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ABSTRACT

Sgft sensors are key solutions in process indusiries,
lmpartant parameters which ave difficnlr or cost a
ot te measure can be predicted using soft senvory,
In this paper newral notwork based clinker quality
predictor is developed The predicior penninely
extimeates LSF, SM, AM and C,8 valies.

Thare is a time delay while plysically measuring
cliker quality poarameters. This can be avoided
and guick control action can be taken by prodicting
the  parameiers. Many newral natwork  based
prediciors  have  been  developed in  different
application areas. However, this paper has its own
nwew  comiribution. First it has developed data
synihesty sirategy. Besides, muliiple and advanced
neural wnerwork archirectures are wsed to ger
improved resull. Moreaver, it ts of the first kind for
the selected case (Mugher cement facrory).

Key words: Saft sensor, newral network, clinker
gualily prediction.

INTRODUCTION
Preblem Description

There are two major problems while measuring
clinker quality parameters. The Tirst one is
measurement  delay. The lime delay of the
laboratory analyvsis is around four hours and that of
the X-Ray Fluorescence (XRF) technigue is aboul
fifteen minutes. These delays cause hindrance in
communicating  gualily  repoerl,  resulling  in
difficulties of making timely control adjustment
whenever it is required, This in turn signilicantly
affects producing good quality clinker, The second
one is lack of backup for the XRF. In casc of
malfunction, quality measurement cannot be done
using the XRF and therc is no backup (o
supplement due to its high cost. Therefore,
measuremeni _delays and absence of backup
indicate the need for clinker quality prediction.

Significance of the Paper Work

The paper has two sided importance. ‘First. the
neural network based quality prediction will avoid
measurement delay and enable quick control
actions 1o be laken. Therefore, the developed
predictor  cun  supplement  clinker  quality
measurement  and  will aid on  effective kiln
apetation, As a result, clinker quality can be furthes
improved. Sccondly, as the first of its kind, it will
create motivation on applying neural network
based soll sensor Lo inland process industries, Thus,
itis a significant paper work.

Cement Manufacturing Process

Cement  production  is  an energy  intensive
manufocturing process. Portland cement, the most
common type of cemenl, is produced by grinding
an intermediate product called clinker, This product
is produced in a rotary kiln, which contains
nonlinearity, lag and there s no  precise
mathematical model Lo represent it [1].

There are four [undamental stages, as shown in
Fig. I, in the production of Portland cement:
quarrying, raw material preparation, clinkering and
cement milling [2-4].
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Figure 1 Cement manufacturing from limestone quartying to cement bagging [11]

Step I: Quarrying

The raw materials (limestone, clay) for cement
manufacture are quarried and stored scparately.

Step 1I: Raw material preparation

The steps involved here depend on the process Lype
used, For dry process, proportioned mix is milled
without adding water. Howewver, in wel process the
mix is pulverized in the presence of water.

Step HI: Clinkering

The powder from dry process or the slurry from
wet process is heated in oa rotary kiln and then
cooled down. While it is being heated chemical
reactions take place o forn mineral phases of the
clinker.

Step 1V: Cement milling

The final product, which is cement, is produced by
grinding clinker with gypsum, in a cement mill.

Clinker Formation

There is a set of reactions in the kiln to form clinker
[2,3). The decomposition of calcite and clay, and
reaction to give belite, aluminate and fermite oeeur
kelow about 1300°C. In the temperature range of
1300°C-1400°C, a melt is formed. In the presence of
the melt, belite and lime react to give alite. During
cooling, the liquid crystallizes 1o give aluminate and
ferrite. Thus, in such chain of reactions clinker
minerals are produced. Fig. 2 shows the variation in
phase content, with respeet 1o lemperature, during
clinker formation.
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Figure 2 Phase variation during clinker formation [2]
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LITERATURE REVIEW
Paper Works on Soft Sensors in Cement Factory

Soft  sensors  have applicetion in  predicling
imporiant process parameters. There are many
papers on the application of sofl sensors [1.5-10].
Amaong these, Two papers are particular to cement
factories and use neural nelwork.

The first one is on emperilure prediclion. Neudral
network based lemperaiure predictor for cement
rolary kiln is reported in o paper [1]. In this
predictor  backpropagation and Elman neural
network are wsed. This paper serves as o good
illustration of the benefits of soft sensor in cement
[wetory, However, it 15 not directly linked tw clinker
quality prediction, which is the focus of this work,

The other one is neural network based clinker
guality parameters prediction [10], It has used
backpropagation neural network for simuliancous
prediction of clinker quality parameters. Besides,
ithe paper gives recommendation on using some
other network architectures to further improve the
result,

METHODOLOGY

The basic steps in sofl sensor design are dala
collection, data preprocessing, model selection &
iraining and model validation [12]. These arc
shown in Fig. 3.

