Giant Urinary Bladder Stone in Association with Acute Kidney Injury: A Rare Urological Emergency

Najeem Adedamola Idowu1, Abdul-Karim Olayinka Shitu2, Peter Olalekan Odeyemi1, Mumini Wemimo Rasheed3, Chidi Ogeh Ugwuoke4

1Department of Surgery, Division of Urology Ladoke Akintola University of Technology Teaching Hospital and LAUTECH Ogbomoso, Oyo, Nigeria
2Department of Internal Medicine, Nephrology Unit, Ladoke Akintola University of Technology Teaching Hospital and LAUTECH Ogbomoso, Oyo State Nigeria.
3Department of Anatomic Pathology, Federal University Dutse, Dutse Jigawa, Nigeria
4Department of Surgery, Ladoke Akintola University of Technology Teaching Hospital Ogbomoso, Oyo State Nigeria.

Correspondence to: Idowu Najeem Adedamola; email:idowunajeem0@gmail.com

Received: 27 Jan 2023; Revised: 23 Jul 2023; Accepted: 26 Jul 2023; Available online: 7 Aug 2023

Summary
Urinary stone remains a common urological disorder. Urinary bladder stone accounts for 5% of the urinary tract calculi. They are usually small and rarely present with complications; they may progressively increase in size, occupying the urinary bladder and resulting in the development of symptoms and complications. Our aim was to report the first case of a giant urinary bladder stone in association with severe kidney dysfunction in our Community. We report the case of a 65-year-old man with a 1-week history of decrease in urinary output and uremia following a referral from the general hospital. Remarkable findings on clinical examination were an elderly man that was confused, pale, and dehydrated. He had a suprapubic bladder Foley catheter which was inserted at the source of referral. Laboratory and imaging investigation revealed raised creatinine levels, bilateral hydronephrosis, and giant urinary bladder stone. These were suggestive of obstructive uropathy likely from the stone in association with severe kidney dysfunction. He had emergency open cystolithotomy and a 400g stone was removed. There was an immediate improvement in the urinary output and renal function. We have reported our experience on the successful management of giant urinary bladder stone in association with acute kidney injury. The patient recovered satisfactorily from acute kidney injury following emergency open cystolithotomy.

Keywords: Giant urinary bladder stone, Cystolithotomy, Obstructive uropathy

DOI: http://dx.doi.org/10.4314/aas.v20i4.3

Conflict of interest: None
Funding: None
© 2023 Author. This work is licensed under the Creative Commons Attribution 4.0 International License.

Introduction
Urinary stones are common urological disorders (1). It is next to urinary tract infection and prostatic disease in terms of occurrence (2). It can occur in the kidney, ureter, bladder, or urethra. Urinary bladder stones
account for less than 5% of the urinary tract calculi (3). Urinary stones are made up of different components. The most common bladder stone calculi are made of uric acid crystals (4). Urinary bladder stones can either be migrating (primary), from the upper tract, or secondary, in which it is formed denovo in the urinary bladder (5). Environmental factors, dietary factors, metabolic factors, infections, and all cases of bladder outlet obstruction are risk factors for the development of urinary bladder stones (5). Patients with bladder stones may be asymptomatic or symptomatic with or without complications (6). They commonly present with suprapubic pain, lower urinary tract symptoms, and hematuria (7). Urinary bladder stones rarely present with complications. Aside from being an established risk factor for the development of bladder stones, urinary tract infection may also be a complication of urinary stones. Urinary tract infection has been reported to complicate 22–34% of bladder calculi (8). This has been attributed to its foreign nature in the bladder, thus constituting a nidus for infection (9). The other rare complications are acute or chronic urinary retention and renal failure (8,10). Urinary bladder stones have also been linked with the development of bladder cancer (13). Bladder stones are usually small, but they may progressively grow in size occupying the bladder cavity, and are often referred to as giant bladder stones. The giant bladder stone has not been well defined. It has been defined as a stone that is more than 10cm in diameter by some authors, whereas others have defined it as a bladder stone that is more than 100g in size (11,12). The management of urinary bladder stone depends on the clinical presentation. The initial care may involve urgent suprapubic cystotomy and/or salvage hemodialysis in complicated cases (14). The definitive treatment is surgical removal of the stone. The gold standard surgical option is endoscopic removal (7). Open cystolithotomy could, however, be an option when emergency surgical removal is required. Any delay in such instance may lead to irreversible kidney damage. Cases of giant bladder stone are uncommon and it rarely results in urological emergency (15). Thus, it was worthwhile to report this rare case of an elderly man with giant urinary bladder stone in association with severe renal dysfunction necessitating emergency open cystolithotomy. Our aim was to report the first case of giant urinary bladder stone in our community and to document its rare complication of severe kidney dysfunction; our objectives were to present the clinical features, investigations, and management of a case of giant urinary bladder stone.

