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ABSTRACT

In many farming landscapes across Sub-Saharan Africa (SSA), soil fertility has been on the decline with
significant implications on crop productivity. However, even with such a decline, soil nutrient levels still differ
significantly between farms, fields or within the same field. Knowledge of such spatial variability and
relationships among soil properties is important in implementation of agricultural land manageent practices. In
this study, the spatial variability of soil organic carbon (SOC) in two districts of western Kenya was modelled using
the geostatistical theory of semivariography and mixed effects modeling. Soil organic C was found to be spatially
correlated and the spatial structure modelled using experimental semivariograms fitted with spherical, exponential
and ratio quadratic models. The nugget/sill ratios for all the three variogram models were between 50-60%,
indicating moderate spatial correlation. It is suggested that future soil fertility management strategies should target
individual fields, as a precision farming approach.
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RESUME

Dans beaucoup de paysages agricoles & travers I’ Afrique Subsaharienne (SSA) la fertilité€ du sol a connu un déclin
avec des implications significatives sur la productivité des cultures. Cependant méme avec un tel déclin, les
niveaux de nutriments du sol varient encore significativement en fonction des fermes, des champs ou méme dans
un méme champ. La connaissance d’une telle variabilité spatiale et des relations entre propriétés de sols est
importante dans la mise en ceuvre des pratiques agricoles de gestion des terres. Dans cette étude, la variabilité
spatiale du carbone organique du sol (SOC) a été¢ modélisée dans deux districts de I’Ouest kenyan en utilisant la
théorie géostatistique de semivariographie et la modélisation a effets mélangés. Le sol organique C a été trouvé
corrélé dans I’espace et la structure spatiale a été modelée en utilisant des semivariogrammes expérimentaux
pourvus de modeles sphériques, exponentiels et a taux quadratiques. Les taux ‘nuggets/sill’ pour tous les trois
modeles de variogrammes, étaient d’entre 50-60% indiquant une corrélation spatiale modérée. Sil est suggéré que
les stratégies futures de gestion de sol doivent cibler le champ individuel comme une approche fermicre de
précision.

Mots Clés: Effets mélangés, modélisation, semi-variance

INTRODUCTION wide area is the large spatial variability of the

resource base. In Sub-Saharan Africa (SSA),

One of the main factors that hinder the applicability ~ where soil fertility depletion has been recognized
of soil fertility management technologies over a  as a principal factor limiting crop production and
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a threat to food security, spatial variations to be
large. As more soil and environmental information
becomes readily available through modern
Geographical Information Systems (GIS)
technology, there is opportunity for better spatial
targeting of technologies in relation to variation
in the natural resource base. According to Deckers
(2002), targeted balanced nutrient management
systems in the soilscapes of Sub-Saharan Africa
are likely to be one of the cornerstones of
sustainable development.

The understanding of the spatial variability of
soil fertility levels between and within farms is
important forrefining farm management practices
and for assessing the impact of agriculture on the
environment. The variability of soil properties
within fields is often described by a classical
method, which assumes that variation is randomly
distributed within mapping units. Soil variability
is the outcome of many processes acting and
interacting across a continuum of spatial and
temporal scales and is inherently scale dependent
(Parkin, 1993). In addition, soil properties
frequently exhibit spatial dependency, whereby,
samples collected close to each other tend to be
more correlated than those collected far apart.
Therefore, parametric statistics are inadequate
for analysis of spatially dependent variables
because they assume that measured observations
arc independent in spite of their distribution in
space (Hamlett e al., 1986).

In recent years, spatial dependence models of
geostatistics have gained popularity as they allow
the quantification of landscape spatial structure
from point - sampled data. One such model that
has received much attention and will be used in
this study is the variogram (Cresse, 1993). The
variogram reveals the randomness and structured
aspects of the spatial dispersion of a given variable
and is a plot of the average squared differences
between the values of a spatial variable at pairs of
points separated by a lag distance against the lag
(Davidson and Csillag, 2003). The empirical
variogram describes the overall spatial pattern of
sample data (Fortin, 1999) and a variety of
theoretical variogram models can be fitted on it to
describe spatial structure of a landscape attribute.
These then provide powerful capabilities which
can be used to analyse realistically the complex
spatial relationships in ecological systems.