Newral Network Based Data-Driven Predictor

Data Collection and Variable Selection

An industrial database provides data of all the
variahles that are recorded. However, all the
available voriable data are nol relevant to the
process variable to be estimaled. Thus, relevant
variables are selected with the help of experts from
Mugher cement factory. Table 1 shows the relevant
variables.
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Figure 3 Soft sensor design steps
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Table 1: The relevant variables for prediction

Input

Gut'_'[;ut

Opcrating parameters

Kiln meal variables | Clinker variables

Secondary air temperature, Calciner
rising pipe temperature, Kiln gos flue
chamber temperature, Quanlity of oil
before kiln burner, Quantity of oil

before calciner burner, Kiln speed, Kiln
meal flow rate and Hot gos 1D fan

power

Bi0,, Al Oy,
Festh and Cal

1.ime saturation factor (1.SF), Silica
modulus {SM), Alumina modulus
{AM) and Aldite (C55)

The Problem of Dimensionality Mismaich

The intcrval al which variables are measurcd
creates a problem. Clinker data is  measured
everyday and kiln meal and operating paramelers
are measured every one hour. Thus, for hundreds of
clinker data sumples there will be thousands of Kiln
meal and cperating parameters data samples,

Data Preprocessing

The collected historical dala is nol ready 10 use for
training due o the presence of missing values,
outliers and others. Thus, the data collected from
the industrial database is subjected to appropriate
treatment.

1. Correcting time formal mismatch

The operating parameters, kiln meal and clinker
variables are not recorded on uniform time format.
Thus all the time formals are converted to military
Lime,

II. Defining input-output time dependence

Clinker is anclyzed once every 24hr, usually in the
morning around & The enalysis is done on a
blended sample of many hours, usually ol 24hr,
where a sample is taken every 2he, However, kiln
meal and operaling parameters are recorded every
thr. Thus one set clinker analysis result will
depend on the uverage of many hours, usually 24hr,
data of kiln meal and operating parsmeters. This
time dependence is shown in Fig. 4 below.

Kiln meal X
[¢930 u. 2201 235 ?@
]
Operating parameatars 1 Clintar
1

— =+ Time

Figure 4 Input-output time dependence
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111, Missing value impulation

Missing data corresponds Lo data values that should
be present in a dataset but that, for VArious redsons,
are absent [13]. Missing values are treated using
known mathematical expressions  end  linear
interpolation.

1V, Cutlier detection

An outlier is an entry in a dataset that is anomalous
with respect Lo the behavior seen in the majority of
the other entries in the dawset [13]. Some outlicrs
are deteeted using process knowledge, Whenever it
is not possible to use process knowledge, the 38
edit rule is used to detect outliers,

Data Synthesizing Strategy

Alfler preprocessing the data, forty-cight cleaned
input-output dataset is obtained from four month
historical data, However, the smaller the size of the
data, the difficult it will be to train the neural
network, Besides, small dataset will not have
enough variations lo be representative. Therelore u
dataset is reguired to be synthesized systematically,

To synthesize the data, only one of the inpwt
attributes is varied while keeping all the rest fixed.
The variables that are 1o be varied are Kiln meal
attributes, i.e, kiln meal oxides. To oblain process
like data, the variation Is limited (employing
different methods) within & sound possible range.
In this way the input data is synthesized.

The output is gencrated by using mathematical
expressions  [2,3,14]. MATLAB is used o
accompany the synthesizing process. Clinker
oxides (corresponds to the output) are caleulated
from kiln meal oxides using Eq. (1-4). From these
result the outputs are caleulated using Eqs. (5-8).
Eq. § is obtaincd using multiple regression. This Is
because the original equation. in Bogue set of

Journal of EEA, Vol. 29, 2012



equations, for calculating the allte value is involved
with variables that cannot be obtained using an
equation similar o Egs.(1-4). Thus, finally 144
inpui-oulpul  detusel is prepared using the data
synthesizing strategy.

