 

optimization problem, the objective is to 

determine optimum levels of input parameters in 

each stage so that the final output quality 

characteristics result in a least combined quality 

loss. Unlike the other possible combinations, the 

combination of control factors levels in each 

stage will enable the total system to operate 
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under the least possible cost. However, the 

challenge in this process is the quality 

characteristics at all stages that need to be 

optimized are a multiple response type. 

Furthermore, in a multi-stage process there are 

intermediate outputs which are inputs for 

succeeding stages. In effect it enables the 

propagation of variation from the early stage of 

the processes to the proceeding stages.  

The principle followed to solve multi-stage and 

multi-response optimization problem is first 

determining optimal levels of control factors for 

the product quality characteristics in the final 

stage, then this process continues for each 

preceding stages until the optimal levels or 

values of the design parameters or control 

factors in the initial stage are determined.  

PROPOSED OPTIMIZATION 

PROCEDURE 

The multi-stage and multi-response process 

optimization proposed in this study has four 

fundamental steps.   

The first step in optimizing a complex process is 

modeling and representing the process as a 

multi-stage and multi-response system. Under 

this stage all the controllable factors and 

uncontrollable factors under each stage are 

established. Moreover, the process inputs, 

measurable process characteristics, intermediate 

outputs and final outputs are determined. 

The second step is dealing the final stage of the 

process as an independent process and solving it 

based on Tong and Su multi-response 

optimization procedure [18]. This method 

includes the following four phases: 1) 

Computing the quality loss, 2) Determining the 

Multi-Response Signal-to-Noise (MRSN) ratio; 

3) Determining the optimal factor/level 

combination; and 4) Conducting the 

confirmation experiment.  

The third step is by considering the optimal 

factor/level combination input of the last stage 

of the process as the outputs of the preceding 

stage; determine the optimal factor/level 

combination of the stage in consideration. 

The last and the fourth step is repeating step 

three until the primary inputs’ optimal 

factor/level combination are determined. 

To illustrate the procedure proposed above, 

process industry, Harar Brewery is selected. The 

brewing process is chosen because of two 

reasons. First, it is a complex process where 

there are many intermediate outputs depending 

one over the other and the second reason is the 

availability of sufficient data under each 

process, which is very important for the 

illustration.  

Finally, signal-to-noise ratio of the process 

before and after the experiment are computed, 

and compared to validate the significance of the 

proposed optimization procedure. 

CASE STUDY  

Harar Brewery Share Company (HBSC) was 

established in 1984 in the town of Harar, 515 

Kilometers from the Capital, Addis Ababa, 

Ethiopia. In 2011 state owned Harar Brewery 

became a subsidiary of Heineken International 

through a buyout.  

The brewery's initial design capacity was 

200,000 hectoliter (60,000,000 bottles) per 

annum and it was producing only Harar lager 

and draught beer. After a period of ten years i.e., 

since 1994 the brewery diversified its products 

and introduced two new brands to the market, 

namely, Hakim Stout—alcohol content 5.5 

%W/v (Dark beer), and Harar Sofi—alcohol 

Free (Malt drink). Since 2005, the Brewery 

developed and implemented ISO 9000 Quality 

Management System and got certified. Among 

other things, it enables an organization to reduce 

varation in the performance parameter of a 

product or a process [4].   

As far as Harar Brewery is concerned, numerous 

efforts have been exerted to minimize process 

variation. However, it is observed that still there 

is considerable challenge to keep all quality 

characteristics within customers expectations 

limit [4]. One potential reason for the problem 

the company is facing is the complexity of the 

process to design, monitor and control as it is a 

multi-stage processes with multiple input, 

intermediate outputs and final outputs. This 

study, therefore, is an attempt to devise a means 

to optimize such a complex system.  

PROCESS MODELING 

Brewing is the production of beer through 

steeping a starch source, commonly cereal 

grains, in water and then fermenting with 

yeast. Work in the brewery is typically 

divided into seven processes: mashing, 

lautering, boiling, fermenting, conditioning, 

filtering, and filling. In the case of Harar 

Brewery, the processes are confined into 

http://en.wikipedia.org/wiki/Beer
http://en.wikipedia.org/wiki/Starch
http://en.wikipedia.org/wiki/Cereal_grains
http://en.wikipedia.org/wiki/Cereal_grains
http://en.wikipedia.org/wiki/Cereal_grains
http://en.wikipedia.org/wiki/Brewing#Fermenting
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three basic sections where the quality 

control department always took sample and 

conduct test in the laboratory. These 

sections are: Brew-houses, Storage Cellars 

and Bottling sections. Apart from possession 

of multiple quality characteristics, brewing 

processes is a typical example for multistage 

process.  