The objective of the study was to quantify the
variability in soil fertility level at different spatial
scales from plot level to district level.

METHODOLOGY

Study area. The study was conducted in two
districts, Vihiga and Siaya in western Kenya.
Although, the two districts are adjacent to each,
they vary distinctly climate, physical, demographic
and administrative factors. Vihigais one of the six
districts in Western province, situated to the north-
east of Siaya and largely covers the upper parts of
the Lake Victoria Basin extending further north to
boarder Kakamega forest. Itlies between longitude
34°30' east and 35° 00' east, and between latitude
00° 00" and 00° 15" north. Siaya district, on the
other hand, covers the lower parts of the basin,
extending to the lake. Administratively, it is
located in Nyanza province, and lies between
longitude 33° 58’ eastand 34° 33' east, and latitude
0° 26' south and 0° 18" north.

Sampling design. The study was carried out in
nine sub-locations selected randomly from the
two districts, five from Vihiga and four from
Siaya. In each of the selected sub-locations, a Y-
frame sampling design was used to select ten
farms, where actual sampling was done for the
various biophysical and socio-economic
characteristics. Farms were located at constant
lag distances along the arms of the Y. This design
gave the optimal arrangement for geostatistical
analysisinterms of generating arange of distances
between farms with the minimum number of
plots. All the fields within each farm were
georeferenced by their field centres using a global
positioning system (GPS) together with all the
sampling points. All soil samples collected were
air-dried, crushed, passed through a 2 mm sieve,
and weighed before being taken to the laboratory
for further analysis.

Spatial predictions. The study used regionalised
variable theory, popularly known as geostatistics
(Matheron, 1971),to0 analyse the spatial correlation
of SOC. Geostatistical analysis of soil properties
is based on the assumption that a variable, z,
measured at a location x, may be treated as a
realisation of arandom function, denoted by Z(x).
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The analysis is possible if the random function is
intrinsic, that is if

El[Z(x) - Z(x+M)] =0 .oovooeeeeeeee hH
and
2y(h) = E[{Z(x) ~ Z(x+h)}2] oo, (2)

depend only on the spatial separation or lag h. The
function y(h) is the variogram. An estimate of the
variogram is needed in geostatistics for estimation
(kriging) (Burgess and Webster, 1980), and
simulation modeling. Although the classic
estimator is the most commonly used and is
asymptotically unbiased for any intrinsic random
function (Cressie, 1993), it was not used in this
study because it is very sensitive to outlying
values.

The advantage of this robust estimator is that
the effectof outliers is reduced, without removing
specific data points from a data set. Data from
eachY-frame sampling region was modeled using
the above robust estimator to produce an
experimental semivariogram which was then fitted
with both the spherical and exponential
semivariogram models.

Mixed effects modelling. A multilevel linear
mixed-effects (LME) model was used to analyse
the data. The model was a three-level nested
model as outlined by Pinheiro and Bates (2000)
and is shown in equation (3). In the 3-level model,
the response for the kth level-3 unit within the jth
level-2 unit within the ithlevel- | unitis written as;

b +¢

Vi = XWB-J-Z b +Z,,Lb +7,b,tE,

ik i

i=1,.M, j=1,.M, k=1,..M,

b~N(0.el), b, N(0O, )b, ~N(0.X ), £, N(0.0°])

where the fixed effects model matrices are X, i=

oM, j=1,.. . M,and k=1,. Mjofsncn X
p, the first-, second-, and third- level random effects
are b, b and b ,of length q, q, and q, with the
correspondmg model matrices z, g0 B and z, . of
sizesn,xq,,n xq, and n x q,- The within- group

errors £, are assumed to be independent for
different i, j or k and to be independent of the
random effects. The semivariogram was then
modeled using the spherical, exponential and
ratio-quadratic models.

RESULTS AND DISCUSSION

Estimation of soil organic carbon. Soil organic
C for all fields was 0.56 £ 0.29 with a coefficient
of variation of 52.2 % (Table 1). The large
coefficients of variation mean that soil organic C
varies widely in each of the Ys.

