ABSTRACT

Groundnut rosette disease (GRD) is the most destructive virus disease of Valencia groundnuts (*Arachis hypogaea* L.) in sub-Saharan Africa. Cultural, biological and chemical control measures have received limited success due to small scale farmers’ inability to use them. Use of host plant resistance provides the most effective and economically viable management option for the resource poor farmers. This study was conducted to determine heritability for resistance to GRD in Valencia groundnuts. Six crosses; Valencia C (*P*) × ICGV-SM 90704 (*P*), Valencia C (*P*) × ICGV-SM 96801(*P*), Valencia C (*P*) × ICGV-SM 99566 (*P*), NuMex-M (*P*) × ICGV-SM 90704 (*P*), NuMex-M (*P*) × ICGV-SM 96801 (*P*), and NuMex-M (*P*) × ICGV-SM 99566 (*P*), were made to generate F₁, F₂, BC₁P, and BC₂P populations. Data on GRD severity were collected on a 1-9 score scale. Genetic Advance as a percentage of the mean (GAM) and heritability were estimated using variance components. Phenotypic Coefficient of Variation (PCV) and Genotypic Coefficient of Variation (GCV) estimates were high (20.04-70.1%) in the six crosses, except for Valencia C × ICGV-SM 96801(18.1%) and NuMex-M × ICGV-SM 96801 (13.5%) crosses that exhibited moderate GAM. The study revealed the presence of variability of GRD resistance, implying that genetic improvement of these exotic materials is possible.

Key Words: *Arachis hypogaea*, coefficients of variation

RÉSUMÉ

SM 96801 (P₁), Valencia C (P₂) × ICGV-SM 99566 (P₂), NuMex-M₃ (P₁) × ICGV-SM 90704 (P₂), NuMex-M₃ × ICGV-SM 96801 (P₂), et NuMex-M₃ (P₁) × ICGV-SM 99566 (P₂), ont été effectués afin de générer F₁, F₂, BC₁P₁ et BC₁P₂ populations. Des données ont été collectées sur le degré sévérité de GRD en se servant d’une échelle de 1-9. Les paramètres d’avancée génétique exprimée en pourcentage de la moyenne (GAM) et héritabilité ont été estimés à partir de composantes de variance. Le coefficient de variation phénotypique (PCV) et génotypique (GCV) estimés étaient élevés (20,04-70,1%) dans les six croisements, sauf pour Valencia C × ICGV-SM 96801 (18,1%) et NuMex-M₃ × ICGV-SM 96801 (17,1%), où les valeurs de GCV étaient modérées. Les valeurs de l’héritabilité au sens large et au sens strict pour la résistance à GRD variaient respectivement de 64,1 à 73,7% et de 31 à 41,9%, au niveau de tous les croisements. Les valeurs de GAM étaient élevées au niveau de tous les croisements, sauf pour les croisements Valencia C x ICGV-SM 96801 (14,67), M₃ x ICGV-SM 99566 (18%) et NuMex-M₃ x ICGV-SM 96801 (13,5%) où les valeurs de GAM étaient modérées. L’étude a révélé l’existence dans la résistance au GRD, ceci implique qu’il est possible d’entreprendre l’amélioration génétique de ces matériels.

Mots Clés: Arachis hypogea, coefficients de variation

INTRODUCTION

Valencia groundnuts belong to one of the botanical varieties of cultivated groundnuts (*Arachis hypogea* L.) (Krapovickas and Gregory, 1994) known for their quality attributes like good and distinctive flavour with a soft skin (Patte et al., 2001; Mark et al., 2009), early maturity, high number of seeds per pod and relatively bigger seeds that make it key for commercial purposes. Also, they are the most preferred for high oil content (Kaaya and Warren, 2005) compared with other groundnut botanical varieties. Also, they are the most preferred for high oil content (Kaaya and Warren, 2005) compared with other groundnut sub-species. Despite their importance, production is still constrained by the groundnut rosette disease (GRD) in Uganda. The disease is sporadic and unpredictable, and can result in yield losses of up to 100% (Waliyar, 1999; Subrahmanyam et al., 2001; Adu Dapaah et al., 2004).

