Case report

Diagnosed cerebral cortical venous thrombosis after initiation of chemotherapy for Burkitt's lymphoma: a case report

Thrombose veineuse cérébrale corticale diagnostiquée après initiation de la chimiothérapie pour un lymphome de Burkitt : à propos d’un cas

Mohamed Siboub

Correspondence
Mohamed Siboub
Department of Clinical Hematology and Marrow Transplantation, Center Hospitalier Universitaire Mohammed VI, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
Marrakech, Avenue Ibn Sina, BP 2360, Marrakesh, Morocco
Courriel : simohamedsiboub@hotmail.com
Téléphone : +212645764320

Summary
Cerebral venous thrombosis in lymphoma is rare and can be serious and potentially fatal. Evaluation of risk factors for correct stratification is required before antitumor treatment. Initiation of chemotherapy for bulky tumors can induce thrombosis in unusual localizations, which can be a serious diagnostic and therapeutic problem.

Keywords: Cerebral venous thrombosis, Burkitt's lymphoma, Risk factors

Received: December 18th, 2022
Accepted: February 1st, 2023
https://dx.doi.org/10.4314/aamed.v16i2.15

Introduction
Development of thromboembolic complications in patients with solid malignancies is well recognized and studied. This condition was explained by hypercoagulability secondary to excessive production of pro-coagulants in addition to inadequate interaction of tumor cells with the organism's cells, especially platelets (1). Several studies have evaluated risks in lymphomatous pathology according to subtypes, permitting stratification of patients into groups (2). Burkitt's lymphoma, being one of aggressive lymphomas, has not been well included in most of these studies (Burkitt’s lymphoma is rare in adults, usually less than 1% of NHLs).

We report the case of patient with Bulky Burkitt’s lymphoma who developed cerebral venous thrombosis after starting chemotherapy.
Patient and observation
A 31-year-old male patient with no prior clinically pathological history developed a rapidly growing cervical mass in the absence of general symptoms. The clinical examination found a performance status of 0, a basic-cervical mass of 3cm/4cm with no inflammatory signs and no other associated abnormalities.

Ultrasonography revealed a cervicomediastinal mass that was biopsied to confirm diagnosis of Burkitt's lymphoma. Extension evaluation did not find any meningeal or spinal cord involvement and Positron emission tomography scanning (Pet-scan) helped to characterize cervical mass with no other lesions (Figure 1).

Figure 1: Pet-CT showing bulky hypermetabolic mass of the superior mediastinum with tracheal compression.

Patient was classified as group I (no neurological or spinal cord involvement) and stage III of Murphy. Prophylactic anticoagulation was initiated with low-molecular-weight heparin (MWH) and treatment with LMB02 protocol was initiated: Cyclophosphamide (first day: 300mg/m²), Vincristine (first day: 1mg/m²) and Prednisolone (60 mg/m² D1 to D7). Five days after chemotherapy began, we observed a clear decrease of cervical mass, but unusual headaches appeared. Brain magnetic resonance imaging (MRI) showed a left parietal cortical venous thrombosis with minor venous infarction (Figure 2).

Figure 2: Brain imaging highlighting left parietal cortical venous thrombosis.
(a) Injected brain scan (b) Cerebral MRI in T1 (c) Cerebral MRI in T2

Investigations of thrombophilia and systemic disease were normal. Curative anti-coagulation was applied. Evolution was characterized by improvement of headache and no neurological deficits were previously described. Patient was satisfied with good evolution: decrease in cervical mass and disappearance of headaches.

Discussion
It is evident that lymphoma represent a risk factor for venous thrombosis development. Several scores have been developed to stratify patients and propose primary prophylaxis regimens (2).

Prevalence of thrombosis is highly variable: 4.7% of Hodgkin lymphomas rising to 6.5% in non-Hodgkin lymphoma. Cerebral venous thrombosis represents 0.5 to 1% of unplanned admissions to neurology, and is more common in young subjects with median age at 33 years, particularly women, most probably due to
hormonal variations (pregnancy and use of estrogen-progesterone contraceptives) (3). This isolated localization is very rarely associated with lymphoma. It is most often asymptomatic, sometimes leads to focal deficit signs depending on the territory and rarely to convulsions (4).

In the group of patients with NHL, several situations have been identified as high risk with a prevalence exceeding 50 %: aggressive histological forms (in particular diffuse large B-cell lymphoma), bulky involvement (more than 10 cm) and initial localizations in central nervous system and mediastinum (5). Other known risk factors for solid cancers may increase morbidity and mortality: advanced age, female gender, immobility or prolonged confinement to bed, and association with other comorbidities (such as liver failure, renal disease and history of thrombosis) (2).

Biologically, elevated LDH, hypoalbuminemia, presence of paroxysmal nocturnal hemoglobinuria (HPN) clone and very recently white blood cell count above 11,000 are considered as risk factors for thrombosis. Thrombophilia testing should be encouraged because the risk increases from 5 to 12 in cancer patients. Detection of JAK2 V617F mutation has been reported in several studies (6).

Treatment of venous thrombosis is imperative even if asymptomatic and affecting small veins. This treatment must be started as soon as the diagnosis is made and it is based on an effective anticoagulation associated with control of patient’s context (sepsis; usage of pro-thrombotic drugs etc…). LMWH is the gold standard treatment for CVT, generally administered in fractionated doses (two doses over 24 hours), which helps to avoid hemorrhagic transformation. Post-chemotherapy thrombocytopenia generally requires dosage adjustment, change or sometimes temporary discontinuation of anticoagulant therapy. When signs of intracranial tension are present, associated treatment may be proposed depending on the patient’s context: Mannitol, hyperventilation, very rarely therapeutic lumbar punctures (7).

Regarding the treatment of lymphoma, the use of granulocyte growth factor and protocols containing Doxorubicin may increase the risk of thrombosis (8).

Currently, there are no specific recommendations for primary prophylaxis in lymphoma setting, and decision remains with clinician after appropriate assessment of risk and feasibility of such prophylaxis.

Conclusion
Risk of thromboembolic complications in lymphomatous pathology is very heterogeneous, which makes it difficult to set up systematic recommendations for prophylaxis and therapeutic management.

Competing interests
The author declares that he had no competing interests.

Authors’ contributions
MS was responsible for the diagnosis and treatment. He analyzed and interpreted the patient data. MS approved the final manuscript.

Consent for publication
Written informed consent was obtained from the patient for publication of this case report and any accompanying images.

References

Cite this paper as: Siboub M. Diagnosed cerebral venous cortical thrombosis after initiation of chemotherapy for Burkitt’s lymphoma: a case report. Ann Afr Med 2023; 16 (2): e5132-e5137. https://dx.doi.org/10.4314/aamed.v16i2.15