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ABSTRACT

Africa has sparse meteorological stations, hence it is increasingly common to use satellite-derived meteorological

parameters, where in-situ measuremnts are not available. The objective of this study was to determine if there is

a relationship between sorghum yield and meteorological parameters (measured and satellite-derived). Sorghum

(Sorghum bicolor) yield for five seasons (2005/6 to 2009/10) from the Botswana Department of Crop Production

Station in Pandamatenga, actual rainfall from the Botswana Meteorologial Services, and Normalised Difference

Vegetation Index (NDVI) and Satellite Rainfall Estimates (RFEs) data from Famine Early Warning Systems

Network (FEWSNET) were used in this study to determine relationships between the yield and satellite derived

estimates. Although the NDVI and RFEs data were available for 2005 to 2011 (6 seasons), the limiting factor was

the actual yield data which were only available for 2005 to 2010 (5 seasons).  The Pearson Correlations Coefficient

between seasonal rainfall and seasonal NDVI was 0.77 and seasonal RFE and seasonal NDVI was -0.19. Further

correlation coefficient between sorghum yield and seasonal NDVI is 0.88. The correlation coefficient between

sorghum yield and seasonal rainfall was 0.53; while correlation coefficient between sorghum yield and seasonal

RFEs was -0.38. The sorghum NDVI signature reacted positively to the the seasonal rainfall, while sorghum

NDVI signature was not correlated with the 1 Km resolution RFEs data. Furthermore, there was good correlation

between sorghum yield and both the seasonal NDVI and seasonal rainfall, the seasonal NDVI seemed to predict

yield slightly better than the seasonal rainfall. There seem to be a potential to use RFEs to predict yield though

there are still problems associated with RFEs.
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RÉSUMÉ

L’Afrique a des stations météorologiques rares où il est de plus en plus courant d’utiliser des paramètres

provenant de satellites météorologiques, où in situ measuremnts ne sont pas disponibles. L’objectif de cette étude

était de déterminer se il y avait une relation entre le rendement du sorgho et des paramètres météorologiques

(mesurées et obtenues par satellite). Du sorgho (Sorghum bicolor) rendement pendant cinq saisons (2005/6-2009/

10) du ministère du Botswana de la station de la production agricole à Pandamatenga, précipitations réelle de la

Meteorologial services Botswana, et indice de végétation normalisé (NDVI) et Satellite précipitations estimations

(RFE) données de Famine Early Warning Systems Network (FEWSNET) ont été utilisés dans cette étude pour

déterminer les relations entre le rendement et le satellite estimations tirées. Bien que les données de NDVI et RFEs

étaient disponibles pour 2005-2011 (6 saisons), le facteur limitant était les données de rendement réels qui ne était

disponible pour 2005-2010 (5 saisons). Les corrélations Pearson Coefficient entre les précipitations saisonnières

et NDVI saisonnière était de 0,77 et RFE saisonnière et saisonnière NDVI était -0,19. En outre coefficient de

corrélation entre le rendement du sorgho et NDVI saison est de 0,88. Enfin, le coefficient de corrélation entre le
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rendement de sorgho et précipitations saisonnière était de 0,53; tandis que le coefficient de corrélation entre le

rendement de sorgho et RFE saisonniers était -0,38. La signature sorgho NDVI a réagi positivement à l’pluies

saisonnières, tandis que la signature sorgho NDVI ne est pas corrélée avec les 1 km de résolution RFEs données.

En outre, il y avait une bonne corrélation entre le rendement de sorgho et à la fois le NDVI saison et des

précipitations saisonnières, le NDVI saison semblait prédire le rendement légèrement meilleur que les pluies

saisonnières. Il semble y avoir un potentiel d’utiliser RFE à prédire le rendement se il ya encore des problèmes liés

à RFE.

Mots Clés:  coefficient de détermination, NDVI, corrélation de Pearson

INTRODUCTION

Most of southern Africa is sensitive to climatic

extremes, resulting in poor crop yields.  The

sensitivity is compounded by a strong

dependence upon agriculture, high population

growth rates, and unstable economic conditions

(Martin, 1998).  Due to southern Africa’s position

in the sub-tropics, it experiences predominantly

high pressure and arid conditions. Air rising from

the low pressure of the equator, drops its

moisture in the Inter-Tropical Convergence Zone

before traveling southward and sinking over

southern Africa, creating the dry high-pressure

system (Martin, 1998; Nicholson, 2001).

In a review of a decade of sorghum production

(2000 – 2010) from Pandamatenga farms, the

average production of sorghum was 1.87 t ha-1.