A multi-stage and multi-response system has 

input factors which determine values of their 

immediate responses in each stage; these 

response factors, of course, can be the input 

factors for the succeeding stages. We have 

two kinds of input factors. The first one is 

an input factor for a certain stage which has 

acted as an output factor in the preceding 

stages while the other is a new input factor 

which is added in the intermediate stages 

(Fig. 3).  

All inputs in each stage are conceivably 

controllable by the designer. However, only 

the input factors in the first stage and new 

factors added in the intermediate stages are 

directly controlled by the designer in a 

multi-stage process optimization. The other 

input factors beyond the first stage are 

controlled indirectly as an immediate 

consequence of input factors of their 

preceding stages and finally the input factors 

in the first stage. In Harar Brewery, the most 

critical primary inputs controlled by the 

designer are T. hard, R.M. PH, and M. 

value. The response factors in the first stage 

are W. H. Extract, W. Color and W. PH. The 

response factors or outputs of stage one are 

the input factors for stage two in addition 

with the new factors added into it (this study 

did not considered addition factors for 

analysis since it makes the optimization 

process more complex). The response 

factors of stage two are A. Extract, W. Color 

and W. PH. These output factors are 

considered as the input factors for stage 

three in addition to the factors included in 

this stage. Finally, the outputs of stage three 

are CO2, Apparent Extract, PH, color, 

haziness, and alcohol. 

In dealing with multi-stage multi-response 

process optimization problems, we are 

trying to determine optimum levels of 

selected parameters in each stage so that the 

final output quality characteristics result in a 

least combined variation. In this way, unlike 

the other possible combinations, the 

combination of selected levels of control 

factors in each stage will enable the total 

system to operate under the least possible 

variation.       

 

 
Fig. 3: Harar Brewery’s System 
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input variable changes. Key input variables, in 

contrast, are selected based on the effect they 

bring on the key output factors when they are 

changed.  

Determined factors in each stage and their 

corresponding values are T. hard, Raw Mash PH 

and M. value for stage one; H.W. Extract, Wort 

Color, and Apparent Extract for stage two; 

Apparent Extract, Wort Color and Wort PH for 

stage three. Based on these, important output 

quality characteristics of the third stage or the 

final output in this case are; CO2, Apparent 

Extract, Color uniformity, PH level, Haziness 

and alcohol. Accordingly, levels and their values 

of each control factors in all stages are 

developed and shown in Table1. 

The degrees of freedom for each stage under 

investigation and that for each factor in the stage 

are computed and presented in Table 2. Based 

on the number of factors and their number of 

levels Orthogonal Arrays (OA) for each stage is 

also selected (Table 2). The Orthogonal Array 

selected complies with the rule that the total 

degree of freedom available in an Orthogonal 

Array must be greater than or equal to the 

degree of freedom for the stage.  

 

 

Table 1: Values of Levels of Control Factors   

 

Stages 
Control 

factors 

Selected 

level 

Values of levels of factors 

Level 1 Level 2 Level 3 Level 4 

Stage 1 

T. hard 4 2.80 3.30 3.80 4.30 

Raw mash PH 4 5.60 5.70 5.75 5.85 

M. value 2 1.80 2.00   

Stage 2 

H.W. Ext. 4 11.60 11.80 11.90 12.00 

Wort color 4 10.50 11.50 12.00 12.50 

Wort PH 2 5.60 5.70   

Stage 3 

App. Ext. 3 2.00 2.15 2.40  

Wort color 3 7.50 9.00 9.50  

Wort PH 3 4.20 4.35 4. 45  

 

   

Table 2: Selected Degree of Freedom   

 

Stages Factors 
Selected 

level 

DOF for each 

factor (Df) 

DOF for 

each stage 

(Dm) 

Selected OA DOF 

available in 

OA selected 

Stage 1 

Raw mash PH 4 3 

7 

L16 15 

M. value 2 1 

T. hard 4 3 

Stage 2 

Wort PH 2 1 

7 

L16 15 

Wort color 4 3 

H.W.Ext. 4 3 

Stage 3 

Wort PH 3 2 

6 

L9 8 

Wort color 3 2 

App. Ext. 3 2 

 

 

MULTI - RESPONSE SIGNAL – TO - 

NOISE (MRSN) RATIO 

The selected Orthogonal Array for the first two 

stages is L16 and, hence, the designations set for 

the control factors in these stages is the same. 