There have been efforts to control GRD using a combination of cultural, biological and chemical measures (Waliyar et al., 2007; Okello et al., 2014); however, little success has been achieved because small scale farmers seldom use them. In addition, chemical control of aphids (*Aphis craccivora*) which transmit the disease is not economically viable because of their persistent nature in the disease transmission (Waliyar et al., 2007). Use of host plant resistance is the most effective and economically viable management options for the resource poor farmers, especially in Uganda. However, it is limited by lack of resistant varieties and information on heritability of GRD resistance on the available Valencia breeding materials.

Estimation of genetic variability with the help of suitable parameters such as genetic coefficients of variation, heritability estimates and genetic advance is absolutely necessary to start an efficient breeding programme (Atta et al., 2008; Janila et al., 2013; Wambi et al., 2014). Kayondo et al. (2014) reported a high (93%) heritability estimate for GRD rosette disease in Uganda. However, heritability estimates depend on the genetic background of the materials used and the environment from which the populations are evaluated (Kearsey and Pooni, 1996; Wambi, 2014; Wambi et al., 2014). Therefore, this study was conducted to estimate genotypic and phenotypic coefficients of variations, and heritability for GRD resistance, in Valencia groundnut genotypes.

MATERIALS AND METHODS

Study area. The study was conducted at the National Semi-Arid Resources Research Institute (NaSARRI), of the National Agricultural Research Organisation (NARO), located 01°30'00"N and 33°33'00"E in Serere district in Uganda. This is a known hotspot for GRD in the country (Okello et al., 2010). It receives an annual rainfall of 1,000-1,200 mm.
The plant materials for this study were developed by crossing two exotic susceptible Valencia lines, Valencia C and NuMex-M, provided by the Plant Breeding Department New Mexico State University, USA; and Rosette resistant lines, namely Serenut 6T (ICGV SM 99566), Serenut 2 (ICGV-SM 90704) and Mali (ICGV-SM 96801), provided by the Groundnut Improvement Programme at the NaSARRI, Uganda.

Six crosses, namely Valencia C × ICGV-SM 90704, Valencia C × ICGV-SM 96801, Valencia C × ICGV-SM 99566, NuMex-M × ICGV-SM 90704, NuMex-M × ICGV-SM 96801 and NuMex-M × ICGV-SM 99566) were made to generate F₁s. The F₁s of each cross were further crossed to their parents P₁ (female parent) and P₂ (male parent) to derive BC₁P₁, and BC₁P₂ generations, respectively. On the same F₁ plants, F₂ seed was generated by allowing some flowers to self-pollinate.

The six generations, namely P₁, P₂, F₁, F₂, BC₁P₁ and BC₁P₂ of each cross were evaluated in a randomised complete block design (RCBD), with three replications. The materials were planted in six row plots of 3 m length, at a spacing of 45 cm x 15 cm. Acholi white, a highly susceptible local variety, was used as the infector line to increase disease pressure, and was planted in a single row between every two rows of test materials. The infector rows were planted 14 days before the test materials.

Data collection. Disease severity data were recorded at 115 days after planting, on ten randomly selected plants in each replicate. Each plant was scored for a rating scale of 1-9 adopted from the Groundnut Improvement Programme at NaSARRI, Serere in Uganda (Okello et al., 2014).

Where:

1-3 represented highly resistant, HR, (where 1 = resistant with no symptom, 2 = very slight leaf symptoms and 3 = slight leaf symptoms but still negligible), 4-5 resistant, R, with leaf symptoms and no stunting (where 4 = showed 50% symptoms on leaves, and 5 = all leaves showed symptoms of chlorosis), 6-7 moderately susceptible (MS) with leaf symptoms and stunting (where 6 was 25% stunted and 7 = 50% stunted), 8-9 highly susceptible (HS) with severe leaf symptoms with >50% stunt (where 8 = has few pods; while 9 = no pod at all is expected).

Data analysis. Data on disease severity on individual plants of each generation for each cross were subjected to one way ANOVA, using GenStat Version 13 computer program. ANOVA was based on the linear mathematical model:

\[Y_{ij} = \mu + r_i + g_j + e_{ij} \]

Where:

\[Y_{ij} = \text{observed effect for } i \text{th replication and } j \text{th genotype}, \]
\[\mu = \text{grand mean of the experiment}, \]
\[r_i = \text{effect of the } i \text{th replication}, \]
\[g_j = \text{effect of the } j \text{th genotype}, \]
\[e_{ij} = \text{residual effect} \]

Where the ANOVA showed significant differences, the treatment means were separated using by Fisher’s protected Least Significant Difference at 5% probability level (Payne et al., 2010).