This variation, in turn, reflects the type and
complexity of the farming systems within the
study area as determined by both natural and
socio-economic factors. According to Nandwa
(2003), soil fertility at lower scales such as
individual niches, fields in farms and village
settings differ considerably due to a number of
factors including differences in soil texture,
landuse/fallow history, soil management, and
microclimatic differences. Smallholder farmers
exploit the microvariability within their farms in
such a way that during the different seasons as
conditioned by rainfall amounts, there are always
pieces of land where crops perform well
(Brouwers, 1993).

The large variability of soil organic C occurs
both within fields of the same farm and among
farms, with no clear cut trends or gradients,
consequently posing a problem to targeted soil
fertility management initiatives. According to
Barrett er al. (2002), Sub-Saharan Africa’s
extraordinary biophysical variability limits the
geographical scope over which any particular
natural resource management (NRM) practice
nroves effective.

TABLE 1. Soil organic carbon in each Y design

Y Carbon (%) std dev
Y1 0.42 0.29
Y2 0.66 0.29
Y3 0.41 0.26
Ya 0.57 0.28
Y5 0.59 0.21
Y6 0.82 0.26
Y7 0.43 0.31
Y8 0.68 0.21
Y9 0.48 0.25
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One of the reasons why nutrient depletion has
been given little recognition in SSA, is that the
issue has been perceived differently at various
spatial scales. For example, it is difficult to
convince farmers and policy makers to react
proactively to agro-ecosystems with negative
nutrient balances (depleted soils), which have
been continuously cultivated till organic matter
contents can no longer buffer nutrient depletion.

Spatial modelling. Since spatial modeling
requires data from several sampling points and
the basic sampling design was the Y-frame with
an underlying random pattern, spatial predictions
were done at the Y-level for site and regional
comparisons. According to Haining (1990), data
are often correlated in space creating spatial
structure. When such correlation or covariance
structure is evaluated, it can be used to increase
the accuracy of modeling and prediction efforts.
Using Equation 3, robustexperimental variograms

were drawn for all the Ys and then fitted with
spherical and exponential models (Equations 4
and 5, respectively) as shown in Figures 1 and 2.
The advantage of the robust estimator is that the
effect of outliers is reduced, without removing
specific data points from the data set (Kaluzny et
al., 1998).

The spherical models in Figure 1 show the
spatial correlation of soil organic C in each of the
Y- sampling sites Y1to Y9. The modelsof Y1,Y4
and Y6 show that spatial autocorrelation in these
sites continues beyond the maximum distance
covered by the study. All the other Ys show
spatial autocorrelation which ends within the
maximum distance covered by the Y sites. All
samples collected at distances greater than those
given by the model variograms range were spatially
independent. The essence of fitting empirical
variograms with theoretical variogram functions
was to ensure that the variance of predicted values
was positive. In addition, variogram models should
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Figure 1. Spherical semivariogram models of predicted soil organic C in each of the Ys (sub-locations) (labelled a
- i) showing the degree of spatial correlation.
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at least have physical meaning (arandom function
with the given type of variogram that can exist)
(Wackernagel, 1998). The models were fitted
iteratively to determine the optimal distance within
which spatial correlation was evident with
optimum variogram parameter values, i.e., nugget
effect, sill and range.

In Figure 2, the fitted exponential models show
spatial structure in each of the Ys. The fitted
modelsin Y1, Y4 and Y6 show continuous spatial
structure beyond the maximum distance covered
at the Y sampling design. Models in Y2, Y5, Y7,
Y8 and Y9 show strong spatial structure, but
whose sillis reached within the maximum distance
covered. In Y3, the model shows independence of
samples without any spatial structure. All the
model variograms in Figures 1 and 2 exhibited
large positive nugget values attributable to such
variability as short scale variability (between
sampling points), random and inherent variability,
and sampling error.