Case presentation
We present a 65-year-old man with a1-week history of reduced in urinary output and uremia following a referral from the state general hospital. He had an antecedent history of lower urinary tract symptoms over a period of 2 months, which culminated in acute urinary retention. This necessitated suprapubic tubed cystostomy at the referring institution. He was on a suprapubic catheter for 6 months before presentation. He had no previous history of urethral trauma, surgery, instrumentation, catheterization, or urethritis. His past medical and surgical history was clinically unremarkable. Clinical examination revealed an elderly man who was confused with a Glasgow coma score of 12, pale, and dehydrated. His vital signs were a blood pressure of 110/80mmHg, pulse rate of 110/min, respiratory rate of 20/min, and temperature of 36.8°C. The head, neck, and chest examination were clinically unremarkable. A suprapubic bladder Foley catheter was connected to a urinary drainage bag, although it was noted to be empty. There was a palpable stony hard, tender suprapubic swelling of about 14 weeks fundal height in size. Digital rectal examination revealed a normal prostate. Examination of the external genitalia was grossly normal. He had parenteralcliprofloxacillin, metronidazole, paracetamol, and fluid resuscitation. Laboratory investigations done revealed park cell volume of 22%, elevated potassium, reduced calcium and elevated phosphorus (Table 1) The urine culture was negative. Abdominopelvic sonography revealed a suspected bladder stone with bilateral hydronephrosis. Transrectal ultrasound revealed a prostate size of 25g. Plain pelvic radiogram revealed an oval-shaped radiopaque substance filling the entire bladder cavity (Figure 1). He had two pints of blood transfused on account of symptomatic anemia and subsequently had
emergency open cystolithotomy. An oval foul smelling stone measuring 8cm \(\times\) 8cm \(\times\) 6cm and 400g in weight was removed (Figure 2 and Figure 3). Intra-operatively, the stone completely filled the entire bladder cavity and was impacted in the trigone of the bladder.

Table 1. Pre-operative and post-operative values of electrolyte, urea, and creatinine.

<table>
<thead>
<tr>
<th>Electrolytes</th>
<th>Pre-operative</th>
<th>Post-operative (mmol/L)</th>
<th>Normal range (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium</td>
<td>134</td>
<td>140</td>
<td>120–140</td>
</tr>
<tr>
<td>Potassium</td>
<td>5.8</td>
<td>3.7</td>
<td>3–5</td>
</tr>
<tr>
<td>Magnesium</td>
<td>1.07</td>
<td>*</td>
<td>0.65–1.25</td>
</tr>
<tr>
<td>Calcium</td>
<td>1.58</td>
<td>2.2</td>
<td>2.02–2.60</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>2.08</td>
<td>*</td>
<td>0.85–1.3</td>
</tr>
<tr>
<td>Chloride</td>
<td>97.8</td>
<td>100</td>
<td>90–110</td>
</tr>
<tr>
<td>Bicarbonate</td>
<td>16.5</td>
<td>21</td>
<td>20–40</td>
</tr>
<tr>
<td>Urea</td>
<td>22.16</td>
<td>4.0</td>
<td>2.5–8.2</td>
</tr>
<tr>
<td>Uric acid</td>
<td>459</td>
<td>*</td>
<td>208–428</td>
</tr>
<tr>
<td>Creatinine</td>
<td>457.6</td>
<td>110</td>
<td>60–120</td>
</tr>
</tbody>
</table>

*Not repeated.

Figure 1. Plain radiograph of the abdomen and pelvis showing an oval radiopaque substance filling the bladder cavity as shown by the red arrow.

Figure 2. Size of the stone—8cm in greatest dimension.

Figure 3. Weight of the stone—400g.

There was extensive anterior bladder wall pressure necrosis. There was immediate urinary drainage from both the ureteral orifices following stonedisimpaction. There was a grossly normal bladder mucosa except in the areas overlying the bladder wall necrosis. The bladder cavity was thoroughly lavaged with warm saline. Devitalized bladder tissues were removed and repair subsequently done. The urethral catheter connected to the urinary drainage bag was passed with ease. There was gradual and eventual adequate urinary drainage, and the suprapubic catheter was not reinserted after the successful passage of urethral catheterization.
The immediate post-operative period was uneventful. The patient developed vesicocutaneous fistula on post-operative day 7. This was managed nonoperatively by continuous bladder drainage via a urethral catheter for 2 weeks. The post-operative laboratory investigation was essentially normal (Table 1). The patient was discharged after 3 weeks. Follow-up at the surgical outpatient department 5 months after discharge was uneventful.