Estimation of variance components. Variance components that included, environmental, genotypic, additive and dominance, were obtained following the procedure of Kearsy and Pooni (1996).

\[\sigma^2_e = (\sigma^2_P_1 + \sigma^2_P_2 + 2 \sigma^2_F_1)/4 \] \hspace{1cm} \text{Equation 1} \]

Where: \(\sigma^2_e \) = Environmental variance or error, \(\sigma^2_P_1 \), \(\sigma^2_P_2 \) and \(\sigma^2_F_1 \) = Variance of susceptible parents, resistant parents and first filial generations, respectively.

\[\sigma^2_F_2 = \text{variance of } F_2 \text{ generation} \] \hspace{1cm} \text{Equation 2} \]

\[\sigma^2_G = \text{Genotypic variance in } F_2 \] \hspace{1cm} \text{Equation 3} \]

Where:

\(\sigma^2_F_2 \) = variance of \(F_2 \) generation, and \(\sigma^2_e \) = Environmental variance
Additive variance in F$_2$ [σ2A (F$_2$)] = (2 σ2F$_2$)2 - [σ2BC$_1$ + σ2BC$_2$] ………………… Equation 4

Where:

σ2F$_2$ = variance of F$_2$ generation, and σ2BC$_1$ and σ2BC$_2$ = variance of backcross to female and male parents, respectively.

Dominance variance in F$_2$ [σ2D (F$_2$)] = σ2G (F$_2$) - σ2A (F$_2$) ………………………… Equation 5

Where:

[σ2G (F$_2$)] = Genotypic variance in F$_2$, and σ2A (F$_2$) = Additive variance in F$_2$.

Coefficient of variability. Both the genotypic coefficient of variation (GCV) and phenotypic coefficient of variation (PCV) were estimated following the method suggested by Singh and Chaudhury (1985), where the GCV and PCV values were classified as low (0-10), medium (11-20) and high (20 and above) (Sivasubramanian and Menon, 1973).

PCV = (√Vp)/X *100 Equation 6
GCV = (√VG)/X*100 Equation 7

Where:

V$_p$ = Phenotypic variance, V$_G$ = Genotypic variance, and X = Grand mean of the character.

Estimation of heritability. The variance components described above were used to determine broad sense heritability (h^2_b) and narrow sense heritability (h^2_n), following Keasby and Pooni (1996) in all the six crosses as detailed below:

h^2_b = 100[σ2G (F$_2$)/V$_{F2}$] ……………….. Equation 8

Where: h^2_b = Broad-sense heritability, σ2G (F$_2$) = genotypic variance in F$_2$ and V$_{F2}$ = variance of F$_2$ generation

h^2_n = 100[σ2A (F$_2$)/V$_{F2}$] ……………….. Equation 9

Where: h^2_n = Narrow-sense heritability, σ2A (F$_2$) = additive variance in F$_2$, and V$_{F2}$ = variance of F$_2$ generation.

Estimation of genetic advance (GA). Genetic advance was estimated following Singh and Chaudhury (1985) method.

Genetic advance (GA) = h^2_n × k × σ2_p ……………………….. Equation 10

Where:

h^2_n = Narrow sense heritability estimate, σ2_p = Phenotypic standard deviation, and K = Selection intensity at 5% is equal to 2.06.

Genetic advance as percent of mean (GAM%) = (GA/X)*100

Where:

X = Grand mean of the trait, and GA = Genetic advance

The Genetic Advance as percent of mean (GAM%) was categorised as described by Johnson et al. (1955), as low (0-10), medium (10-20) and high (21 and above).

RESULTS

There were significant variations in the generations for disease severity (Table 1). The donor parents, ICGV - SM 99566 and ICGV-SM 90704, were highly resistant with mean scores ranging from 1.33-2.83; while ICGV-SM 96801 was slightly resistant with the score that ranged 4 to 6. All the susceptible genotypes, Valencia C and NuMex-M, exhibited higher disease score that ranged from 7.5 to 8.