Given the agro-climatic conditions of

Pandamatenga, its productivity could be higher

if it was not for the challenges such as periodic

flooding and seasonal outbreaks of quelea birds

(African Development Bank, 2008).

In 1979, sorghum accounted for a little less

than 40 percent of cultivated area, in Botswana

and maize for about 30 percent. By 1988, the share

of sorghum was estimated at 75 percent. During

the same period, the ratio of maize cultivated area

fell from 30 percent to about 15 percent (African

Development Bank, 2008).

One major challenge for operational crop

monitoring and yield forecasting using crop

models, is to find spatially representative

meteorological input data due to low density of

weather station networks in developing countries

(Teo, 2006; Rojas, 2007).

Remote sensing data acquired by satellites

have a wide scope for agricultural applications,

owing to their synoptic and repetitive coverage.

Spectral indices deduced from visible (VIS) and

Near Infra-Red (NIR) remote sensing data have

been extensively used in crop characterisation,

biomass estimation and crop yield monitoring and

forecasting. NDVI has been used as indicator of

the vigour of vegetative activity as represented

by indirectly observable chlorophyll activity

(Hastings and Emery, 1992). Weissteiner et al.

(2004) used Maximum Value Composites (MVC)

to estimate barley yield, accumulating NDVI at

the maximum photosynthetic activity period (ear

emergence to yellow ripeness or grain filling

period) gave improved correlation between NDVI

and grain yield.

There are challenges in using NDVI, namely

data loss due to cloud cover, data response to

atmospheric moisture and spatial heterogeneity,

calibration mismatches between satellites and

within sensor calibration drift (Holben, 1986;

Gutman, 1991).  Lu (2006) looked into the potential

and challenges of remote sensing-based biomass

estimation, and concluded that more research

work is needed to focus on data integration

(optical and radar), the use of multi-source data

and the selection of suitable variables and

algorithms for biomass estimation.

Rojas (2007), developed operational spectro-

agrometeorological yield model for maize, using

a spectral index, Normalised Difference Vegetation

Index (NDVI) derived from the SPOT-

VEGETATION, meteorological data obtained from

the European Centre for Medium-Range Weather

Forecast (ECMWF) model and crop-water status

indicators estimated by the Crop Specific Water

Balance model (CSWB). Many studies modeling

crop growth and yield forecasting have been

carried with mixed results. De Wit and van Deepen

(2006) used MeteoSat meteorological

observations to run the WOrld Food STudies
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(WOFOST) crop growth model, and concluded

that it was not easy to calibrate the

evapotranspiration related parameters since

satellite based potential evaporation was on

average 30 percent smaller to the standard

Penman reference evapotranspiration.

The comparison of  in-situ rainfall data with

satellite rainfall estimates (RFEs) from FEWS NET

archive and daily precipitation fields from the

National Center for Atmospheric Research

(NCAR) reanalysis data, gave a coefficient of

regression was 0.8 and 0.2, respectively (Funk

and Verdin, 2003).

Overall, the NDVI – rainfall relationship

becomes much weaker when studied at the inter-

annual time scale; moreover, the study showed

that factors influencing the rainfall–NDVI

relationship differ between time scales, with field

characteristics (topography, vegetation

composition and structure), having a major

influence only at the seasonal time scale

(Chamaille-James et al., 2006).

Satellite images have been used in Italy to

spatially estimate Fraction of Absorbed

Photosynthetically Active Radiation (fAPAR)

and key phenological rice stages that control

biomass accumulation. The maps of rice yield

estimates for the year 2002, 2003 and 2004 were

compared with official statistics and showed a

good agreement with an inter-annual relative

RMSE, ranging from 15 to 17% (Boschetti et al.,

2011).

Janowiak et al. (2007) found that satellite

estimates of precipitation exhibited a substantial

positive bias over semi-arid regions, during the

warm season due to evaporation of rain before it

reaches the ground surface. Teo (2006) used

Tropical Application of Meteorological Satellite

(TAMSAT) RFEs and gauge rainfall in a crop

model to forecast groundnut yield.  It was

concluded that RFE are able to capture the

intraseasonal variability of rainfall better that total

seasonal amount.

Although there has been progress in the

applications of RFE to replace rainfall gauge

observations, there are still accuracy issues to

be resolved and several studies have been carried

out to improve the accuracy of RFE (Xie and

Arkin, 1996; Grimes et al., 1999; Teo, 2006)

Jones 1987 developed mathematical relations

between yield parameter, plant populations and

rainfall for Botswana, it was concluded that  yield

differences were unrelated to rainfall.  The

objective of this study was to determine if there

was a relationship between sorghum yield and

meteorological parameters (measured and

satellite-derived).