84Ca0 in Clinker '
_ (% CaC in kiln meal } 100

100 = LO] )
0% Si0y in Clinker
_ (% 510, kiln meal ) 100 2
B 100 — LOI @
O Al Oz in Clinker
(% Al 0 kiln meal ) 100 3
= 100 — LOI 3
%% Fep 04 in Clinker
_ { % Fea 04 kiln meal 100 n
=T - ®
Where: LOI means Loss On lgnition
Lime Saturation factor (LSF)
_ 100 Can B
© 2850, + L18AL0; 4 0.65Fe.0, )
Sthca Module (SM)

SiD,
(6}
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Input Hiclcer: Layer
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Alumina Module
Al 0y

= 7
Fe, Oy )
Alite (C35) = —38.2749 - 43795 Cald —
7.03315i0, — B.0014 ALO, + 1.0512Fe: 0
(8)

Neural Network Model Selection and “T'raining

Meurz! network models are selected to be compared
with a proposed benchmark. Hidden laver size ix
selecied by a rule of thumb {ollowed by trial and
error. The benchmark network 18 multiple input
multiple oulpul fecdforward network (12-20-43,
Using the benchmark, twa models are selected. The
first one is multiple inpul single output feediorward
petwork (12-20-1), For ease of predicting single
oulpul per network than multiples, it is expected
that the model will give better resull. The second
onc is moedified Elman network. This model 12
chosen because it is derived [rom one of the most
known neural network, its dynamic nature could fil
the delay feature of the kiln system and its strength
for complex system modeling is indicated in some
papers [1,15,16). The training, validution dnd test
sels have 0.7:0015:0.15 proportion respectively.
The architectures of the models are given in Fig
3-7 below,
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Figure 7 The modified Elman netw ark
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Figure 8 The improved alite predicting model

Network Fealures

The neural network models are developed using
MATLAB. All the models share the following
common features.

I. Normalization

It is imporiant for the data to be normalized.
Otherwise important process variables having small
magniludes  will  be overshodowed by less
important variables having larger magnitudes, The
normatization funetion 'mapminmax’ is used to
scale the inputs and targets so that they fall in the
range [0, 1]. This function uses extreme values of
the original data. The normalization is effectively
part of the netwark,

(I, Performance function

All of the network models use mean square crror
(MSE) as a performance [unction.

32

111, Training function

‘traingeg’ is the training [unetion, It is lhe scaled
conjugate gradient training algorithm.

RESULT AND MISCUSSION

The modified Elman model is generally superior in
performance than all the other models. However,
all of the three models have large error while
predicting the alite value. Thus, improved network
architecture, shown in Fig. 8, is developed lo
predict this value. This improvement 15 @ simple
rearrangement that rather than predicting the alite
value direelly, clinker oxides are predicled. These
predicted values are used by the mulliple regression
model, which is now part of the improved alite
predicting model, to caleulate the alile value.
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Neural Network Based Data-Driven Predictor

As a means of observing model performance,
network oulput (predicted) and target output is
plotted for the training and testing sets, The plots
are fur the models with best result. Theses plots are
given In Fig. 9-12.

Figure 10 Targel and predicted value of the madified Elman network.[Silica modulus sub model]
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Figure 12 Target and predicted value of the improved alite predicting model

The nearal network moedels are compared with cach
other, The comparison is done based on the mean
square error on the lest sel for the set is not used
while training. As a result, the mean square errors
show the predicting performance of the models on
new samples that the models are nol trained on
before. This performance compatison is presented
in tabular form as shown in Tables 2-3.

Table 2: Mean square error [On lime saturation factor|

Figure 11 Targel and predicted value of the modified Elman network, [Alumina modulus sub model]

Lime saturation factor (LSI)

Madels MSE LSF value nse
Minimum (min) Maximum (max) mse(%o) = . +100

Benchmark GOR8K | 90.53 106.88 8.50

Muitiple inpul  single output | 4.5229 | 90.53 106,84 4.23

(MISO} )

Maodified Elman 43482 [9053 106.88 407 ]

3 Journal of EEA, Vol. 29, 20112
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Table 3; Mean square crror [On silica modulus]

Silica modulus (SM)
Muodels MSE M value mse
Minimum | Maximum mse(%) = ——»100
i (min) (max) |
Benchmark . 0.0439 161 233 197
Multiple input single 0.0039 161 233 017
outpul (MISC)
Modified Elman 0.0027 L6l 233 i 0.12
Table 4: Mean square error {On alumina modulus]
L Alumina madulus (AM) )
Models MSE AM value mise
Minimum Maximum mse (%) = *100
{min) (max) __m X
Benchmark 0.0112 1.38 .72 - .65
Multiple  input  single | 0.0023 1.3% 1.72 0.13
autput (MIS0)
Modified Eiman 0.0011 1.38 172 0.06
Table 5: Mean square error [On alit]
Alite (C:5) S
Models MEE Cy5 value nire
Minimum Maximum mse(%e) = #100
(min) (max) Ak
Benchmark 15.6418 44.72 79.60 19.65
Multiple input single | 16.8973 44.72 7960 21.23
output (MISO) .
Muodificd Elman 17.0127 44.72 79.60 21.37
Improved alite 10L.8759 44,72 1960 13.66
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