All the six F$_1$s showed high resistance to GRD (mean score range 1.67 to 2.0), and the mean disease score in F$_2$ were moderately resistant (Table 1). The segregants of F$_2$ from ICGV-SM 90704 donor line were highly resistant, with mean scores in the range of 2.3-2.73; whereas those from ICGV-SM 96801 were susceptible with mean scores of 5 to 6.
Heritability for resistance to rosette disease in exotic Valencia groundnuts

Coefficients of variability and heritability. Table 2 shows phenotypic and genotypic coefficients of variation, heritability and GAM estimates for GRD resistance in six crosses. In all crosses, the dominance variance component (V_D) exhibited relatively higher magnitudes (0.65-0.99) compared with the additive component (V_A), except for NuMex-M$_3$ x ICGM-SM 90704 which had a relatively lower (0.37) magnitude. The PCV and GCV estimates were high (20.04-70.1%) in all the six crosses, except for Valencia C × ICGV-SM 96801 (18.1%) and NuMex-M$_3$ x ICGV-SM

TABLE 1. Groundnut Rosette Disease mean score and standard error for the six generations of the 6 crosses of groundnuts in Eastern Uganda

<table>
<thead>
<tr>
<th>Generation</th>
<th>Valencia C x ICGV-SM 99566</th>
<th>Valencia C x ICGV-SM 90704</th>
<th>Valencia C x ICGV-SM 96801</th>
<th>NuMex-M$_3$ x ICGV-SM 99566</th>
<th>NuMex-M$_3$ x ICGV-SM 90704</th>
<th>NuMex-M$_3$ x ICGV-SM 96801</th>
</tr>
</thead>
<tbody>
<tr>
<td>P$_1$(S)</td>
<td>7.5</td>
<td>7.83</td>
<td>8.167</td>
<td>8.67</td>
<td>7.67</td>
<td>7.83</td>
</tr>
<tr>
<td>P$_2$(R)</td>
<td>2.17</td>
<td>1.35</td>
<td>5.05</td>
<td>2.83</td>
<td>1.33</td>
<td>4.67</td>
</tr>
<tr>
<td>F$_1$</td>
<td>1.67</td>
<td>1.83</td>
<td>1.83</td>
<td>2.0</td>
<td>1.67</td>
<td>1.67</td>
</tr>
<tr>
<td>F$_2$</td>
<td>4.67</td>
<td>2.3</td>
<td>6.0</td>
<td>4.3</td>
<td>2.73</td>
<td>5.0</td>
</tr>
<tr>
<td>BC1P${1}$</td>
<td>6.33</td>
<td>6.33</td>
<td>7.5</td>
<td>8.67</td>
<td>7.0</td>
<td>6.0</td>
</tr>
<tr>
<td>BC1P${2}$</td>
<td>2.83</td>
<td>3.0</td>
<td>5.0</td>
<td>1.83</td>
<td>2.33</td>
<td>1.67</td>
</tr>
<tr>
<td>F cal</td>
<td>12.16**</td>
<td>8.27**</td>
<td>5.47**</td>
<td>48.1**</td>
<td>34.0**</td>
<td>59.4**</td>
</tr>
<tr>
<td>MS</td>
<td>20.2</td>
<td>23.2</td>
<td>21.1</td>
<td>16.1</td>
<td>13.3</td>
<td>11.8</td>
</tr>
<tr>
<td>CV (%)</td>
<td>29.2</td>
<td>26.8</td>
<td>27.1</td>
<td>24.9</td>
<td>30.2</td>
<td>20.4</td>
</tr>
</tbody>
</table>

P$_1$(S) = Parent 1 elite parents, (Valencia C and NuMex-M$_3$) P$_2$(R) = the donor parents. F$_1$ = 1st Filial generation, F$_2$ = 2nd Filial generation, BC$_1$ = Backcross to susceptible parent (P$_1$) and BC$_1$ = Backcross to resistant parent (P$_2$). ** = significant at 95%, CV = Coefficient of variation, Fcal = F-value, MS = Mean sum of square. The Resistance rating scale: 1-3 (highly resistant), 4-5 slight (Slightly resistant), 6-7 (moderately susceptible), 8-9 (highly susceptible)

TABLE 2. Genetic variance components and parameters for groundnut rosette resistance