For this reason, 16 experimental trials are there 

to see the effects of different level combinations 

of the control factors in these stages on the 

respective outputs (response factors). 

Apparently, L9 Orthogonal Array is selected for 

stage three and designation of control factors in 

the stage is set accordingly.  

The response values in each stage observed from 

the experiment conducted according to the 

designations set are summarized in Table 3 as 

follows. The target value for the last stage, CO2, 

Apparent extract, PH, Color, Haziness and 

Alcohol are 0.6, 2.1, 4.4, 7.5, 0.35 and 3.9 
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respectively. According to Taguchi, any 

deviation from the target value is a loss to the 

society [16]. Based on a discussion made with 

the factory workers a failure cost is assumed to 

be 2.5 Ethiopian Birr per bottle of Beer. 

Therefore, based on the above equation the 

average quality losses under each experimental 

run for all the stages are computed. Only the 

average quality loss in stage three is summarized 

in Table 4 below. Then, the scale of quality loss 

of each response should be normalized in order 

to reduce the variability. For this reason, the 

quality loss at each trial is divided by the 

maximum quality loss in the j trials for each 

response. Then the normalized quality loss for 

the i
th
 response and j

th
 trial is; NLij = Lij / Limax.  

Dealing with the multi-response problem in this 

way, the value of the normalized quality loss 

always ranges between 0 and 1 and the smaller 

the normalized value implies the smaller the 

quality loss. Normalized quality losses for stage 

three are summarized in Table 5. 

The relative weights for each quality 

characteristics need to be assigned. Assignment 

of relative weights is according to their relative 

impact to product or process quality. The sum of 

the weights assigned to each quality 

characteristics is made to give a value of 1. The 

relative weight given from the experience of the 

factory for CO2, Apparent extract, PH, Color, 

Haziness and Alcohol are 0.15, 0.2, 0.2, 0.15, 

0.2 and 0.1 respectively. The normalized 

combined quality loss for each trial is calculated 

by multiplying the normalized quality losses in 

the row by the corresponding weights and 

adding them together. The combined normalized 

quality losses and the multi-response signal-to-

noise ratio are calculated and presented in Table 

6. Determining the optimal levels of the control 

parameters which is the important part of robust 

parameter design is done by following a two-

step optimization procedure; first reducing 

variation and then adjusting the mean on target. 

 

 

Table 3: Experimental Results found in the Three Stages 

Trial 

Stage 1 Stage 2 Stage 3 

H.W. 

Extrac

t 

Wort 

Colo

r 

Wort 

PH 

App.

Ext. 

Wort 

color 

Wort 

PH 

CO

2 

App.

Ext. 
PH 

Colo

r 

Hazi

ness 

Alco

hol 

1 11.70 12.00 5.71 2.30 8.00 4.15 0.6 2.15 4.23 7.50 0.43 3.94 

2 11.90 11.50 5.65 2.20 9.50 4.31 0.58 2.10 4.72 7.50 0.37 3.92 

3 11.80 12.00 5.62 2.30 9.00 4.30 0.62 2.10 4.29 7.50 0.38 3.92 

4 11.70 12.00 5.73 2.35 9.50 4.35 0.61 2.15 4.44 7.50 0.30 3.89 

5 11.60 12.00 5.71 2.10 9.00 4.47 0.61 2.15 4.43 7.50 0.26 3.90 

6 11.65 10.50 5.72 2.40 9.00 4.40 0.62 2.10 4.30 7.50 0.29 3.90 

7 12.20 12.00 5.45 2.00 9.00 4.47 0.6 2.05 4.21 8.00 0.38 3.84 

8 12.35 12.00 5.49 2.20 9.00 4.60 0.61 2.10 4.29 7.50 0.47 3.87 

9 11.65 10.50 5.66 2.20 9.00 4.51 0.62 2.20 4.41 7.50 0.28 3.86 

10 11.85 12.00 5.60 2.00 9.00 4.15       

11 11.80 11.00 5.55 2.25 8.50 4.38       

12 12.65 12.00 5.60 2.35 10.5 4.38       

13 11.85 11.50 5.51 2.00 10.0 4.48       

14 12.10 12.00 5.85 2.00 10.0 4.45       

15 12.10 12.00 5.79 2.10 9.00 4.40       

16 11.60 12.00 5.36 2.20 9.00 4.51       
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Table 4: Average Quality Losses in Stage Three 