The differences in model parameter estimates
between the spherical and exponential models are
shown in Table 2. In general, spherical models
fitted better than exponential models asevidenced
by the smaller mean squared residuals (MSR).
However, both models were generally similar for
all the data subsets. The nugget-to-sill ratio is
used as a criterion to classify the spatial
dependency of soil properties. According to Sun
and Zhao (2002), a variable is considered to be
having strong spatial dependence if the ratio is
less than 25%, and has a moderate spatial
dependence if the ratio is between 25 and 75%;
otherwise, the variable has a weak spatial
dependence. Both the spherical and exponential
models show strong spatial dependence in Y1 and
Y4, as shown in Table 2. In Y2, Y7 and Y8 the
models show moderate spatial dependence, while
in Y3 they show weak spatial dependency. For the
remaining Y5, Y6 and Y9, the two models classify
spatial variability differently. The spherical model

@ - (h

s
o e

’w
e

Y e we e

Figure 2. Exponential semivariogram models of predicted soil organic C in each of the Ys (sub-location) (labelled

a - i) showing the degree of spatial correlation.
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classifies the spatial dependence in Y5 and Y9 as
weak (nugget/sill ratio of 0.85 in both cases),
while, the exponential model classifies them as
moderate (nugget/sill ratio of 0.60 and 0.64,
respectively).

Analysis of the fitted variogram models for
each of the data subsets indicates that the spatial
autocorrelation structure of predicted soil organic
carbon ranges from small distances to beyond the
maximum distance of 900 metres covered by the
study. In the Y, Y4 and Y6 datasets, spatial
autocorrelation structure goes beyond the
maximum distance covered by the sampling
design. In these three subset areas the range of
spatial dependence is expected to hold up to
1.334e+08 m in Y!, 1.24e+07 m in Y4 and
2.78e+08 m in Y6. In reality, this may not be true
and the large nugget effects experienced by the
models indicate unexplained variance between
the sampled points. Beyond these distances, the
sample values are then expected to be independent
and notinfluenced by spatial structure. According

to a study carried out by Voortman et al., (2002),
only asmall portion of the variation in crop yields
was explained by soil macronutrients N, Pand K,
and manure application rates. A large portion of
the yield differences was explained by spatial
dependence or autocorrelation i.e. by the yield
values of neighboring observations.

Mixed effects modelling. Linear mixed-effects
models were fitted to the data as an iteration
process to determine the main factors that
contributed significantly to an optimal model. All
the parameters that were measured in the field
were treated as fixed-effects. The grouping factors;
the districts, Ys within a district, and farms within
a'Y, were all treated as random factors, while the
fields within a farm were treated as the residual
variance. The Eastings and Northings represented
latitudes and longitudes, respectively, and were
used to account for spatial variability of the data.
After several iterations, the parameter
combinations shown in Table 3 were found to

TABLE 2. Models fitted to the empirical semivariograms of log 4 organic C for each of the sublocations (Y-area),
their parameter values, and the mean squared residual (MSR)

Y- Model co c a(m) colc MSR
Y1 Spherical 6.20E-02 4.83E+03 1.33E+08 1.30E-05 0.0098
Exponential 6.20E-02 1.11E+02 1.98E+06 0 0.0098
Y2 Spherical 1.90E-02 6.50E-02 2.82E+02 0.3 0.0102
Exponential 1.60E-02 7.00E-02 1.18E+02 0.24 0.0114
Y3 Spherical 4.50E-02 4.90E-02 2.15E+02 0.92 0.0014
Exponential 4.90E-02 0.00E+00 0.00E+00 4.52E+07 0.0015
Y4 Spherical 5.30E-02 2.10E+02 1.24E+07 0 0.0061
Exponential 5.30E-02 4.80E+01 1.90E+06 0.001 0.0061
Y5 Spherical 2.20E-02 2.60E-02 6.84E+02 0.85 0.0021
Exponential 2.20E-02 3.70E-02 5.00E+02 0.6 0.0026
Y6 Spherical 3.10E-02 6.14E+03 2.78E+08 5.14 0.0035
Exponential 3.10E-02 1.53E+02 4.46E+06 0 0.0035
Y7 Spherical 4.50E-02 7.70E-02 5.84E+02 0.58 0.0124
Exponential 3.20E-02 9.30E-02 2.21E+02 0.35 0.0136
Y8 Spherical 1.80E-02 2.80E-02 3.51E+02 0.65 0.0012
Exponential 1.40E-02 3.40E-02 1.47E+02 0.42 0.0012
Y9 Spherical 4.20E-02 5.00E-02 6.56E+02 0.85 0.0072
Exponential 3.90E-02 6.20E-02 3.50E+02 0.64 0.0075