MATERIALS  AND  METHODS

Figure 1  shows the study area, Pandamatenga is

a commercial arable farming area situated north-

northeastern Botswana,  at the  17O49’S 28O38’E

and at 1071 m above sea level. Pandamatenga is

one of the most suitable areas for rain fed farming

because of its relatively high rainfall of 600 mm

per annum and inherently fertile PellicVertisols

(dark cracking clay soils). The farming area is

situated on predominantly flat lacustrine clay

plains which are poorly drained (Moganane et

al., 1990).

Despite the physical characteristics of the

Pandamatenga soils which present a challenge

in management, this area is considered the highest

producer of commercial sorghum grain annually.

In 1984, the Government of Botswana allocated

25 074 ha of farmland to the country’s arable crop

production (African Development Bank, 2008)

This area was subsequently increased to 47,686

ha in 2011 to increase participation of farmers in

commercial arable production.

Sorghum yield for the season 2005/6 to 2009/

10 seasons from the Botswana Department of

Crop Production station in Pandamatenga, actual

rainfall from the Botswana Meteorological

Services and NDVI and RFEs data from

FEWSNET, were used in this study.

The Integrated Land and Water Information

System (ILWIS) © 52o North Initiative for

Geospatial Open Source Software Gmbh, was used

to process FEWSNET RFEs and NDVI time series

data. ILWIS is a remote sensing and GIS software,

which integrates image, vector and thematic data

in one unique and powerful package on the

desktop.

The polygon to raster operation was used to

rasterise the study area into a polygon map. The

class names, IDs, or values in the polygon map
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were also used in the raster map.  The domain of

the polygon map was also the domain of the raster

map. Figure 2 shows the raterised map of the

study site.

A map list is a set of raster maps, for example

the bands of a satellite image. In the study, the

map lists were used to store data (NDVI and

RFEs) for each of the six seasons. All raster maps

in the map list must have the same georeference

and the same domain. A map list is used to present

multi-temporal changes in maps as a slide show,

to apply the same Map Calculation formula on all

raster maps in the map list, or to perform an

operation on all raster maps in the map list. Map

lists made up of dekadal data (NDVI or RFEs) for

each of the six seasons were produced for further

cross analysis.

Cross operations were performed between

project raster image and either seasonal NDVI or

seasonal RFEs map lists. A cross operation

performs an overlay of two raster maps: pixels on

the same positions in both maps are compared;

the occurring combinations of class names, Figure 2.  Study area raster map for Pandamatenga, Botswana.

Figure 1.   Study area map for Pandamatenga in Botswana.
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identifiers or values of pixels in the first input

map and those of pixels in the second input map

are stored. These combinations give an output

cross map and a cross table. The cross table

includes the combinations of input values,

classes or IDs, the number of pixels that occur

for each combination and the area for each

combination.

RESULTS  AND  DISCUSION

Figure 3 shows six seasonal NDVI for 2005/6,

2006/7, 2007/8, 2008/9, 2009/10 and 2010/11

seasons. Dark green indicates higher NDVI

values; while orange/brown indicates lower NDVI

values. Each Figure is made up by the composition

(average) of NDVI values for all dekades

(September to August) for each season.

Figure 4  shows seasonal RFEs for seasons

2005/6, 2006/7, 2007/8, 2008/9, 2009/10 and 2010/

Figure 3.  Seasonal NDVI for Pandamatenga, Botswana.

11. Darker blue indicates higher RFES values;

while lighter blue indicates lower RFEs values.

Each Figure is made up by the composition

(average) of RFEs values for all dekades

(September to August) for each season.

Sorgum yield for the season 2005/6 to 2009/

10 seasons from the Botswana Department of

Crop Production station in Pandamatenga, actual

rainfall from the Botswana Meteorologial Services

and NDVI and RFEs data from FEWSNET were

used in this study to determine any relationships

between the yield and satellite derived estimates.

Pearson correlations coefficient between

Seasonal Rainfall and seasonal NDVI is 0.77

(r2=0.6) as shown in Figure 5 and Figure 6.

Seasonal RFE and seasonal NDVI was -0.19

(r2=0.03).

As expected, the sorghum NDVI signal is

positively correlated to the the seasonal rainfall.

Besides aerosol and water vapour related
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Figure 4.  Seasonal RFEs for Pandamatenga, Botswana.

problems, cloud contamination (especially during

the raining season) remains the biggest problem

for low resolution NDVI satellite images. The

sorghum NDVI signature is not correlated to the

1km resolution RFEs data as indicated by the weak

correlation coefficient (r2), this observation

indicates that RFEs are not a very reliable rainfall

proxy in this study area.There are several reasons

for this, namely, these are estimates based on

cloud temperature hence contain errors (eg.