Experimental 

Trial 

Average quality losses of response factors (Lij) 

CO2 APP. Ex PH Color Haziness Alcohol 

1 0.037599 1.052772 2.5 1.530842 2.758173 0.625239 

2 0.137104 0.43037 2.5 1.530864 1.264059 0.326467 

3 0.137199 0.430272 2.096902 1.530842 1.388673 0.326439 

4 0.062499 1.052772 1.445902 1.530842 1.787073 0.251739 

5 0.062499 1.052772 1.402502 1.530842 2.5 0.226839 

6 0.137199 0.430272 1.966702 1.530842 2.060973 0.226839 

7 0.037599 1.052772 2.5 2.5 1.388673 1.123239 

8 0.062499 0.430272 2.096902 1.530842 2.5 0.450939 

9 0.137199 2.5 1.352902 1.530842 2.384673 0.625239 

Limax 0.137199 2.5 2.5 2.5 2.5 1.12 

 
 

 

Table 5: Normalized Quality Losses of Response Factors in Stage Three 

 Normalized quality losses of response factors (NLij) 

Experimental 

Trial 
A B C CO2 APP. Ex PH Color Haziness Alcohol 

1 1 1 1 0.27405 0.421109 1 0.612337 1.103269 0.558249 

2 1 2 2 0.99931 0.172148 1 0.612346 0.505624 0.291488 

3 1 3 3 1.00000 0.172109 0.838761 0.612337 0.555469 0.291463 

4 2 1 2 0.45554 0.421109 0.578361 0.612337 0.714829 0.224767 

5 2 2 3 0.45554 0.421109 0.561001 0.612337 1 0.202535 

6 2 3 1 1.00000 0.172109 0.786681 0.612337 0.824389 0.202535 

7 3 1 3 0.27405 0.421109 1 1 0.555469 1.002892 

8 3 2 1 0.45554 0.172109 0.838761 0.612337 1 0.402624 

9 3 3 2 1.00000 1 0.541161 0.612337 0.953869 0.558249 

 
 

 

Table 6: Stage Three MRSN Values of Response Factors in Different Experiments 

 

Experimental 

Trail 

 

Designation of control factors 

  

 

) 

A B C 

1 1 1 1 0.638495 1.948427 

2 1 2 2 0.58117 2.356968 

3 1 3 3 0.556491 2.545417 

4 2 1 2 0.489776 3.100027 

5 2 2 3 0.526856 2.783079 

6 2 3 1 0.57752 2.384327 

7 3 1 3 0.658938 1.811552 

8 3 2 1 0.552617 2.575756 

9 3 3 2 0.748988 1.255252 
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REDUCING VARIATION AND 

ADJUSTING MEAN ON TARGET 

For nominal-best case, the level of the control 

parameter that results in maximum signal-to-

noise ratio is selected as optimal. In this case, 

the combination of levels of control parameters 

that give maximum value of MRSN is selected 

as optimal. In other words, levels of parameters 

that minimize variation should be identified and 

chosen as optimal.  

As shown in Fig. 4, the optimal setting of the 

control factors in stage three is A2B2C3 

(Apparent Extract should be set at 2.2 (2
nd

 

level), Wort Color at 9 (2
nd

 level) and Wort PH 

at 4.45 (3
rd

 level)). The main effects on the 

average MRSN is Apparent Extract, Wort Color 

and Wort PH in their order of appearance (Table 

7). 

Once variation is reduced by determining the 

optimal level combination of the control 

parameters, the mean of the response factors 

needs to be adjusted on target. To do this an 

adjustment factor has to be selected. For the 

nominal-the-best case, a factor that has no 

significant effect on MRSN, a significant effect 

on the mean response for its quality 

characteristic, and no significant effect on the 

mean response for the other quality 

characteristics can be selected as an adjustment 

factor. 

The response tables need to be examined for 

each control factor in order to identify the 

appropriate adjustment factors for adjusting 

mean of responses on target. The response tables 

of the final stage are examined the effect of the 

control factors on each quality characteristics 

shown in Table 7.  