Discussion
Giant urinary bladder stones are a relatively common urological disorder and are rarely associated with complications (15). Few cases of giant urinary bladder stones have been reported in the medical literature (16). Those cases were also rarely associated with kidney dysfunction (16). This is because a bladder stone is unlikely to obstruct the ureteral orifices due to its mobility in the bladder cavity. However, it may become impacted in the fundus compressing on the ureteral orifices with attendant renal insufficiency (17), as noted in our patient. This perhaps explains the deranged pre-operative urea and creatinine, and low park cell volume in the patient.

Our patient was noted to have a suprapubic bladder Foley catheter in place following difficult urethral catheterization. The difficulty in passing a urethral catheter may be as a result of the stone in the bladder neck, thus constituting mechanical obstruction (18).

The presence of an indwelling catheter, urinary stasis from the bladder outlet obstruction, and attendant urinary infection may explain the progressive increase in the size of the stone filling the entire bladder cavity, as noted in our case. There was no clinical, radiological, or laboratory evidence of prostatic disease that could have served as risk factors for the urinary bladder stone in this case. It is likely to be an infection stone. Biochemical stone analysis is required to establish the likely component of the stone. This was not done due to non-availability of facilities.

A clinical suspicion of urinary bladder stone was made following pelvic sonography and plain pelvic radiogram. Although the gold standard investigation for urolithiasis is noncontrast computed tomography (19), this was not performed in our patient, because information from the pelvic radiography was sufficient; 90% of urinary stones are radiopaque, which can easily be picked on a plain radiograph (20). Waiting for a CT scan may also delay the emergency intervention, which may result in severe morbidity.

Although the pathogenesis of renal dysfunction in this case could be multifactorial, the likely factors include dehydration, urinary sepsis, and obstructive uropathy. The immediate restoration of urinary drainage after stone disimpaction coupled with improvement of renal function is a pointer to post-renal kidney injury. This may also explain that the cause of confusion at presentation may likely be due to uremia due to the pre-operative renal function and then post-operative improvement of renal function.

Open cystolithotomy was performed rather than the gold standard endoscopic management, which could be a combination of strategies such as pneumatic lithotripsy and cystolitholapaxy. This was because the patient presented with complications and there was lack of appropriate devices.

Immediate urinary drainage from the ureteral orifices explained the pathogenesis of renal dysfunction in our patient as an obstructive uropathological disorder.

The size and weight of the stone were 8 cm × 8 cm × 6 cm and 400 g, respectively. The largest urinary bladder stone ever documented, as contained in the Guinness World Record, was 17.9 cm × 12.7 cm × 9.5 cm in size and 1.81 kg in weight (21). Some works have reported a urinary bladder stone of more than 500 g. In Ilorin, Nigeria, Rahman, Akande, and Mamudu reported a urinary stone of 790 g (22). Abiahu et al. also reported a urinary stone size of 230 g as a giant urinary stone (23). A giant urinary stone has been defined differently by several authors. Some have defined it in terms of size, while others have made reference to the weight (4). There is need for a standard, uniform, and acceptable definition. The size and weight of a bladder stone varies with the capacity of the bladder. What may be regarded as giant in children may be a small stone in adults. In fact, a stone of 16 g has been reported as giant in children (24). A standard definition that will be generally acceptable will require several pools of cases of urinary bladder stones.
Our patient developed vesicocutaneous fistula. This may not be unconnected with chronic stone impaction, resulting in devitalization of some part of the wall of the bladder. This was managed successfully nonoperatively. Surgical closure was not considered due to patient preference.

Conclusion
We reported our experience on the successful management of giant urinary bladder stone in association with severe kidney dysfunction. The patient recovered from acute kidney injury following emergency open cystolithotomy. Mechanical obstruction as a result of the stone was identified as the cause of renal dysfunction. There was post-operative vesicocutaneous fistula, which was managed by prolonged urethral catheterization.

Ethical consideration
Informed consent was acquired from the patient for publication of the case report.

Author contributions
NAI led in the conceptualization, data curation, resources, supervision and in the writing, reviewing and editing the original draft.
All authors equally contributed to methodology, investigation, formal analysis and project administration.

References