Rainfall from lower clouds is not adequtely

accounted for), the 1km cell resolution is too

coarse and also these have not been validated or

calibrated fully due to the lack of sufficient

number of ground rainfall measurements.

Furthermore, satellite retrieval relies on inference

of surface rainfall from irradiances measured by

the satellite sensors operating at visible, thermal

infrared, or microwave regions of the

electromagnetic spectrum. The visible radiometric

measurement is a function of the cloud albedo,

while the thermal infrared radiometric

measurement is a function of cloud top

temperature. These are all indirect measurement

of rainfall.

Correlation coefficient for the sorghum yield

and seasonal NDVI is 0.88 (r2=0.77) as shown in

Figure 7 and Figure 8. This observation cofirms

that there is a relationship between the sorghum

yield and the satellite borne spectrometric

biomass data.

There was a strong correlation between

sorghum yield and seasonal NDVI (r =0.88) as

shown in Figure 6. Finally, the correlation

coefficient between the sorghum yield and

seasonal rainfall was 0.53, this result is lower than

the expected mainly due to the fact that the rainfall

of 2010/2011 was a record low 474 mm; while the

LongTerm Average rainfall is over 800 mm

(removing this anormally increases the correlation

to 0.88 as shown in Figure 8).

The correlation coefficient between sorghum

yield and seasonal RFEs was weak (r= -0.38) as

shown in Figure 13.  This was due to problems
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Figure 5.  Seasonal NDVI and seasonal rainfall versus the five (5) seasons.

Seasonal NDVI versus seasonal rainfall

Seasonal NDVI versus seasonal rainfall

Figure 6.   Seasonal NDVI versus seasonal rainfall.
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Sorghum yield versus seasonal NDVI

Figure 7.   Sorghum yield and seasonal NDVI versus five (5) seasons.

Sorghum yield versus seasonal NDVI

Figure 8.    Sorghum yield versus seasonal NDVI.
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Sorghum yield versus seasonal rainfall

Figure 9.   Sorghum yield, seasonal rainfall versus five (5) seasons.

Sorghum yield versus seasonal rainfall

Figure 10.   Sorghum yield versus seasonal rainfall.
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Sorghum yield versus seasonal rainfall

Figure 11.   Sorghum yield, seasonal rainfall versus five (5) seasons (excluding the anomaly).

Sorghum yield versus seasonal rainfall

Figure 12.   Sorghum yield versus seasonal rainfall (excluding the anomaly).
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Sorghum yield versus seasonal RFEs

Figure 13.   Sorghum yield, seasonal RFEs versus five (5) seasons.

associated with RFEs as has been discussed

previously. Looking at the data closely shows

that 2005/06 season might be errorneous. By

removing the data, improves both the correlation

to 0.95. Not withstanding all the shortcomings of

satellite estimated precipitation, this could

indicate that RFEs have potential for yield

prediction, espacially in regions where in-situ

rainfall measurements are sparse or non-existent.

The seasonal NDVI (satellite base index) seem to

predict the yield slightly better that the seasonal

rainfall (point insitu data).

Finally, the correlation coefficient between the

sorghum yield and seasonal rainfall is 0.53

(r2=0.28) and shown in Figure 9 and Figure 10,

this result is lower than the expected mainly due

to the fact that the rainfall of 2010/2011 was a

record low 474mm while the LongTerm Average

rainfall is over 800mm (removing this anormally

increases the correlation to 0.88 and r2=0.77 as

shown in Figure 11 and Figure 12).

The correlation coefficient between sorghum

yield and seasonal RFEs was -0.38 (R2=0.15) as

shown in Figure 13 and Figure 14, this is due to

the problems associated with RFEs as has been

discussed previously. Looking the data closely

shows that the data for 2005/06 season might be

errorneous, by removing it, improves both the

correlation to 0.95 and (r2=90) as shown in Figure

15 and Figure 16. Not withstanding all the

shortcomings of satellite estimated precipitation,

this could indicate that RFEs have potential in

yield prediction, espacially in regions where in-

situ rainfall measurements are sparse or non-

existent. The seasonal NDVI (satellite base index)

seem to predict the yield slightly better that the

seasonal rainfall (point insitu data). Because of

the sparcity of meteorological observation points,

there was only one rainfall gauging station used

in th study area.
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Sorghum yield versus RFEs

Figure 14.   Sorghum yield versus RFEs.

Sorghum yield versus seasonal RFEs

Figure 15.  Sorghum yield, seasonal RFEs versus four (4) seasons (excluding the anomaly).
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Figure 16.   Sorghum yield versus RFEs (excluding the anomaly).

Sorghum yield versus RFEs
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