As it can be clearly seen from the table, factor C 

(Wort PH) has no significant influence on the 

average MRSN, CO2, PH, Color, and Alcohol 

but a more significant influence on the mean 

values of the response factors Apparent Extract 

and Haziness. Factor B (Wort Color) has slight 

influence on the average MRSN and the mean 

values of the response factors Apparent Extract 

and Haziness but a significant influence on CO2, 

PH, Color, and Alcohol. Hence, Factor C can be 

chosen as adjustment factor for Apparent Extract 

and Haziness while Factor B for CO2, PH, 

Color, and Alcohol.  

In a similar way the iteration proceed to 

remaining stages until the optimized 

combination of the primary inputs in stage one 

are ensured. As it is summarized in Table 8, the 

control parameters in stage one, Raw Mash PH, 

T. Hard and M. Value, should be set in 3
rd

, 1
st
 

and 2
nd

 level respectively.  

The control parameters in stage two, Hot Wort 

Extract, Wort Color and Wort PH, need to be set 

in 4
th
, 3

rd
 and 1

st
 level respectively.  
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Fig. 4: MRSN versus Apparent Extract, Wort Color, and Wort PH 
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Table 7: Summary of Effect of Control Factors on the Stage Three Mean Response and MRSN  

 

Conditions  
Control 

factors 

Level 

 Delta 

1 2 3 

Main effects on the average of CO2 

App. Ext. 0.114 0.096 0.086 0.027 

Wort Color 0.050 0.096 0.150 0.100 

Wort PH 0.086 0.123 0.086 0.036 

Main effects on the average of App. Ex 

App. Ext. 0.051 0.068 0.106 0.055 

Wort Color 0.084 0.051 0.090 0.039 

Wort PH 0.051 0.106 0.068 0.055 

Main effects on the average of PH 

App. Ext. 0.189 0.128 0.159 0.061 

Wort Color 0.172 0.160 0.144 0.028 

Wort PH 0.175 0.141 0.160 0.034 

Main effects on the average of Color 

App. Ext. 0.092 0.092 0.111 0.019 

Wort Color 0.111 0.092 0.092 0.019 

Wort PH 0.092 0.092 0.111 0.019 

Main effects on the average of Haziness 

App. Ext. 0.1082 0.1270 0.1255 0.019 

Wort Color 0.1187 0.1253 0.1167 0.007 

Wort PH 0.1464 0.1087 0.1055 0.041 

Main effects on the average of Alcohol 

App. Ext. 0.038 0.030 0.065 0.044 

Wort Color 0.060 0.030 0.035 0.030 

Wort PH 0.039 0.036 0.050 0.014 

Main effects on the average of MRSN 

App. Ext. 2.284 2.756 1.881 0.875 

Wort Color 2.287 2.572 2.062 0.510 

Wort PH 2.303 2.237 2.380 0.143 
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Fig. 5: MRSN Values before and after Optimization 

 



Birhanu Beshah, et al., 

 

 

10   Journal of EEA, Vol. 33, December 2015 

VALIDATION 

Once the optimal level of each parameter has 

been selected, the final step is to predict and 

verify the improvement of the quality 

characteristic using the optimum level of the 

parameters. The multi-response signal-to-noise 

ratio in each stage for the optimized setting are 

calculated to show the difference in variation 

created before and after the optimal setting is 

determined. The result is summarized in Fig. 5 

which proofs that the MRSNs of the optimized 

process in each stages have significant 

improvement.  

CONCLUSION 

This research has dealt with a multi-stage and 

multi-response process optimization problem by 

developing a new and easy to use method. The 

method showed that optimization of such 

problems should start from determining the 

optimal levels of the control factors in the final 

stage. Once, the final stage control factors are 

determined in such a way that their optimal 

setting ensures robustness of the quality 

characteristics of the stage, the next step will be 

determining the optimal levels of the control 

factors of the preceding stage. At this time, 

however, the control factors in the final stage 

are taken as output factors for the stage. 

Determining the optimal levels of the control 

factors in this stage, hence, ensures the optimal 

values of these output factors and consequently 

the optimal levels of the quality characteristics 

of the final stage. This process continues until 

the optimal levels (values) of the control factors 

in the initial stage are determined. The new 

model developed has been tested and has shown 

improvement in MRSN. Future research could 

be undertaken by considering additional inputs 

in the intermediate stages. These will make 

multi-stage and multi-response process 

optimization complete. Moreover, this model 

could be tested and adapted in a wider area of 

process optimization problems. Comparing 

Taguchi method with other methods shall also 

be taken as a future research field.  
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