# cp = nugget effect, ¢ = sill, a = range and MSR = mean squared residual
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give better model predictions for the data. The p-
values were used to eliminate the most insignificant
fixed effect factors, leaving the significant ones.
The model output included the values of the
Akaike Information Criterion (AIC) (Sakamoto,
Ishiguro and Kitagawa, 1986) and the Bayesian
Information Criterion (BIC) (Schwarz, 1978),
which is also sometimes called Schwarz’s
Bayesian Criterion (SBC): These were the model
comparison criteria evaluated as;

AIC = -2log Lik + 2nmr,; and (16)

BIC =-2log Lik + n. log(V) (n
where n . denotes the number of parameters in the
model and N the total number of observations
used to fit the model. Under these definitions,
“smaller is better”. Thus, if we are using AIC to
compare two or more models for the same data,
we prefer the model with lowest AIC. Similarly,
when using BIC we prefer the model with the
lowest BIC. The model shown in Table 3 gave the
lowest AIC and BIC values, meaning it was the
best model obtained by the study.

Analysis of the estimated variance components
(Table 3) show that the district effect accounted
for a mere 2.6% of the variation in predicted
organic C as compared to the Y or farm effects.
The Y and farm effects account for 16.5 and
18.4%,respectively, of the total variance observed
in soil organic C. Farms within a Y region exhibit
between-farm variability comparable to that
between Y's but with better estimates. This can be
explained by the fact that farms within the same Y
region show spatial autocorrelation, hence, the
value of predicted soil organic C in adjacent farms

canbe favourably predicted withminimal standard
€ITOrS.

The within-farm or between-fields (residual)
variability, accounts for the greatest percentage
(62.5%) of the variation associated with random
effects. Thus, the deviation of an individual value
of predicted soil organic Cinafield is the deviation
of that field from the average of the farm, Y and
district where it is located. It encompasses all of
the unexplained variation from field to field within
a farm, such as local environmental effects (soil
type, other biophysical factors not accounted for),
management interventions, and measurement
error. According to Voortman et al (2002), the
causes of extreme local variability in crop growth
across distances of even a few meters are still
poorly understood. The variance of 0.192 means
that the standard deviation of the field-to-field
variation is v(0.192) = 0.438. Thus, there is more
variability of predicted soil organic C within
individual farms (approximately up to 63%) than
the higher grouping levels.

The spatial mixed effects model. Variogram
analysis in Section 3.2 showed that soil organic C
displays spatial correlation structures. It's therefore
necessary to'account for such spatial correlation
structures in the context of mixed-effects models.
The semivariogram represents a decomposed
(nested) random function Z(x), and according to
Wackernagel (1998) a nested variogram model is
a sum of spatial components characterising
different spatial scales, i.e. reaching different sills
of variation (b ) at different scales, except maybe
for the last coefficient (b ), which could represent
the slope of an unbounded variogram model. The
semivariogram is therefore a product of several

TABLE 3. Summary of model estimates and random effects for the basic mixed effects model

Linear mixed-effects model fit by REML

AIC BIC logLik

1111.60 1203.44 -535.80

Random term Std deviation Variance comp. % variance
District 0.090 0.008 2.6

Y 0.225 0.051 16.5
Farm 0.238 0.056 18.4
Field/residual 0.438 0.192 62.5
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other individual semivariograms optimised at
different lag distances.

To describe the spatial component of the
experimental model, three isotropic variogram
models (the exponential, spherical and rational
quadratic) were fitted using REML by generalised
least squares and the parameter estimates given
(Table 4).

The exponential model provided the best
estimates for modeling the within-group error
covariance structure since it has the lowest AIC
and BIC values. A comparison between the basic
mixed-effects model which does not account for
spatial variability, and the final mixed-effects
model which does account for spatial correlation
structures, indicate a strongly significant
improvement of the model as shown by the anova
analysis (Table 5). Thus, accounting for spatial
variability improves the basic model significantly
(P<0.01) to arrive at a more stable final model.
However, when looking at the actual change in
absolute values of the AIC and BIC functions, the
change was minimal (Tables 4and 5),anindication
that the mixed effects model had accounted for
most of the observed spatial variation. The model
factored in the Y-frame sampling design used in
this study as random effects, hence controlling
mostofthe variability which would have otherwise
occurred due to spatial separation of sampled
areas.