<table>
<thead>
<tr>
<th>Generation</th>
<th>Valencia C x ICGV-SM 99566</th>
<th>Valencia C x ICGV-SM 90704</th>
<th>Valencia C x ICGV-SM 96801</th>
<th>NuMex-M$_3$ x ICGV-SM 99566</th>
<th>NuMex-M$_3$ x ICGV-SM 90704</th>
<th>NuMex-M$_3$ x ICGV-SM 96801</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_E</td>
<td>0.83</td>
<td>0.90</td>
<td>0.90</td>
<td>0.70</td>
<td>0.60</td>
<td>0.50</td>
</tr>
<tr>
<td>V_D</td>
<td>1.50</td>
<td>1.93</td>
<td>1.63</td>
<td>1.93</td>
<td>1.07</td>
<td>1.20</td>
</tr>
<tr>
<td>V_A</td>
<td>0.83</td>
<td>0.99</td>
<td>0.79</td>
<td>0.97</td>
<td>0.70</td>
<td>0.55</td>
</tr>
<tr>
<td>V_D</td>
<td>0.67</td>
<td>0.94</td>
<td>0.82</td>
<td>0.99</td>
<td>0.37</td>
<td>0.65</td>
</tr>
<tr>
<td>V_P</td>
<td>2.33</td>
<td>2.83</td>
<td>2.51</td>
<td>2.66</td>
<td>1.67</td>
<td>1.70</td>
</tr>
<tr>
<td>X</td>
<td>5.30</td>
<td>2.40</td>
<td>7.00</td>
<td>6.80</td>
<td>2.20</td>
<td>6.40</td>
</tr>
<tr>
<td>PCV</td>
<td>28.80</td>
<td>70.10</td>
<td>22.60</td>
<td>23.60</td>
<td>58.00</td>
<td>20.40</td>
</tr>
<tr>
<td>GCV</td>
<td>23.10</td>
<td>57.80</td>
<td>18.10</td>
<td>20.50</td>
<td>47.10</td>
<td>17.10</td>
</tr>
<tr>
<td>h^2_b</td>
<td>64.40</td>
<td>68.20</td>
<td>64.00</td>
<td>73.70</td>
<td>64.10</td>
<td>70.60</td>
</tr>
<tr>
<td>h^2_n</td>
<td>35.60</td>
<td>34.90</td>
<td>31.00</td>
<td>36.40</td>
<td>41.90</td>
<td>32.40</td>
</tr>
<tr>
<td>GA</td>
<td>1.12</td>
<td>1.20</td>
<td>1.02</td>
<td>1.23</td>
<td>1.10</td>
<td>0.86</td>
</tr>
<tr>
<td>GAM (%)</td>
<td>21</td>
<td>50.5</td>
<td>14.67</td>
<td>18</td>
<td>50.7</td>
<td>13.5</td>
</tr>
</tbody>
</table>

V_E = Environmental variance, V_D = Genotypic variance, V_P = Additive variance, V_D = Dominance variance, PCV and GCV = Phenotypic and Genotypic Coefficient of Variation respectively, h^2_b and h^2_n = Broad and narrow sense heritability, respectively, X = Grand mean of the generations, GAM% = Genetic Advance as percent of mean.
96801 (17.1%) crosses, which exhibited moderate GCV values. Broad and narrow sense heritability estimates for GRD disease score ranged from 64.1 to 73.7% and 31 to 41.9%, respectively, in all the crosses. The GAM was high in all the crosses (21-50.7%), except for Valencia C x ICGV-SM 96801 (14.67), M₁ x ICGV-SM 99566 (18%) and NuMex-M₁ x ICGV-SM 96801 (13.5%) which exhibited moderate GAM.

DISCUSSION

The six crosses showed highly significant differences (P<0.01) among generations for GRD resistance (Table 1), suggesting presence of variability for GRD disease score in the generations. The significant variation implies that genetic improvement of groundnut for GRD resistance is possible, and can be exploited by breeders for groundnut improvement. The presence of such variability could be a result of wide genetic distances between the parental backgrounds that were used in the study.

Results of the current study are comparable to those Monyo *et al.* (2007), who reported variability for GRD resistance among 143 accessions that were evaluated. Naídu *et al.* (1999) also reported GRD variations to be due to diversity among the causal agents (sat RNA variants), differences in genotype response, variable climatic conditions and mixed infections with other viruses. High resistance was exhibited by donor parents, ICGV-SM 99566 and ICGV-SM 90704. Waliyar *et al.* (2007) and Okello *et al.* (2010) also reported the two lines as universal donor for GRD resistance. The mean of F₁ generations tended towards the mean of resistant parents (Table 1), indicating that resistance to GRD could be controlled by dominant genes or epistatic gene action. These results support earlier reports that resistance to GRD is controlled by dominant genes (Olurunju *et al.*, 1992; Akpan and Olurunju, 2009). Tolin (2012) approximated that over 80% of known virus resistance was 50% completely dominant, with the remaining being polygenic, which is comparable to the finds of the current study. In contrast, Harkness (1977) and Nigam and Bock (1990) reported recessive genes controlling resistance to GRD. The presence of dominant genes, implies that the F₁ s could be utilised due to relative heterosis where hybrid vigour could be exploited. However, in groundnuts, commercial production of F₁ seed can not be achieved since it is a self-fertilising crop and a tetraploid nature makes the F₁ unstable. Wambi (2014), suggested that in such situations, selection should take place at later generations when the dominance effects of the genes are decreased. To exploit such heterosis, breeding methods such as recurrent selection and single seed descent may be used.