The large value of the likelihood ratio (L. Ratio)
test statistic gives strong evidence that spatial
correlation exists and individual sample values

cannot be said to be independent. This means that

‘the influence of the fixed effects on the model

with spatial correlation structures accounted for is
significantly different from one in which they
haven’t been accounted. The nugget/sill ratio for
all the three models lies between 50-60%,
indicating moderate spatial correlation.

GENERAL SYNTHESIS

Soil organic carbon showed moderate spatial
correlation within smallholder farms in western
Kenya. However, the large variability of soil
organic C observed at both within fields of the
same farm and among farms, with no clear cut
trends poses a big challenge in accounting for its
causes. The causes of extreme local variability in
crop growth, across distances of even few meters,
are still poorly understood (Voortman ez al., 2002).
It has been attributed to differences in soil
chemistry (Scott-Wendt et al., 1988a, 1988b;
Kretschmar et al., 1991; Wendt eral., 1993; Stein
et al., 1997), but also correlates with differences
in local topography (Brouwer and Powell, 1998).
In Western Kenya, however, other factors such as
farm size, type of management and socio-
economic status of the farmer play a great role in
determining soil fertility levels as well as their
variability within the farm.

At the farm level, micro-scale variation is a
factor of different management practices which
differ from field to field, variation in biophysical
aspects such as soil type and fertility, and the

TABLE 4. Model variograms fitted to the experimental semivariogram using genaralised least squares (gis)

Model AlC BIC LogLik
Exponential 1089.8 11771 -525.9
Spherical 1090.4 1177.6 -526.2
Ratio 1094.7 1181.9 -528.3
TABLE 5. ANOVA Analysis between the fitted models

Model df AlC BIC LoglLik
Basic model 1 20 1111.6 1203.4 -535.8
Final model 2 19 1089.8 11771 -525.9
Test L.Ratio p-value.

1vs2 19.79 <.0001
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sampling error. At the Y-level micro-scale
variation can only exist if sampled farms are
adjacent to each other such as those around the
centreofthe Y. Insuch cases, micro-scale variation
can also be a factor of different management
aspects between farmers which are in turn
influenced by farmers’ socio-economic status.
According to Fresco and Kroonenberg (1992), in
ecological and geological time-scales, equilibrium
situations in nutrient budgets hardly exist, as
climate change, volcanism and biodiversity
development all have their more or less gradual
impact on agro-ecosystems. When these are
coupled with variability in farmers’ management,
which in turn is influenced by socio-economic
conditions, its not surprising that soil fertility
gradients emerge at different spatial scales. Such
complex interactions have led to the high
variability of soil organic C observed in within
and between smallholder farms of western Kenya.
Most of the observed spatial variations occurred
at the field level and less at higher sampling
levels. The large nugget variances observed for
all semivariogram models indicate the large
variability in measured soil organic C. Theresults
concur with those of the mixed effects model
which show that the residual effect associated
with fields are large as compared 10 other random
effects.

Although this study concentrated mainly on the
effects of biophysical factors on the spatial
variations of soil organic C, it was evident that
short-term and micro-scale processes including
soctoeconomic endowment of the farmers have,
also had a substantial impact. The net effect of
these factors over the long run is a gradual build-
up of nutrient rich microniches at the expense of
a gradual decline in fertility over a much wider
area, as already observed in western Kenya.
According to Crowley and Carter (2000), such
processes are easily missed in studies that
aggregate data to the farm and higher system
levels or assume an equal distribution of nutrients
across the landscape. Therefore, it is important to
note that microvariations in soil fertility and other

soil properties are essential in farmers’ choices of -

crops per locale and the variable impact of
technologies in space. If this is the case, then,
modeling of the spatial variations of soil fertility
attributes in combination with the socioeconomic

conditions of the farmers is an appropriate
approach towards better targeting of ISFM
technologies.
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