Success of genetic improvement is attributed to the magnitude and nature of variability present for a specific character (Wambi, 2014). Moderate to high level GCV (17.1-57.8%) and high PCV (20.4-70.1%) were noticed for all crosses (Table 2), indicating higher magnitudes of heritable variations for GRD resistance in these crosses. This could be attributed to genotypes with very little effect of the environment. According to Oyiga and Iguru(2011) and Vishnuvardhan *et al.* (2012), when the magnitude of genetic variance is higher than the environmental variance, it may indicate a predominance of additive gene actions, which could result to high response to phenotypic selection in early generations due to high influence of the genetic component to the total variance of the trait under study.

Information on genotypic coefficients of variation (Table 2) reveals the existence genetic variability present in the genotypes for GRD resistance, but does not provide full scope to assess the variation that is heritable. In our study, all crosses had high broad sense heritability values (64.1-73.7%) (Table 2). The findings are comparable with those of several other researchers (Van der Merwe, 1998; Adu Dapaah, *et al.*, 2007; Kayondo *et al.*, 2014), who reported high broad sense heritability estimates for GRD resistance (67-93%). High heritability indicates a high response to selection due to reduced environment influence and predominance role of additive gene effects (Tafere *et al.*, 2013), in the control of GRD resistance, which could result to efficient response to selection in early generations.

However, it should be noted that Broad Sense Heritability coefficients comprise all the genetic influences in its expression, instead of only the additive effects of additive genes. This cannot
be used as an indicator for obtaining a precise estimation of selection gains. Therefore, h^2_n coefficients that comprised only of additive effect of additive genes were computed in our study. Moderate values (31-41.9%) for narrow sense heritability were observed in all crosses (Table 2), indicating greater dominance effects on GRD resistance than the additive.

In all crosses, the dominance variance component (V_{D}) exhibited relatively higher magnitudes, compared with additive component (V_{A}), except for except for NuMex-M$_3$ x ICGM-SM90704 which had a relatively lower magnitude. It is generally verified that an increase in magnitude of V_{D} implies a decrease in h^2_n in the reference to F_1 generation. Hence selection of genotypes from initial generations for GRD disease score in these crosses may be difficult due to the higher influence of dominance effects. According to Kormsa-art et al. (2002), selection for such traits controlled by dominance becomes ineffective when carried out in early generations. Therefore, selection based on this trait is more effective when undertaken in subsequent generations of all crosses. In this way, the occurrence of heterozygotes would be reduced and the available additive variance for selection increased, thereby providing higher possibilities of selection gains for the trait. Breeding methods such recurrent selection and biparental mating can be used for improvement of the materials for GRD resistance.

ACKNOWLEDGEMENT

This study was funded by the United States Agency for International Development (USAID) under the Peanut Collaborative Research Support Program (Peanut CRSP) grant ECG-A-00-07-0001-00. We acknowledge the Legume Improvement Programme, National Semi-Arid Resources Research Institute (NaSARRI) of the National Agricultural Research Organisation (NARO), Uganda, for providing germplasm, glasshouse for hybridisation operations and field for evaluation of breeding materials.

REFERENCES

Atta, B.M., Haq, M.A. and Shah, T.M. 2008. Variation and inter-relationships of quantitative traits in chickpea (*Cicer*

Heritability for resistance to rosette disease in exotic Valencia groundnuts

Waliyar, F., Lava, K., Osiru, P. M., Monyo, E., Ntare, B. R. and Nigam, S. N. 1999. Centennial of research on groundnut rosette disease: What is known and what still needs to be known to achieve effective control of this menace in Sub-Saharan Africa. *International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India.*
